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Abstract. Effective actions, containing the logarithm of a functional Dirac
determinant, appear in l/N expansions of fermionic theories (N being the
number of flavours). We introduce a method to find symmetric solutions of the
corresponding non-linear and non-local saddle-point equations. This method
consists in using the scattering data of the rotationally symmetric Dirac
equation in two dimensions with the angular mometum as a spectral
parameter. We apply the method to fermionic theories with scalar and
pseudoscalar quartic couplings. The effective action that generates the l/N
expansion admits a closed form in terms of the scattering data only in the
particular case when the model is integrable (Gross-Neveu and Chiral Gross-
Neveu model). No instanton solutions are present in these two particular cases.
This fact, together with the exact results for the S-matrix and form factors,
suggests that the l/N expansion could be convergent. In the general case, the
quantum model has an additional dimensionless parameter gR-gR->±oo gives
the Chiral Gross-Neveu model. When gR>0, tachyons appear. For gR-+0~,
and gR-+ — oo, generically complex-action instantons exists, indicating a
possibly Borel-summable l/N expansion.

I. Introduction

Effective actions play an important role in many problems of quantum field theory
[1]. At the one-loop level they have the general structure:

LogdetίP(i;,w,...) + ίdvxL(ί;,w,δι;,aw,...), (1.1)

where Θ is a partial differential operator and L a polynomial. Both & and L contain
the fields v,w,... and their first derivatives. So the effective action contains a non-
local functional of the fields [the Logdet in (1.1)] plus a local functional (the
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polynomial part L). The saddle-point equations of such effective actions lead to
non-local and non-polynomial equations.

In a series of papers we were able to study effective actions in bosonic field
theories. This was the case for the TV-dimensional anharmonic oscillator (x2)2 in
the framework of the 1/JV perturbation series [2, 3], generalized to an 0(N)
invariant potential F(x2) [4], and to (Φ2)2 field theory in 2,3, and 4 euclidean space
dimensions [5]. The technique used was the inverse scattering transformation. The
fields v,w,... were replaced by the scattering variables associated to them
through the auxiliary linear problem

O(υ,w,...)φ = 0. (1.2)

This can always be done provided the fields depend only on one variable, that can
be the distance to the origin (spherically symmetric fields) [5-7] or one of the
cartesian coordinates in euclidean space [8]. In terms of the scattering data the
In det($) becomes a local functional. In some cases the integral-polynomial part of
Seff

: ί dvxL(v) is also a local functional of the scattering data, indicating that
the saddle point equations associated to Seff are completely integrable. This
happened for the iV-dimensional anharmonic oscillator [2, 3], the non-linear
sigma model in 2 dimensions [5, 9], and the massless (Φ2)2 theory in 4
dimensions [5]. Here the use of the scattering data allowed us to find saddle
points of the effective action in every case (integrable or not). In the integrable
cases they were obtained in closed form. These instantons rule the large orders
of perturbation in 1/JV for (Φ2)2 [2-6, 10]. In the case of the g(Φ2)2 theory in 4
dimensions, the instanton found for # R e n <0 [5] connected the <Φ> = 0 vacuum
with an infinite field configuration, showing the unstable character of the theory
and providing an estimate for its lifetime.

This paper deals with fermionic effective actions; namely, when Θ is a Dirac-
type differential operator. This case has a considerable interest since one finds
fermionic effective actions of the type (1.1) after integration over anti-commuting
variables in theories like Yukawa, QED and QCD. Analogous actions appear in
two-dimensional fermionic self-coupled models like:

^ = Ψ^Ψ + gί(ΨΨ)2+g2(Ψy5Ψ)2, (1.3)

where Ψ = (Ψx... ΨN) is an JV-component Dirac field. One constructs here (Sect. II)
a 1/JV expansion through the introduction of auxiliary fields v and w. This leads
after renormalization to an effective action:

Γ(\ v/Ύ) "^ °° l + o o

~1—7—\vϊ2—2v/2~1 j (v2 + 2mv + w2)dvx -\ J w2dvx, (1.4)
(^7Γ) - oo gR - oo

where l/gR must be kept negative so as to get a tachyon free propagator for the field
w. The renormalized mass m is generated dynamically [the classical Lagrangian is
scale-invariant; see formula (1.3)]. gR is a renormalized coupling constant. Here a
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fermion-antifermion bound state appears in the w-channel. It becomes massless
(infraparticle) [11, 14] in the chiral symmetry limit l/gR->0. The saddle point
equation for the effective action reads:

I JΓ(1 —v/2)
Tr<x| —-2 |x> Λ A N v / 9 — 2v/2(v + ra) = 0,

— φ + m + v + iγ5w (4π) '
(1.5)

— $ + m + v + iy5xv 5 (4π)v/2

Here v and w are a priori complex potentials, and Tr stands for trace on chirality
indices. We shall look for rotationally invariant stationary points. They usually
dominate in the semi-classical regime (large N in the present case) [12]. For such
fields the inverse scattering transformation in the angular momentum for the Dirac
equation is the appropriate tool, as was the case (Schrδdinger equation) for the
bosonic fields [5]. When v and w depend only on the radial coordinate r,
one can expand the lndet in Eq. (1.1) in partial waves as

+ 00

l n d e t ^ = X lndetDj^J), (1.6)
J=-oo

where DJJ(J) stands for the radial Dirac operator in two dimensions:

(1.7)

Λ J
m + v + iw —or

r
— 8-j— m + v — ίw

r

The spectrum of DΠ(J) can be analysed (Sect. Ill), with the help of the Jost
function, defined as:

F(J)= lim e~mrφ{1)(r,J), (1.8)
r-> + oo

where φ(1) is the upper component of the regular solution (near r = 0) of DΠφ = 0.
This spectrum consists of a continuum part for purely imaginary J, plus a discrete
part {Jκ}. This discrete spectrum corresponds to solutions regular at r = 0 and
r = + oo, or equivalently to zeroes of the Jost function. It can be shown that the
following set of scattering data (S.D.) is in one-to-one correspondence with the
fields υ(r) and w(r):

J±,cκ, K=\ ... JVjf} (ReJ+>0; ReJ x <0), (1.9)

where

F(tτ + 0)F(iτ-0)
D ( τ ) = F0(ir + 0)F0(ir-W ( U O )

Fo is the Jost function for v = w = 0, {Jκ} are the zeroes of the Jost function, and
{cκ} are the normalization coefficients of the corresponding wave function. It can
then be shown that:
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r 0 W ) Rej κ >o-/+^κ 2π -00 (zτ —J)

>(lni)(τ)+Σln(?τ + t ! κ )) (ReJ>0), (l.lla)
\ K \π-JκJJ

F(J) π J - J κ _ ( J^ Y _ ^ τ _
2 π -00 O'τ — J )

(ReJ<0), (l.llb)
π-JκJJ

(J)/F0(J). (1.12)

Moreover, one can derive from (1.12) trace identities that connect integrals of local
polynomials in r,v,w,... with the scattering data. The first one reads:

1 oo

- J r(v2 + 2mv + w2)<ir
2 o

T l n Z ) ( τ ) , where j f ^ - ^ ' (1.13)
-oo 2π (Λ e < ^

Se f f can finally be reexpressed (Sect. IV) in terms of the scattering data, using the
previous results. One gets:

1 l l lnP(τ)lnD(τQ V Ί /cos(πJ x)
&eff= - T ~ 2 + ^ ? ^2 " T ^ T + Σ l n ^

-2ΣΣsgnRe(J κ )sgnRe(J κ ,) ln(J J C -J r )

- Σ l n c x + - ^ - Tnv 2(r)dr. (1.14)
x 2^^ o

In the derivation of this equation one uses (1.6) to (1.13) together with a non-
standard trace identity, derived in the Appendix:

+ 00

<2= J r In mr(>2 +2m*;+ w2)dr
o

dτdτ
4π 2

1
2π -
2 In 2 Σ (sgn Re J x)J κ - Σ (sgn Re Jκ) In Γ(i + J κ )

K K
- 2 Σ sgnίReJ^sgnίReJx^lnίJx-JxO-Σlncx. (1.15)

' K
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/ V
This expression arises owing to renormalization effects in the term ~ Γ ( 1 — -

• J dvx(υ2 + 2mv + w2) for v->2. Note that a similar identity was found in the bosonic
case [5]. This remarkable relation should be linked to an invariance of the linear
problem.

