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Abstract. The integrated density of states has C°°-like singularities,
In \k(E) - k(Ec)\ = -\E-Ec\~ vl2φc(E% with φc > 0, a milder function at the edges
of the spectral gaps which appear when the distribution function of the
potential dμ has a sufficiently large gap. The behaviour of φc near Ec is
determined by the local continuity properties of dμ near the relevant edge:
φc{E) = G{\) if dμ has an atom and φc = $(ln|£ — Ec|) if μ is (absolutely)
continuous and power bounded.

Introduction

Let Hω=T+Vω be a tight-binding Schrodinger operator with disordered
potential on Έv (or an infinite sublattice of it):

(Hωf)(n)=ΣI(n-m)f(m) + Vω(n)f(n) (1.1)
m

Here / has compact support and Vω(n) are independent, identically distributed
(iid) random variables. The (compact) support of their common distribution
function dμ contains at least two points.

Such operators appear in many models for electrons in disordered systems
either as finite difference approximations of Schrodinger operators or as
restrictions of such operators to subspaces spanned by localized (atomic or
Wannier) basis sets.

Let Jf(E^ A) be the number of eigenvalues of the operator A which are less than
£. The integrated density of states (IDS) for H may be defined by

k(E)= lim μtΓυr(E,H2), (1.2)

where H^ is a restriction of H to the compact A CZV and \Λ\ is the number of points
in A 1

1 For Schrodinger operators on IRV, \Λ\ is the Lebesgue measure of A
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Under rather reasonable physical assumptions (ergodicity and exponential
mixing for the process Vω9 see e.g. [7,9,13]) - which in our case are evidently true -
the limit in Eq. (1.2) exists for a.e. ω and does not depend on ω, the sequence {A} or
the boundary conditions used to define H*.

For periodic operators k{E) is piece wise C00 having algebraic singularities at
the spectral (band) edges and at some internal points (van Hove singularities).

Much less is known in the disordered case. Intuitively one would expect the
disorder to smoothen the singularities in k(E). For absolutely continuous dμ
Wegner [17] has shown that k(E) is Lipschitz continuous. Craig and Simon [2]
proved that k(E) is log Holder continuous for general μ. Recently Simon and
Taylor [15] proved that fceC00 for the one-dimensional Anderson model.

A nice physical argument by Lifschitz [8] predicts that near fluctuative spectral
(band) edges, where only large-scale fluctuations of the potential, resembling
ordered domains, contribute to k(E), it has an essential singularity of C00 type:

dk
Q(E) = — (E) ~ exp [ - \E - Ec\~ V / V(£)], (1.3)

for SpHω3E-+Ec, with φc(E) a milder function.
Near the lowest edge of Sp Hωf the IDS has been proven to have this Lifschitz

behaviour for a large class of discrete [4, 11, 14] and continuum models [1, 3, 6]
(see also references in [9] and [14]). For the Lorentz model of dilute, short-
range scatterers several terms in the asymptotic expansion of φc(E) were
obtained [10].

In [11] φc was shown to be Θ{\) if μ[α]>0, where α^minsuppμ and
0(ln\E-Ec\) if μ[α, α + ε] = Θ(ελ), λ > 0, for EI min SpHω.2

For many physically interesting models Spίfω has gaps. Lifschitz's arguments
predict singularities of type Eq. (1.3) at the corresponding spectral edges.

The purpose of this paper is to prove that k{E) has essential singularities of the
Lifschitz type at the edges of the gaps which appear in Sp//ω if suppμ has
sufficiently large gaps.

Theorem 1.1 (Kunz and Souillard [7]). Let Hω=T+ Vω. Then, for a.e. ω,

a) SpHωDSpT+suppμ,

b) Sp Hω C [inf Sp T, sup Sp T] + supp μ.

In this paper we shall consider only T=T0, with To the finite difference
laplacian defined by Eq. (1.1), where

2vJ, m = 0;

I(m)=\ - J , |m| = l ; (1.4)

0, otherwise.

2 f(χ) = Θ(g(x)) as x^>x0 is used in this paper as shorthand for 3 C1 ? C2 φ 0, with C1C2

>0 such

that C1 ^ lim i n f — ^ lim sup — ^ C2
g(x) g(x)
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Then, Sp Γo = [0,4v J ] has no gaps and by Theorem 1.1

Γ0, supSpT 0] + suppμ, (1.5)

with probability one.
Let suppμ = u[α ί 5fo / + 1], with bi<ai^bi+1. Let % = {c; bc + 4vJ<ac}. Then

(J (bc, ac) belongs to the resolvent set of Hω and these are the only gaps in its

spectrum.

Definitions. 1. The pair Ec9 xc where Ec = ac9 xc = ac or Ec = bc + 4vJ, xc = bc',ce^ are
a spectral edge of J ϊ ω and the associated edge of the measure dμ.

2. The edge is of type A if μ(xc — ε,xc + ε) = Θ(ε% λ>0 and of type B if

The main result of this paper is

Theorem 1.2. Lei ίfω = To + Fω 6e gπ en fey £ f̂s. (1.1) and (1.5); £ c and xc a spectral
edge and the associated edge of dμ;

Then, k(E) has an essential singularity of Lifschitz type at Ec:

In \k(E) - k(Ec)\ = -1£ - £ e | - *i2φc{E), (1.6)

for SpHωBE->-Ec. Here φc is a milder function:

As a corollary to Theorem 1.2, a theorem proved by Kirsch and Martinelli [6]
for a class of disordered Schrόdinger operators and by Simon [14] for the
Anderson model is generalized to the internal singularities:

Corollary 1.3. In the assumptions of Theorem 1.2

ln|ln|fc(£)-/c(£c)H v
l i m Γ T ^ ^Π r=~~~ o ' (Lo)

spHω=>E-+Ec m\E — Ec\ 2

for all the spectral edges of Hω.

Our basic tool is the following

Proposition 1.4. Let ZV(1RV) be tiled with nonoverlapping congruent domains: ZV(JRV)

= 0 A, ΛanΛβ = Φ, Λa = Λ + na, naeZ\
α

Let Hω be bounded from above and below by direct sums of statistically
independent domain Hamiltonians: £@Hk'Ό. (1.9)

α α

Then,

where {° }av is the expectation value with respect to the ensemble of potentials Vω(ή).

3 The edges of the Anderson model are of type A, while those of the binary alloy model are of
type B
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Proposition 1.4, together with a reasonable choice of approximating Hamil-
tonians allows the bounding of k(E) to be reduced to estimating several
eigenvalues of the approximating Hamiltonians which lie close to E.

This approach, which has been widely used for estimating k(E) near the bottom
of the spectrum [5, 6, 11, 14], is simpler and more general than the functional
integration methods [1, 3, 4, 10], whose application requires quite specific (and
irrelevant to leading order) assumptions on the analytic properties of the
logarithm of the Laplace transform of dμ.

2. Approximating Hamiltonians and Reduction to Lowest Edge

Let AQ.TD be a domain and dΛ = {neΛ, 3meZv\Λ, \m — n\ = l} its frontier. We
shall consider three types of boundary conditions defining restrictions of the
operator To to functions with supp/C/L

a) TQ'F= PΛT0PΛ, where the projection PΛ is the characteristic function of A:

(T0

Λ>pf)(n) = 2vJf(n)-J Σ f(n + ί); (2.1)
n + ieΛ

b) Dirichlet boundary conditions:

T*'D=Tf-p + KdA9 (2.2)

with

(KdΛf)(n) = ζ(n)Jf(n), (2.3)

where ζ(n) is the number of bonds between n and sites in Έ\A. Evidently ζ(n) = 0,
nφdΛ;

c) Neumann boundary conditions :

0 = *0 ~KdΛ' \ZΛ)

These operators satisfy the evident inequalities

0^T^NST^p^T^D^4vJ. (2.5)

One may readily see [11, 14] that for any tiling of Zv,

0 T o ^ ^ T o ^ 0 T o ^ . (2.6)
α α

Hence, adding the diagonal operator Vω to Eq. (2.6) will yield approximating
Hamiltonians for Proposition 1.4.