The expression (1.14) has a closed form either when WΞΞO, or when — =0,
9R

which respectively correspond to Gross-Neveu and Chiral Gross-Neveu, that are
known to be integrable in 2 dimensions [11, 13-16]. We find again the upper-
mentioned correspondence between classical and quantum integrability and
separateness of the action expressed as a function of the scattering data. The study

of instantons gives the following results. The Kth-order coefficient of the —
expansion of any physical quantity behaves as [2-6, 10]:

where

So is the effective action of the instanton,

No is the number of zero modes,

(C is the determinant of small fluctuations around the instanton.

Integrable models do not exhibit any instanton; this can be matched with the
fact that in both cases (Gross-Neveu and Chiral Gross-Neveu), the ί/N expansion
is known to be convergent for the 5-matrix [11,13-16] and form factors [15]. As
was the case for the non-linear σ-model [9], this suggests that the 1/JV series can be
convergent for the Gross-Neveu and CGN models. When gR-^ — co, a complex
action instanton appears, with an effective action So~ — l n | # | ; the 1/JV
expansion is simply Borel-summable when one perturbes the Chiral Gross-Neveu
model with such a small non-integrable term. Moreover, when gR-+0~, one finds
again that the effective action of the instanton is dominated by a complex term

— $rw2(r)dr. In this case, too, the 1/JV expansion is Borel-summable. For gR>0,
9R

the 1/JV series is also Borel-summable, but this case is not really interesting since
tachyons are present. In contrast with what happened in the bosonic models, there
is no clear relation between the limit gR-+0~ of the saddle-point Eqs. (1.5) and the
classical fermion field equations.

The general conclusion is that a special role seems to be assigned to the two
integrable models (Gross-Neveu and Chiral Gross-Neveu), since they seem to be
the only fermionic self-coupled models of the type studied that admit a possibly
convergent 1/JV expansion.

II. The Model

We shall consider in this paper the following U(iV)-symmetric and classically scale
invariant self-coupled fermionic model:

(ΨΨ)2(Φ(ΨΨ)(Φy5Ψ)2 (2.1)
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This is not the most general Lorentz-invariant fermionic Lagrangian [17]. Vector-
vector couplings of the type (ΨyμΨ)2 can also occur in self-coupled theories. We
shall not discuss such couplings in this article. In (2.1), Ψ is a JV-component field
(Ψi... ΨN), where each Ψa(a=l ... N) is a Dirac field in euclidean space. Note that
one gets from (2.1) the Gross-Neveu model when λ2 = 0, and the Chiral Gross-
Neveu model when λx = λ2 [18].

In order to use dimensional regularization [19], we shall introduce Dirac
matrices yμ

x) in any number v of (assumed even) dimensions. These matrices satisfy
a Clifford algebra:

{y(;Wj}}=2δμρ, l£μ,ρ^v, (2.2)

and act on a 2v/2-dimensional spinor space. A well-known and useful recurrent
construction reads [20]

y™ = y™®t*-v, y(

2

v> = y<2

2>®i<v-2),

. ( 2'3 )

Here the subscript is a Lorentz index; the superscript indicates the dimension of
euclidean space on which the spinorial representation is built.

One can easily check on (2.3) that all trace properties and anticommutation
relations of y(v)-matrices are verified, provided that the relations are verified for
y(v-2) ( r e c u r r e n t construction of y-matrices):

yM) = a M 2 v / 2 . (2.4)

Tr [odd number] = 0.

The yψ and yψ are Pauli matrices, respectively: σ1 and σ2; yψ is the σ3-matrix.
We also need to define y(

5

v). This is more difficult: it is well known that
dimensional extension of γ5 is linked to subtle problems, such as the triangle
anomaly in spinorial QCD [19]. For later convenience, we define:

We shall see that this definition is appropriate to dimensional regularization of a
two-dimensional theory, and especially to the reduction of a v-dimensional-space
Dirac equation to a 2-dimensional-space one. However, chiral invariance is
partially lost for vφ2. Moreover, non-standard relations will appear. Namely:

{y{5W;]}+=0 ( l ^ μ ^ 2 ) , [y(

5

v),y<v)]_=0 (2<μ^v). (2.5)

Trace properties remain. It is easy to check that [omitting the superscript (v) for
simplicity]:

μ μρyλ) = 0, (2.6a)

and of course,

(l-5)2 = H(v) (2.6b)
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We shall later comment on the consequences of the commutation relations
(2.5). The generating functional of the model reads:

(2.7)

A counterterm of the form (ΨyμΨ)2 will also appear in the exponent (2.7). However,
this term, which is generated by renormalization effects on the theory defined by
(2.1), will be suppressed by an order (1/JV) with respect to the other terms in (2.7).
Therefore, it will not appear in the saddle-point equations, and will only contribute
to small fluctuation effects around the extrema.

Source terms have also been omitted in (2.7). It will be easy to reintroduce them,
when one computes a given Green function. They are not necessary as long as

we discuss saddle-points. The — expansion of the theory now follows by

introducing auxiliary field variables v and w through the Hubbard-Stratonovitch
transform [21],

1 +0° _ +0° ΓNv>2 _ Ί
exp-γ- ί <Γx(y«P)2 = Jf0»exp f dvx\A~+2vΨΨ\,

λ + o° — + o° ΓiVw 2 — "1
exp-2- I <rxCPy5«P)2 = iJ0wexp f d'x\-τ—+2iwΨy5Ψ \.

i V — oo — oo [_ Λ<2 _J

(2.8)

Inserting (2.8) into (2.7) and integrating over fermionic variables leads to the
generating functional:

[ I +oo
Logdet (v)(^-i;-iy5w) + —- f dvxυ2(x)

2λ1 -oo

(2-9)

It is clear from expression (2.9) that we have obtained an effective (non-local)
theory with 1/N as coupling constant. The action of this theory has the well-known
structure of a "1-loop-effective action," introduced in [1], namely the lndet of a
differential operator containing the fields, plus local terms in the fields. We have
already met with such effective actions when we were studying 1/JV expansion of
bosonic theories V(Φ2) and (Φ2)2 [2-9]. Owing to the fermionic nature of the initial
field variables, the In det now exhibits a + sign (instead of the — sign of bosonic
ί/N theories).

Let us now proceed as usual and look for constant saddle-points. One gets in
the present case:

t τ < * h | x > = -^, t r < x h \ x > = (210)
λ

-υ-ιy5w λγ $-v-ιy5w λ2

where "tr" means taking the trace over spinor indices. Constant solutions of (2.10)
can be found in general by computing exactly the constant field propagator in
(2.10). We shall study the vacuum structure of these fermionic models, using
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V

another regularization. Dimensional extension of y5 according to y5 = Π yt (for v
even) is such that i = 1

{y5,yμ}=0, (?5)
2 = i ? T r y 5 = 0 ,

for all l^μ^v. Equation (2.10) can be rewritten now as:

2 v / 2Γ(l-v/2)

2*/2Γ(l-v/2) ^ , . . 2 l . . . 2 ^ _ ^

(2.11a)

2 = g2). (2.11b)

In the general case when gγ is different from g2 (other models than Chiral Gross-
Neveu), these saddle-point equations only have two possible solutions: either
v = 0, w = m, which leads to a renormalization of g2 according to:

m v ~ 2 , (2.12)
(4π |v/2

or z; = m, w = 0, with a corresponding renormalization oϊgv Note that t; and w have
a physical meaning, whichever regularization scheme is chosen, since the
propagator of fermions, to leading order in 1/JV, reads:

G ( ) ( \ | > . (2.13)

m is the dynamically generated mass (to leading order in 1/ΛΓ) of the physical ΛΓ-plet
of fermions. Actually, these two saddle-points generate equivalent theories:

.π

through a finite chiral rotation Ψ-*e 4 5Ψ, one can see that υ is exchanged with w
in the functional determinant. Hence the l/N expansion around any of the two
vacua is the same, provided that one also exchanges the role of gι and g2\
moreover, the non-constant saddle-points of the renormalized action, vc9wc,
corresponding to the two possible choices of background configuration, will be
obtained one from the other by exchanging vc and vvc. It is therefore enough to
study one of these two theories. We shall use v = m, w = 0 as the background
configuration for instantons, since the mass term is here more natural than the "y 5 "
mass corresponding to w = m, v = 0.

In the case of the Chiral-Gross-Neveu model, (2.11) reduces to a single
equation: any couple of values v and w such that v2 + w2 = m2 is a possible vacuum;
m is again the physical mass of the JV-plet of fermions, and g1=g2 is renormalized
according to

9

This degeneracy is due to the chiral invariance of the theory. Now if one does a
careless expansion around one of those degenerate vacuum solutions (for instance
X) — m, w = 0 as in [22]), one gets infrared divergences owing to this illegal breaking
of chiral invariance in two dimensions [23]. Perturbation theory (here 1/JV
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expansion) must be done according to [14] or [16]: one extracts from the initial
fermionic field Ψ a massless field, corresponding to local chiral transformations
that leave S invariant; this massless field compensates the infra-red divergences
of the theory. This procedure can also be done in the framework of path integral
method through a change of variables in the integral [24]. However, only the
gradient of the chiral phase of v + iγ5w is the relevant massless field. One
can then choose the absolute chiral phase of the vacuum configuration. We shall
set again υ = m, w = 0. Of course, if we want to do a perturbative expansion of the
functional integral around non-constant saddle-points, we should be very careful
about the treatment of such IR problems. Anyway, the conclusion is that, as long
as we are looking for saddle-points, we can choose the vacuum configuration v = m9

w = 0 as a background for the instantons, without any problem, for all the quartic-
coupled fermionic theories that we are studying.

Let us now come back to our non-chirally-invariant regularization γ5 =y172

The previous choice of vacuum υ = m, w = 0 still holds as a solution of (2.10), as can

easily be seen by computing directly <x|^ |x>. Again, g1 is renormalized
according to:

and again v0 = m is a dynamically generated mass for the JV-plet of fermions. As is
clear, the physical results, including non-constant saddle-points, and the large
order behaviour of 1/JV expansion for physical quantities, controlled by these
saddle-points, will not depend on the regularization scheme, as long as the
independent parameters (mass spectrum...) are the same in the end, as is the case
here for the fermion mass. We shall therefore keep from now on this non-chirally
invariant regularization scheme, which is much easier to deal with, as we are going
to see, when one looks for non-constant saddle-points.

Let us make a few comments about Eq. (2.15). We find the well-known mass
generation of the quantum theory in first order of the 1/JV expansion [18]. From
now on we shall set υ0 = m. Indeed, it is clear that at first order in 1/JV the spectrum
of the theory contains JV massive fermions. Moreover, Eq. (2.11) clearly provides
dimensional transmutation in v = 2 dimensions. The coupling constant gl9 which is
dimensionless, is replaced after renormalization through (2.11), by a dimensionful
parameter m. When g1 and g2 are independent (neither G.N. nor C.G.N.), a
dimensionless parameter g2R [see (2.17)] will remain in the quantum theory. We
now rewrite the effective action in (2.9) in term of the renormalized parameters, and
shifted fields v-+v — v0, W-MV. We assume from now on that v and w are a priori
complex functions. Seff reads

+oo

J dvxw2(x). (2.16)
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As already mentioned, our choice of y5 restricts chiral invariance of the theory to
V

two dimensions. An alternative "recurrent" construction y(

5

v)= Π y^v) would
μ = l

preserve complete chiral invariance, but as we shall see afterwards, it would make
the mechanism of dimensional regularization of the Log det more difficult to
handle for non-constant fields.

It is necessary to make a comment on the expression (2.16). Equation (2.11)
co e o

insures that -r- = -^— = 0 when the shifted potentials v and w are set equal to zero.
δv δw

Equation (2.11) only implies a renormalization of gv However, one can see that the
In det has two divergences: one is the term linear + quadratic in v which is exactly
cancelled when (2.11) is satisfied, and v is shifted as v-nn + v, the other is purely
quadratic in w. This last divergence will be cancelled by a renormalization of g2

according to:

-L--U-L (2.17)
9iB 9iB QiR

(B for bare, R for renormalized). (The Chiral Gross-Neveu model corresponds to
l/gR ΞΞ 0.) One can then show straightforwardly that Sef f in (2.12) is indeed finite. As
we explained in the beginning, no term other than those already existing in Se f f will
arise through renormalization, at least at order N. The theory defined with only
scalar and pseudo-scalar coupling can be renormalized at leading order in N, and
therefore the computation of saddle-points and the qualitative conclusions that we
shall draw on the large order behaviour of the 1/JV expansion will be correct (see
[10] for a discussion on saddle-points + large orders of a renormalized field
theory). An interesting feature arises when one does the computation of Se f f by

systematically expanding the In det in powers of I — = — ^ — ) . Owing to the
\ φ-m J

commutation of y(

5

v) with the γμ

v) for μ > 2, we must separate (p l 5 p2) and (pμ), μ>2,
when integrating. The use of commuting or non-commuting y(

5

v) matrix leads to a
+ 00

regularized (In det) differing by a (const) times J w2(x)dvx, +Θ(v — 2).
— oo

This effect, that follows from the aforesaid dimensional extension of y5, arises
therefore in the same way as the triangle anomaly in spinor electrodynamics [19].

We shall now analyse the particle spectrum in the large N limit by computing
the small fluctuations around the saddle-points υ = 09 w = 0 of the effective action
(2.16). We obtain the following inverse propagators for v and w fields (v = 2):

K Λ Λ ;= C

δ2s
δw(x)δw(y) v = 0 v

_δ^S_

δv{x)δw(y)

= 0. (2.18c)
v = 0
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Here:

. . . 4m2 .

OR

Apart from the supplementary term — in Aw

 ί(p), one finds here the propagators

obtained in [22] when "naively" computing the 1/JV expansion for Chiral Gross-
Neveu around the vacuum v = m, w = 0.