Remark. For general T, Eq. (1.1), the approximating Hamiltonians may be

obtained by adding/subtracting to Q)PΛaHωPΛu the direct sum of KdΛoι with
α

(KeΛf)(n)=f(n) Σ \I(n-m)\.
meZv\Λ

An useful property of the restrictions of To defined above is that subtracting
one from 4vJ yields another:
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Lemma 2.1. Let Hi'\ with °=P,D, N, be given by Eqs. (2.1)-(2.4). Then Vx GIR,

PU, (2.7)

NU, (2.8)

where the unitary operator (ϋ/)(n) = (—l)" I + ""+ B v/(n) and

VωM = x-VJn) (2-9)

Proof. It is sufficient to note that the diagonal matrix elements oiH^'p are equal to
2vJ -f Fω(n) and that U changes the signs of the off-diagonal ones. D

By the preceding lemma one needs to investigate only the edges of the lower
component of SpHω.

If suppμ has a gap it is useful to partition A into a lower and an upper
subdomain with respect to the values of Vω(ή).

Let VJn)e[α,b]u[c,d], ne/I, with a^b<c^d. Then

(2.10)

. (2.11)

The indices of j / 5 Si will be omitted whenever it does not lead to confusion.

Lemma 2.2. Let suppμC[>,£>]u[c,d] with β = b + 4vJ<c. Let E^β and the
domain A is partitioned into lower and upper domains, Eqs. (2.10), (2.11). Then a.e.

^(E,Hi>D)^\j/\- lim J^(β-E,Hi>N), (2.12)
x t oo

where

Proof. By the min-max principle the first \s/\ eigenvalues of H^'D are bounded
from above by the eigenvalues of P^H^DP^.

Neglecting the other eigenvalues which are ̂ c > β ,

jr(E, Hi'D)^^(E, P^HZ>DPJ. (2.14)

By Lemma 2.1 P^H£>DP^ is unitarily equivalent to β-P^Hi>b

NP^ defined by
setting x = b into Eq. (2.9), since P^ commutes with U.

The relation

jr(E,C) = dimJ^-JT(-E, -C), (2.15)

is valid a.e.4 for any Hermitian matrix C on a finite dimensional space Jf.
Thus, from Eqs. (2.14), (2.15), and (2.7) follows a.e.

jr(E, Hi ^ W - JT(β-E, P^HΛJPJ. (2.16)

4 Because Jf(E, o) is continuous from the left; redefining Jί at discontinuities to be half the
sum of its left and right limits would eliminate this restriction, but we shall use the standard
definition
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To complete the proof we need the following lemma which is readily
established by direct calculations:

Lemma 2.3. Let stfcΛcΈ\ m = Λ\jtf, H=T+V=H*, (Vf)(n) = V(n)f(n)9

. Then \fze£ with ImzφO,

lim (z- T- VJ-^P^lz^-P^HP^y1, (2.17)
χ—> oo

uniformly in the resolvent norm for z in compact sets with ImzφO.

The eigenvalues oϊP^H^b

NP^ are given by the poles of its resolvent in si. Since
the restriction does not depend on P<%VωbPm, one may replace Vωb by Eq. (2.13).

Analytic continuation of Eq. (2.17), together with the fact that the other
eigenvalues of H&'N go to -f oo as x f oo completes the proof. D

Lemma 2.4. In the assumptions of Lemma 2.2

n (2.18)
X ί c o

where dsiί = {nedjtf; 3me^ = Λ\si, |m-n| = l} and V& is given by Eq. (2.13).