It appears in (2.19) that iϊgR > 0, Δw(ρ) exhibits a pole for some p2 = m2

Ύ > 0. This
corresponds to a tachyon in the w channel. So we have to set gR < 0. In this case,
one finds a pole in Δw(p) at some p2 = — m^<0, where mB{gR) is the real positive
solution of the equation

J_ 1_ 1_
π ^ /4m2

= Arc tan
1

Ml
- 1

: = 0 .
4m2

Ml

(2.20)

One finds 4m2>M2

?(#)>0 for 0 > g R > — oo. We can therefore interpret this
physical pole in the w-channel as a fermion-antifermion bound state. (Remember
that w is associated to Ψγ 5 Ψ.) It can easily be checked that the residue oίΔw has the
correct sign, so that this pole does not correspond to a ghost. This allows a physical
renormalization-invariant interpretation of gR as being a function of the two
independent masses in the theory. The propagator Δv(p) has no poles. Both
propagators have a cut for p2 < —4m2, corresponding to two-particle production.
Finally, we note that in the CGN limit, l/#Λ-*05 and the w-bound state becomes
massless. This is the well-known "naive" result of infra-red divergence in the 1/JV
expansion of CGN, and can be cured (as explained before) by a careful treatment of
this infra-particle [11]. We will now compute the functional determinant in (2.16).
The structure and recurrent construction of γμ and γ5 matrices will be very useful in
this computation. We choose υ and w to depend only on the two variables x1 and
x2; we shall later on reduce it to a spherically-symmetric dependence on
r = |/xf~+~xf. Taking a v-dimensional spherically symmetric ansatz would lead to a
more involved regularization procedure. The eigenvalue problem reads:

where

v ' 2 ) (d v-2)

(dx-ίdy)t{ v~2) (2.21)
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The elements of the 2 x 2 matrix (2.21) are operators acting on a 2 v / 2~ 1-
dimensional space. 2v/2-dimensional spinors have been decomposed into "upper"
and "lower" components, each taking value in a 2v / 2~ ^dimensional space. The
eigenfunctions will be the combination of such "upper" and "lower" 2 v / 2~ 1-
dimensional spinors.

Using the cyclic symmetry of the xλ (λ > 2) variables enables one to conclude
that eigenspinors can be chosen with a well-defined transverse momentum (Kλ,
λ>2).

where

It is now possible to expand Ψ1 and Ψ2 on a base of eigenspinors of it. This is made
possible by the recurrent construction of yμ-matrices: it insures that the
"supplementary" operator in ^ ( v ) is γ{2)®${v~2\ where ${v'2) is a complete free
Dirac-equation operator acting on a 2V/2 " ^spinor space, and that the matrices γ^\
γ{

2

v\ and y(

5

v) act trivially on the "upper" and "lower" subspace. The eigenvalue
equation now reads:

(2.23)

Expanding now Ψx and Ψ2 in a base of eigenspinors of J^, and projecting
the eigenvalue Eq. (2.23) on this base lead to the following equations:

[iλ - (m + υ + iw)yλ + ldx + ίdy]f2 = fx I

where λ is the eigenvalue of if. λ can take the two values + j/ ϊ? 2 . Hence the
eigenvalues $ have an intrinsic degeneracy 2 v / 2~ 2, associated to the degeneracy of
a free Dirac eigenspinor, in (v — 2) spatial dimensions, with a specified eigenvalue λ.

Again we would like to emphasize that this sort of "dimensional reduction" of
(2.22) to (2.24) heavily relies on the recurrent tensor-product construction of y^v)

and on the definition y(

5

v) = y(

5

2) (g> i ( v ~ 2 ). Otherwise if we had for instance chosen a
\ V

recurrent definition y(

5

v) = Π 7μV)) >we would have had to deal explicitly with those

2v/2~x-dimensional spinors which we have introduced before.
It now becomes easy to express the determinant in (2.16) in terms of the two-

dimensional operator Dπ(λ) that appears in (2.24). We have:

/ χ Λ v ~ 2 ±
L o g d e t 0 ( v ) = ί — j 2 v / 2 ~ 2 f d ^ K l o g d e t D j / A ) , λ=±yK2. (2.25)

Let us make a few remarks concerning this formula:
- the (L/2π)v~2 comes from partial Fourier-transform that changes the

variables x μ>2, intoKμ, μ>2, when computing the t r log^ ( v ) ; integration over
+ 00

dv~2x, when computing J <x|log^ (v) |x>(ivx, generates the (L/2π)v~2 factor;
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- the factor 2v/2 ~ 2 is the "intrinsic degeneracy" of any eigenvalue $ associated
to a given λ;

±

- the f dv~2K means that we have not only to integrate over the length and
direction of transverse momentum K, but also to take into account the two possible
signs of the eigenvalue λ in (2.24). In fact, this is a correct expression for

Assuming now that v and w are 2-dimensional rotationally invariant, enables
one to compute logdetZ)/7(/l). First of all we shall recast it into a simpler form,
using the rotational invariance of v(r) and w(r). We introduce the angular

momentum operator in 2 dimensions acting on spinors: </ = +idθ+ -~, where

polar coordinates are introduced: xx =rcosθ; x 2

Ξ —rsinθ. This operator clearly
commutes with Du. The eigenvectors of Du can therefore be chosen as
eigenvectors of J. Namely:

(2.26)

The logarithm of the determinant of D/7 will then read as a sum of logarithms of
determinants in each partial wave sector. DΠ(J) reads then:

/
— m — v — iw + iλ dr +

DΠ(J)=\ J _ i | . (2.27)

d —m — v + iw — iλ
r

We can now rewrite (2.26) as:

lndet^ v = ( ^ ] -2 v / 2-2.f dv-2λ(J +Σ lndet^XJ)). (2.28)
\lnj \j=-π + i/2

The eigenvalues J are taken to be half plus integer, so that Ψ(r,
= Ψ(r, θ, J). This is compatible with the fermionic nature of the eigenvectors (i.e.
half plus integer angular momentum). No degeneracy arises due to J, since angular
momentum is not degenerate in 2 dimensions (J can be positive or negative).

Expression (2.28) holds for any two-dimensional rotationally invariant
potentials v and w. This restriction is not too serious, since our final purpose is to
compute large orders in ί/N by evaluating extremal action configurations. The
dominant instanton usually exhibits maximal symmetry (note that this was proved
[12] rigorously in the case of a local euclidean action).

We shall now express the complete effective action (2.16) in a partial wave
expansion. We need therefore to obtain such an expansion for the local term
~Γ(1 — v/2). This will be provided by the following remark. The linear part of
lndet^(v) in v reads

^ Γ ( l - v / 2 ) f dvxv(x) + &(v2,w2). (2.29)
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We can also obtain this linear part from (2.28), which gives:

lndet———,-

j Σ ί{Ij+

o J>O
J=l/2

(2.30)

Equation (2.24) follows from expanding Indet ' as:
D0(J, /t)

λ) +0°
r = t r J i;(r)drGJ(r,r,A) + (P(ι;2,w2). (2.31)

A)
^ r t r J

D 0(J, A) o

Here Gj(r, r', A) stands for the Green function of the operator D0(J, λ). We have:

tτGj(r,r'9λ)

(2.32)

where μ = γλ2 + m2 and r>,r< are respectively the larger and smaller of r and r'.
Matching now (2.30) and (2.29) for a spherically symmetric v{r) immediately

gives

~ Δ J / o x v - 2 Z, 1-1^+1/2^7+1/2"
(Zπ) 1/2

(2.33)

The series in (2.33) is formally divergent. It must be understood everywhere in this
+ 00

paper that such divergent series are regularized as lim ]Γ (IjKjjcosJφ. The
divergence now appears as r 0 J = 0

+ 00

Σ IJKJcosJφ= —Inφ + finite part. (2.34)

Since the divergent term " lnφ" does not depend on λ in (2.33), the dimensionally

regularized integral of this term gives 0, and therefore the integral in (2.30) and

(2.33) is well defined once this regularization procedure is assumed. Note that this

divergence is not the same as the Γ(l — v/2) divergence in (2.33). This can easily be

seen when proving directly (2.33). In fact, the finite part in (2.34) is known to be

equal to — y + 21n2 — \n(]/λ2 + m2r) (this follows from taking the limit of the
+ OO

Σ-
J=l

Gegenbauer sum rule K0(w) = J0K0+ Σ IJKJ C O S Jψ> where w==γ2r2yl — cosφ,

and expanding Ko around w = 0 [25]). It is this part, ~lnl//ί2 + m2, that gives the
divergent behaviour for v->2 after integrating over dy~2λ. Equation (2.33)
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immediately follows from:
± Λv-2 . 2 v / 2

(2.35)1 \4π)v/:

+ 00

It is now possible to replace the counterterm Γ(l — v/2) f (u2 + Imv + w2)rdr in the
o

effective action Seff by its "partial wave expansion." The effective action can thus be
recast into the form

(2.36)

As we shall see, the existence and nature of trace identities, together with the
+ 00 +00

fίniteness of the series Σ (IJKJ~JJ)>
 w ϋ l imply that the series Σ (...) under the

J = I «?=o

integration sign is convergent [this time without any regularization as in (2.34)].
It becomes now possible to take the limit v->2 of the effective action, and as it

was to be expected (since the theory is now renormalized), this action is finite. Since
+

the functions appearing in (2.36) under the J dv ~ 2λ are test-functions, decreasing to
0 when λ goes to + oo, we can use the limit:

Jd v-2W) = 2/(0).
v->2

The effective action now reads:

+ 00 Γ

Seff = Σ n d e t D(J) + In det D( - J)
J=1/2L

- T ( v 2 + 2mv + w2)(J,_ ί/2(mr)Kj_ l l2(mr))(2-δs. 1/2f0)rdrl. (2.37)

Using the equality (2.34) finally gives:

Seff= +Σ
J=l/2\_

+ 00

+ j y
o

• f r(v2 + 2mv + xv2)dr+—- f rw2(r)dr. (2.38)
o 2#κ -oo

III. Inverse Scattering Transform

The effective action obtained in Sect. II has a non-local form that makes its direct
study rather untractable. It is necessary to introduce new variables, in terms of
which Seff will have a local form. This will enable us to study the saddle-points of
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such effective actions by extremizing Seff with respect to those new variables, and
to draw conclusions about large order behaviour of l/N expansion, that is known
to be dominated by those "instantons" [10]. Note that a rigorous proof of this
domination1 was recently given for g(Φ2)jj [26a, b] and g(Φ2)jπ [26c]. The shape
of Seff in (2.30) clearly indicates to us that the new variables which must be
introduced are the scattering data associated to the linear problem of Dirac
equation in 2 dimensions with rotational symmetry of the potential, and the
angular momentum as spectral parameter. Indeed, Seff appears as the sum of
Fredholm radial determinant of Dirac equation plus local terms in the potential.

We shall give now the main features and some useful results for inverse
scattering transforms (1ST) in Dirac equations, using the angular momentum J as
the spectral parameter. Note that the 1ST for the one-dimensional Dirac equation,
using energy as a spectral parameter, has already been considered [27] we believe
that the 1ST in angular momentum is new; moreover, it allows one to solve
interesting field-theory problems. The main characteristics of this 1ST and the
framework of reasoning are the same as for the 1ST in angular momentum for the
Schrόdinger equation [7]. The Dirac equation in 2 (regularized) dimensions reads:

iλ — m — υ — ίw eιt

%--», —iλ — m — v + iw

(3.1)

where v = v(r\ w = w(r), v and w are complex potentials; λ is defined in Sect. II (it
corresponds to the degrees of freedom in v —2 dimensions); polar coordinates
read :

x2=-rsinθ. (3.2)

The differential operator (3.1) commutes with the angular momentum

z

Denoting by J its eigenvalue, one gets the reduced system:

(3.3)

(3-4)

where we have set

and

Ψ =
y i ) = χ ( υ ( r ) e x p ( _ i ( J _ i ) θ )

(3.5a)

(3.5b)

1 For the perturbation theory in g
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We shall now study the linear problem (3.4) where we consider J as the spectral
parameter.

Let us first define the "scalar product" of two spinors. We set:

<Φ,|Φ2> = 7 ^{φ^Φψtr) + Φψ{r)Φψ{r)). (3.6)
o r

This "scalar product" is neither hermitian, nor positive definite. However, this
definition implies that the differential operator D is symmetric with respect to (3.6).
Moreover, we shall see that amongst the scattering data, a term appears which is
the normalization coefficient of the eigenfunction (Φκ) with respect to this "scalar
product." We shall now define the Jost solutions and the Jost functions, which are
the fundamental objects of this study. The Jost solutions are defined as (regular
solutions for r-+0):

+(J) =\

[μ

R e J > 0 : f + ( J ) =\μr/ . (3.7a)

2J+1 Y '

\ 274-1 / '

Re/<0: r ( J ) f r = 0 ) ( - , ,- , , V J (3 7b)

and the regular solution at r-* + oo is defined as:

1
(3.8)

Λλ + mj

In all those formulas, one has set μ = γλ2 + m2. Now we define the Jost function
through:

,ή = F+(J)f-(r,J)~F-(J)f+(r,J), (3.9)

= F+(J), ReJ>0, (3.10a)

= F~(J), ReJ<0. (3.10b)

They can be written in terms of the wronskian of two solutions Ψt and Ψ2:

WlΨiViY, ViiJiϊl = - Ψ^Ψψ+Ψ^Ψψ. (3.11)

One clearly has:

F+(J) = W(Φ(J),f+(J)), ReJ>0,
(3.12)

, ReJ<0,

(3.13)

and conversely:

f+=F+Ξ
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where Ξ is an exponentially increasing solution normalized by:

ZpP)-o[ (ii4)

m-iλ)

All those identities follows from the wronskian property:

frW[Ψ1(Jι),Ψ2(J2)l

whose immediate consequence is:

W{Ψ1(J),Ψ2(J)) = const.

(3.15a)

(3.15b)

This property shall be extensively used to compute "scalar products" (3.6) (which
shows again the interest of this definition!).

In the free case (v = w = 0), one can get exact solutions. Eliminating one of the
two components in (3.1) and normalizing adequately leads to Bessel functions:

(3.16)

(3.17)

(3.18)

where ρ = (γλ2 + m2)r is dimensionless.
The Jost function reads:

In the case when v and w are non-zero, we shall now define the spectrum of the
operator Dπ. This spectrum consists of a discrete plus a continuum part.

1) The Jost solutions corresponding to the zeroes of F+ and F~. These are the
only regular solutions of Eq. (3.4).