Proof. Let us uncouple si and J* by inserting Neumann conditions at the broken
bonds

H£N^H^N@HfN. (2.19)

Since $pHfN^c> β9 ϊorE^β only the eigenvalues ofH%*N contribute. By the
same arguments as in the proof of Lemma 2.2,

E,H%D). (2.20)

Substituting V& in H%h

D and taking xfoo would yield

dΛP^ instead of the required H^D = H^p + KδΛ.
The (diagonal) matrix element of their difference

are nonzero only on dstγ - the part of dsi that has nearest neighbours V
A rough estimate of the effect of this semipositive perturbation is

(2.21)

, HfD) S rankKx = Ids/, \. (2.22)

Together with the obvious inequality JΓ(E, °)^0 this yields Eq. (2.18). •

Lemmas 2.1, 2.2, and 2.4 allow us to replace the estimates of Jf{E, o) in
Proposition 1.4 for E near an arbitrary spectral edge Ec of Hω by estimates of
Jf(E, o) for some effective Hamiltonians near the bottom of their spectrum.

Using the estimates of [14] one could proceed to prove directly Corollary 1.3.
Since we want to prove the sharper estimates, Eq. (1.7), which show how the

function φc depends on the local properties of dμ near the relevant edge, in the next
section, which has some overlap with [11], some bounds on the lowest eigenvalues
and Jί(E, °) near the bottom of the spectrum are given.
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3. Estimates for «V(E9 °) and the Lowest Eigenvalue

Lemma 3.L Let H=T+V, with V(ή)^0 and the compact ΛcZ\ Let
; V(ή) = 0}9 @ = Λ\st. Then

a) JT(E,HA'D)^nmx[O,jr(E, TΛ>D)-\@\~]; (3.1)

b) ^(EiH^^J^iEiT^^-ΘtλiiH^^-EWlE-λ^T^")-], (3.2)

where λ^o) is the lowest eigenvalue of o.

Proof, a) follows from the equivalent of Eq. (2.22) - a semipositive Fmay not push
the nth eigenvalue of HAD beyond the (rc-f rankF) th one of TΛ D. b) follows by
taking λiH^^λiT^l i^2. D

To apply Eq. (3.2) we need a lower bound on λγ(flAiΐ1\ In the case of positive V
it may be obtained from Thirring's inequality [16]. The following lemma will allow
us to avoid taking the inverse of F.

Lemma 3.2. Let H = H0 + V; H0^Q, Hoφ = 0, λ2(Ho)^λ2>0; F^O. Then

λ1(H)^W-γW2-λ2(Vy, (3.3)

where (o)=(oφJ(p),

<V'y< (3.4,

Proof. Let ω > 0. Then V+ω > 0 is invertible and applying Thirring's inequality to
(Ho -ω) + (V + ω) yields

^ ( t f ^ - ω + m i n C ^ F + ω Γ 1 ) - 1 ] . (3.5)

The right-hand side of Eq. (3.5) is concave in ω. Therefore, it has an unique
maximum for ω^O. I f Λ ^ X ^ " 1 ) " 1 it is attained for ω 0 - the solution of

Instead of solving this equation, let us substitute the inequality

<F>2

V+ωV

into Eq. (3.5). Solving the quadratic equation for best ω yields Eq. (3.4). D

Remark. The bound (3.5) is expressed in terms of the same quantities as Temple's
inequality, which does not require the (semi) positivity of V. If

2 y , Temple's inequality gives

/y\2

V (3.7)
λ2 — \ V /

For (yy<λ2<(y2yi(yy the right-hand side is negative although we know
λ^H) > 0. One may improve this by considering H^H0 + gV, Orggrgl, using Eq.
(3.7) and choosing the best g ̂  1. The resulting bound is still smaller than Eq. (3.4).
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A similar approach may be used to worsen the Thirring bounds for several
eigenvalues to obtain manageable equations for lower bounds from variational
upper bounds when calculating \PV~ *P] ~ x is a difficult task but PVP and PV2P
are available [12].

4. Proof of Theorem 1.2

Using the lemmas in Sect. 2 near any spectral edge k(E) is bracketed by expressions
of type {|eβ/| 4- F}av, where {|^|}av is equal to the average number of sites having the
values of the potential in the lower component of suppμ - which is equal to k(Ec) -
and F involves bounds on Jf(E, Heΐ{) near the lowest spectral edge for an
approximating Hamiltonian iίe f f.