2) The "continuum" solutions Φ{iτ\ for τ e ] — oo, -f oo[. As we shall see, this
set of solutions forms a complete base of orthogonal functions. Using the "scalar
product" (3.6) and the relation (3.15) together with the normalization conditions of
the eigenfunctions, one gets, in particular:

- eigenfunctions associated to different eigenvalues Jκ are orthogonal,
continuous and discrete eigenfunctions are orthogonal,
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To prove completeness, we have to introduce the "Green function" associated
to the operator Dπ. We define it through:

ρ/). (3.20a)

It is easy to show that the matrix operator G defined by:

+ [/(ρ', J)®Φ(Q, J)]β(ρ - ρθ)σ3 (3.20b)

(where J can be positive or negative, / is respectively / + or / " , and θ is the
Heaviside function) fulfills this equation together with the required boundary
conditions G(ρ,ρ', J)->0 when |ρ — ρ'| becomes large.

We shall now compute in two ways the following integral:

1 + °° an'
lim —idJ ί ^G(ρ,ρ',J)a(ρ'),

R-> + OO zπi r o ρ

where α(ρ) is an arbitrary function,

is a contour which goes from — zoo + ( —)ε to + zoo + ( — )ε and closes to the left
(right) with a circle of radius R. It is straightforward algebra to see that
J-integration over the circle will generate a δ(ρ — ρ'), and integrating over the two
straight lines ] — ΐoo±ε, ioo + ε[ generates an integral over the continuous
scattering data. The global integral can be evaluated by Cauchy's theorem, and
since the only poles in G(J) correspond to F(JK) = 0, and therefore to eigenvalues of
D, we are finally left with the following completeness relation:

= ρ<5(ρ /-ρ).t, (3.21)

where ΦK = Φ(JK, ρ); F(JK) = 0, which shows that our definition of the spectrum of
the operator DΠ is consistent. Here,

Now that we have obtained all these preliminary relations, we shall define the
scattering data of this problem, and we shall relate those S.D. with the Fredholm

determinant In I —^ 1. We define:

~~ {^κ)κ= l which are the zeroes of the Jost function, and correspond therefore,
as we have already seen, to regular solutions. We define:

J+ <-> R e ( J K ) > 0 ; JK ++ R e ( J K ) < 0 .

- {ciJj^!, which are the normalization coefficients of the eigenfunctions Φκ

with respect to the "scalar product" (3.6). They read:
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•=(tf.(3.22)),_ ~* ,

Q

[this follows from (3.6), (3.15)].

- D(τ) = . , x ^_^ x (continuous contribution).
Fζ(ίτ)F0(ιτ)

We shall prove later that this set of scattering data is sufficient to solve inverse
scattering problems (up to the resolution of a Volterra-like integral equation).
Several properties can be derived here.

// v and w are real functions of r, one can show that every eigenvalue Jκ must
verify Jκ = — J%. This follows from computing:

+ o

= J J
o

Taking its complex conjugate gives J= — J*. However, any eigenvalue Jκ has to
satisfy Re Jκ φ 0. Otherwise φχ1 ) ( 2 ) ~ ρ J is not regular when ρ->0. Hence no discrete
eigenvalue exists in this case (see [27]).

// the potential w is zero, which corresponds to the Gross-Neveu effective
action, a supplementary symmetry exists in the linear system. Namely, one can
exchange the roles of φ{1) and φ{2\ by changing (J, λ) into ( - J, —λ) in the linear
system. This leads to the following properties:

Fw(-Jκ)=0,

It is now possible to relate the scattering data to the Fredholm determinant

In det —|p. Using the identity that gives the Green function of D / J ? <ρ| —— Iρ'), we
DII "a

get an expression for the following quantity:

+ 00 AQ

= lim \ iσ2-^tr[G(ρ,ρ,J)-G°(ρ,ρ,J)], (3.23)
ε^O ε Q

where G° is the free Green function that can be computed exactly from
(3.16H3.18), and (3.20). Introducing the definition of G together with the
wronskian property (3.15), we can compute the integral in (3.23). Straightforward
computation leads to:
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Since the limit of I n — — and lndet —̂ —— when |J|-> -f oo is clearly 0 I from the

definition of i7, and from expansion of lndet—^—-1, we end up with the very
important relation: ^

Again, as in the previous case of the Schrόdinger equation, this relation between
the determinant of a differential operator and an associated "Jost function" is a
particular case of a general theorem [28]. Using now a standard dispersion
relation for F(J) (F+ being analytic for ReJ>0 and F~ being analytic for
ReJ<0):

F ^ J ) * | fJ-J£\ 1 Y° dτ'

Λ iτ'-J

TlnD(τO+ Σ l n f c ^ U (3.26)
L κ=i \π-JκJ\

we obtain therefore an expression of the functional determinant det QJ — as a

local function of the associated scattering data. Notice that such a relation has
already been obtained for the Dirac operator with energy as spectral parameter,
and closely looks like (3.26) [27], From now on, we shall always consider λ = 0.
This is justified by the fact that all the results which we shall now derive are used in
the article after dimensional regularization has been achieved, which amounts to
setting λ = 0. We therefore need not introduce this supplementary variable, and we
shall omit it for the sake of simplicity. The problem now is to try to reexpress the
local terms in w which appear in the effective action, in a local form as functions of
the scattering data. We shall compute the corresponding "trace identity."

Relations between integral of potential and scattering data can generally be
obtained by expanding both sides of Eq. (3.25) in powers of J ~1 and identifying the
integrals of the potentials that appear on the left-hand side with the functions of
S.D. that appear on the right-hand side, order by order in 1/J. It is here possible (as
in the Schrodinger case) to proceed more quickly. We set:

/(1)(r)(Jost solution) -/ (?)^ ( r ) => V>(0) = 0,
(regular at r->0) F(J) (3.27)
( R e i > 0 ) V ( + O θ ) = l n ϊ() n(ϊ)

Inserting this into the system (3.4), we get the following Ricatti equation

ψ" + ψ/2 + 2 α V - 2 m v - v 2 - w 2 + ( υ ~ιw )(φ' + α'_j/ρ) = o, (3.28a)
\m + v ιw/

where we have set

α'Ξ-ln/^r); (3.28b)

/(S)W = ]/QΊJ- i/2(β) (constant). (3.28c)
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We know that

We set:

F(J)

α/(r) =
J

r

o)= ϊ
0

i~ Σ —

ψ'(r)dr.

n(r)

J. Avan and H. J. de Vega

(3.29a)

(3.29b)

\_Qnir) can be obtained exactly since /j° is known analytically.] One gets:

Q1(r) = m2r/2, (3.29c)

Q2(r)=-m2r/2. (3.29d)

We set:

Ψ'(r)= Σ ~ , (3.29e)
n ^ 1 Λ

^ C ~ . (3.29ί)

The cπ can be obtained straightforwardly by expanding the dispersion relation
(3.26) in powers of 1/J; their generic form is

Σ Pn(Jκ)-+fp'n(iτ)foD(τ)dτ9
K=l - o o

where pn is an n-degree polynomial.
Solving now the Ricatti equation (3.28), order by order in 1/J, and using

relations (3.29), one obtains the following solutions:

2), (3.30a)

V*+Λί-i+ Σ hphp.+ Σ QΛ
i p > 0 p > 0

p'>0 p'>-ί
p + p' =n— 1 p + p' = π — 1

Γ +oo Ί

and \cn = j hn(r)dr are the trace identities. We shall give explicitly the first trace
L o J

identity, since it is the only one that is used in this article.

1 +0° NB + O° lnDίY)
- j r(v2 + 2mυ + w2)dr= Σ (-sgnRe/x)Jκ+ j -~^dτ.
Λ o κ=i o zπ

[TR1]

Forthcoming papers will use higher order trace identities that will be given then.
There remains now to write the inverse scattering formula, and to obtain

explicit expressions for the functional derivatives of v with respect to the S.D., and
reciprocally. We shall here show that the scattering data defined above are a
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complete set in that they fully determine the potentials υ and w, and there exists a
biunivocal relation between the two "sets of fields." As usual, we define a (matrix)
Kernel K which connects free to interacting solutions (Φ-like solutions!)

Γ Φ(J, ρ) = T K(ρ, ρOΦotf, QW + Φ0V, θ), n τn
i Q (ό.όl)

lK(ρ9ρ') = 09 when ρ>ρ'.

From this definition of K, and using the closure relation (3.21) one can show, after a
long but straightforward computation, that K is the solution of a GeΓfand-
Levitan-like matrix equation

+ 00

\K(ρ,ρ') + Ω(ρ,ρ')+ J Ω(ρ,ρ")K(ρ",ρ')dρ" = O (ρ<ρ'),
J o (3.32)
{K(ρ,ρ') = O

where Ω is a function of the scattering data:

Ω(Q,Q')= - T —(Φ0(»τ, <?)®Φo(«, ρθ)(7^τ - 1 )(sinhπτ)

+ Σi cκΦ0(Jκ, ρ)®Φ0(Jκ, QΊ (3.33)

This equation has a unique solution K(ρ,ρ') if the scattering data (D(τ), cκ, Jκ}
verify properties analogous to the properties required in the case of the
Schrόdinger equation with an angular momentum variable. This shows in fact that
{λκ, cκ, D(τ)} is a complete set of S.D., and justifies our replacing {v, w} by {S.D.} in
our problem. One can obtain v and w from K: introducing the operators D/ 7 and
Djl9 one gets:

[D?J5K], where DII = D?I + V. (3.34)

Simple algebraic manipulations lead to :

d

" dρ

+ irσ2K(ρ,ρ

υ(r)--

W 3 + ρ

')m = rV'j

r

r

dρ

ρ).

{ρ,ρ')-ir'K{Q, ρ')σ2m

(3.35a)

(3.35b)

(3.35c)

To complete our study, we need to compute derivatives of v and w with respect to
the S.D. (which amounts to obtaining a differential expression for the G.L.M.
equation). Using (3.35) and (3.32), (3.33), one gets (m= 1):

1 2 (dΦ \ \
δυ(ρ)=-Ίr(Φκ®Φκ)δcκ+ -Tr — ® Φ K cκδJκ- -

ρ ρ \ί/Jκ J ρ
+ 00 oίtiV) jrη

ί 77rΓ^<5ί>(τ)Tr(ΦOτ)(x)ΦO τ)yτ, (3.36)
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where the Φ are, of course, interacting Φ-like solutions (i.e. exponentially
decreasing).

The derivative, zδw(ρ), follows from replacing Tr (Φ®Φ) by Tr [Φ + σ3Φ] in
(3.36) [which we shall also note Trθ(Φ(χ)Φ)]. We can invert (3.36) by using closure
relations, or by direct perturbation theory. One gets for instance:

Φ + σ3ΦκΞΞCκtr
Θ(Φκ®Φκ), (3.37a)

δυ(ρ) " * - ' "

and

δJκ

δw(ρ)
(3.37b)

which shall be the most useful inverse functional derivatives when studying Seff.
(Here t r θ on a 2 x 2 matrix M means taking the trace of σ3 M)

IV. The Effective Action and S.D. Analysis

Let us now come back to our main problem, which is to recast Seff in (2.32), as far as
possible, as a local functional of the scattering data previously introduced. We
know that the Fredholm determinant coincides with the Jost function, and can
henceforth be expressed in terms of the S.D.:

J-Jj 1 γ dτ
r + e x P JΛ>iτ-J

(Re(J)>0), (4.1a)

(4.1b)

where D(τ), J^, J% are the scattering data previously introduced. Moreover, we
also recognize in (2.38) the first trace identity (TR1), derived in Sect. III. The
logarithmic term in (2.38) can also be expressed in closed form as a local functional
of the scattering data with the help of a non-standard trace identity [see (1.15)].
["Non-standard" means here that, as it was the case for Schrodinger equation with
angular momentum, we had to derive it by hand, unlike (TR1) or (3.30).] Using
now(TRl):

\ +frdφ2 + 2mv + w2)=-Σ (sgn Re JK)JK + ±- +f lnD(τ)dτ, (4.2)

and the non-standard trace identity (1.15), together with the functional
identity [29]:
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enables one to obtain the effective action as a local functional of the scattering data
(except for a single term, which we shall discuss below). This fully justifies the use of
1ST. to simplify the study of this effective action. Seff reads:

- ι- T(Σ ?
π -oo \κ Jκ~ιτ

-2 Σ sgnRe
κ*κ' + o o

- Σ l n c κ + ^ ~ frdrw2(r). (4.4)
K 2gR o

Several remarks must now be made concerning this effective action.
1) Terms linear in the scattering data lnD(τ) and Jκ were present in (4.2), (4.3),

and [12], but they cancel in 5e f f (4.4). This was to be expected since such terms are
associated with the only trace identity containing a linear part in v. Since Seff is
quadratic in v (for v small), no linear term in the S.D. can appear in it. The same
feature appeared for instance in the JVLσ-model in 2 dimensions [5, 6, 9].

2) The Γ functions [12] and (4.3) combine in (4.4) to form trigonometric
functions. This phenomenon was also to be expected, since a
In Γ(JK) ~ Jκ lnJκ behaviour is not natural for such an effective action. Again,

this was also observed before for bosonic theories [2, 5].
3) It does not seem possible to rewrite the last term in Seff (4.4) in closed form as

a function of the scattering data. It is not a standard trace identity, neither does it
appear as directly derivable by computation of functional derivatives with respect
to the S.D., as in the Appendix. On the other hand, this term is absent in two cases:
w = 0, which corresponds to the Gross-Neveu model, and l/gR = O, which
corresponds to the Chiral Gross-Neveu model. Those two theories are known to
be integrable models at the quantum level [12-16]. We find here a feature that
already appeared in bosonic models, such as the anharmonic oscillator, and the
JVLσ-model in two dimensions: integrability of the minkowskian model, and
separation of the euclidean effective action expressed in terms of the S.D. seem to
go together.

We can now investigate the instantons of the effective action, which will give us
indications about the behaviour of the 1/JV expansion. We shall not here make
numerical computations, and restrict ourselves to an analytic investigation of the
limiting cases gR->0± and gR^ ± GO. Indeed, numerical computations would be
longer than in the case of bosonic models, owing to the presence of two potentials.
Moreover, the effective action exhibits a property that will make such an
investigation more difficult: in the bosonic case [5], the configuration space of
fields was separated into homotopy classes labelled by the number of bound states,
and separated by infinite action barriers. This is no more the case in this two-
potential problem, since the Jκ can be arbitrary complex numbers. Hence Seff does
not exhibit infinite barriers between sectors with different NB, but rather infinite
action lines each time some Jκ equals 1/2 plus an integer. One could think when
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examining (4.4) that Jκ = 0 is also a singularity. However, it is clear that each term
of the effective action, taken individually, is not divergent when Jκ-+0. Any
numerical analysis will have to extend over all the functional space.