Thus we need to prove the estimates Eq. (1.7) only near the bottom of the
spectrum.

A positive measure dμ may be arbitrarily well approximated by ladder
measures - weighted sums of Dirac measures - which appear as the natural
approximants. For our purposes two-step ladders (binary alloy model measures)
will be sufficient.

Let μ(x) = μ( — oo,x), suppμC[α, &].

Definition. Let ξe(α, b), p = μ[α, ξ), q=l—p. The measures β and γ defined by

(4.1)

are a pair of binary alloy measures bracketing μ.

Remark. Proposition 1.4 remains valid if one replaces the averages over the
ensemble generated by ®dμ by the average over the relevant binary alloy
approximant: ®dβ for the upper bound and ®dγ for the lower one.

Let A = {1,2,..., JV}V, a hypercube of side N. Then the eigenvalues of T^' ° are
given by

4W (4 2)

where Q = (β1,β2,...,βv)e{O,l,...,iV-l}v for °=iV and Qe{l,2,...,JV}v for
o=D.

Substituting the inequality (3.1) into the lower bound in Proposition 1.4 and
using the Remark above to replace dμ by dy one obtains by considering only the
contributions of J/,

t τA'Ό\ — W \Λ\ >N~vnNvf>( F— 1 C41)

Choosing N = 1 + IntγvJπ2/(E — ξ), one may find a constant Cί>0, inde-
pendent of p and E, such that for small enough E — a>0,
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If the estimate followed from Lemma (2.4) the I S J / J term which was to be
subtracted from Jί(E, Ύ^D) is zero for the configuration /[ = j / , considered in the
second inequality (4.3).

For measures of type (4.1) V{ή) may take only two values. In this case the
bound (3.3) coincides with the best Thirring bound from Eq. (3.5):

γ a ) / N 2 + \ (4.5)

where

and \&\ is the number of sites with V(n) = ξ>a.

Then, for N<γπ2J/(E-a), Proposition 4.1 with Lemma 3.1b and Eq. (4.5)
give, using again the Remark,

Σ C%yv-mqm, (4.7)
m = 0

where M = M(E, N) is the integer part of the solution of the equation

F(m) = E, (4.8)

with F defined in Eq. (4.5).
If M < qNv the inequality (4.7) remains valid if the summation is replaced by M

times the summand for m = M.
Let x = MN~v. Taking the logarithm of Eq. (4.7) and using Stirling's formula

for the factorials, one may find a constant C2 > 0 independent of E, ξ, pξ such that
for small enough ξ, E-a<ξ-a

C \ v / 2 min S(x,ξ). (4.9)
(E-α)' ψ

TT ζ

Here

The optimization with respect to N was replaced by optimization with respect
to x, using the solution of Eq. (4.8).

If the edge is of type B one may take ξ[a in Eq. (4.4). Then p = μ[α]>0
and the estimate (1.7 B) is true in the liminf sense. For the upper

bound let E<a+ * ~ ^ M (ξo-a)9 where ξo = maxμ-1 (1+μ[-aA, Then,

limsupS[^(l — μ[α]), £ 0] is finite and negative and Eq. (1.7 B) is true also in the
E la

lim sup sense.
For an edge of type A, choose ξ = (1 — χ)a + χE, with χ ~ |ln(E — a)\"1 for small

enough E. Then, since for edges of type A \np = (P(ln(ξ — a)), taking the lim inf as
E i a of Eq. (4.4) yields the lim inf half of Eq. (1.7 A).

Taking x = v/(v + 2) and ξ = E + (E - α)|ln(£ - a)\ in the bound (4.10) yields the
remaining lim sup half of Eq. (1.7 A). D
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The Corollary (1.3) follows now from Eq. (1.7) since

lim ln|φc(£)/ln|J5-£c | |=0.

Acknowledgement. I thank Prof. Barry Simon for his interest in this paper and for sending me
some of his results prior to publication.
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