1. Integrable Models: Gross-Neveu and CGN Model The integrable character of
these models reflects itself, as we have seen, in the closed form of Seff expressed in
the S.D. It is therefore possible to analyze the saddle-points of Seff, without any
approximation, by extremizing independently with respect to each S.D. Extremiz-
ing with respect to D(τ) gives:

0 = - = <5(τ), (4.5)

where

(4.6)

This follows from the fact that linear terms in the In det I — £ ) ,
+ oo +00 \*^IlJ

J r\nmr(v2 + 2mv + xv2)dr, and j r(v2 + 2mv-\-w2)dr, cancel, while there only
o o

subsist in Sef f terms in lnD(τ) coming from the non-linear part in the non-standard
trace identity. Equation (4.6) follows immediately. Let us introduce now the
dispersion relation (not derived in Sect. Ill) that expresses F(J) as a functional of
{Jκ,δ(τ)}:

F*(J) •/-•/! 1 Y dτ'
F*(J) ±J + J± P IπLiτ'J

(4.7)

Assuming that <5(+ oo) = 0 as a normalization condition on the Jost function,
we find from (4.6) that <5(τ) = 0. We finally get, after integrating in (4.8):

τ + ί J - (4.8)

Extremizing with respect to the discrete eigenvalue Jκ leads to:

0= γy~ — 7it&nπJκ — 2 Σ 77 jτ\
oJ κ κ*κ' \Jκ~Jκ)

1 +

f°° /TΛ . lnD(τ) . . _.
H — J sgn (Re Jκ) — —j dτ. (4.9)

Inserting (4.9) into (4.10) leads to:

Σ
LΦK Jκ~JL

Finally, extremizing with respect to cκ gives:

i?-i. (4.11)
δcκ cκ
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This cannot lead to any finite action maximum or minimum. Moreover, if a
solution to the gap equation exists with a non-zero eigenvalue J κ, it will lead to a
singular field v, w near r = 0, since lnD(τ) given by (4.9) vanishes too slowly when

(ΣJK)
τ - » + o o : l D ( )

Finally, Levinson's theorem fails if NB + 0, since it implies that δ(0) = τNB,
while δ(τ) = 0 from (4.6). However, it is interesting to investigate those "singular
instantons," because the general gap equation looks exactly like these equations,

V° δw
apart from a term l/gR J w(r) ——- rdr. Hence we expect that when \gκ\-> + αo,

o oSD
the instantons (if any) of the general fermionic models will tend towards these
"limit instantons" of the CGN model. Note that we do not know a priori whether
inverse scattering on the solution-S.D. will generate limit-GN (w = 0) or CGN
(w φ 0) like potentials. We know that "Gross-Neveu" instantons have the following
features :

_κ = -J

κ,
cκ~ c-κ>

following from the property F(J) = F(—J). Hence, depending on whether solution-
S.D. verify or not these properties we shall obtain "GN" or "CGN" instantons.

Anyhow we can already, before investigating gap equations, draw some exact
conclusions for the two integrable models. Since no instanton exists with a finite
action, we are bound to conclude that the 1/JV expansion is probably more
convergent than the usual K \/aκ behaviour. This conclusion is confirmed by the
exact results on the iS-matrix for these models [13,14]: the S-matrix exhibits in fact
a convergent 1/JV expansion. It is possible (as it is also possible in the case of the
NL—σ model, [30, 2, 15]) that this property should extend to off-shell quantities,
but we have no indication on this question (see below for supplementary
discussions).

Let us now discuss the gap equation (4.11). The simplest possible set of
solutions compatible with the properties of S.D. is a couple of real solutions
Jκ, -Jκ. Equation (4.11) then reads:

π t a n π J κ - — =0, (4.12)

which has an infinite set of solutions that can be numerically computed. Note that
since Jκ and — Jκ are real, D(τ) will read:

kJ=D{-t). ,4,3)

These relations lead us to conjecture that the limit solutions υ and w are such that
\v\ > \w\ so that the S.D. become those of a "Gross-Neveu" set of potentials (see Sect.
III). Of course, we have no well-defined cκ and we do not know whether cκ = c_κ

when gR-> — co (see below).
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2. Intermediate Models. l/gR φ 0 w Φ0 gR <0 (no tachyons). The limit gR-^ — co
has already been partially discussed: In fact, it amounts to adding a

^IQR ί w(r)' co T^ rdr to all gap equations, with = functional derivative
o o S.D. o S.D.

of w with respect to the corresponding scattering data. Assuming that the limit
potential w is not too singular (it is the strongest possible assumption since we
suspect, from our previous discussion, that at least one of the two limiting

potentials v and w is singular) leads us to the limit S.D.: D(τ) = Π (

{Jκ} solutions of (4.11). κ
Crt

The equation - — = 0 leads to:
δcκ

1 1 +Λ°° δw

Λ + _ J rw(r)j^-dr = 0. (4.14)
cκ gR o δcκ

This means that if w is not too singular, cκ will behave like gR or more generally [as
it happened in the limit gR~> - oo of (Φ2)^-model] cκ~ \gR\a, α>0. Since this term
dominates the effective action [neither D(τ) nor J^-dependent term can create a
divergent behaviour in Se f f when \gR\ -> + oo] we expect that Sc ~ — α In \gR\ + Θ(l).
Let us now recall the structure of the "large-order integral" first derived by
Lipatov [10].

(4.15)

The double saddle-point equation reads:

(JitJ O *3 iv — -IV

δv ' δw ' c Nc

 c Sc

Hence

Kκ

(4.16)

Owing to the fact that the saddle-points are a priori complex, 3£(K) will probably
exhibit a phase fluctuation due to ( — Sc)

κ. Hence the 1/JV expansion is Borel-
summable in the neighborhood of gR-^ — oo [10]. This is correct, unless a real
negative action instanton appears. Our present analysis cannot solve this
problem: one should go further in the study of Se f f and probably investigate it
numerically to have an indication. Anyhow it clearly appears here that Gross-
Neveu and Chiral Gross-Neveu models have a special role amongst the other self-
coupled fermionic theories; their 1/JV expansion has much less divergent
behaviour than in the other models, and could even be an entire series. This result
can be compared with a recent exact result concerning perturbative (g) expansion
of the massive Gross-Neveu model i f = Ψ($ + m)Ψ + g(ΨΨ)2: perturbative expan-
sion in g is much more convergent than any and could even be summable [32].

We shall now briefly investigate the limit gR-*0~ of the instanton. The
extremum with respect to cκ reads:

δ S 1 l + o o
_ = 0 = — + — I w(r)trθ(Φκ(r)®Φκ(r))dr. (4.17)
°cκ cκ 9R o
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Assuming that neither w(r) nor Φκ(r) are singular, we obtain that all normalization
constants cκ go to zero like gR. Since cK(ReJ x>0)= — l/F~(Jκ)F/+(Jκ) (and
+ «-• — when RQJK<0\ this means that F~(JK) must have a singular behaviour.
Note that F~ need not be analytic for Re Jκ > 0, so that this property is consistent
with the normal behaviour of Jost functions. The same argument holds for
ReJ x <0. Let us now study the complete gap equation:

+ continuum contributions = 0. (4.18)

Unless w(r) goes to zero when gR goes to zero ( —) [meaning that the theory has a
Gross-Neveu-like limit (w = 0)], we have to cancel in (4.18) the singular behaviour
l/gR by another singular behaviour. Such a cancellation is clearly realized if one of
the eigenvalues (and, in fact, then two of the eigenvalues, as we shall see later)
approaches a half-plus-integer value. Owing to the additivity of such singularities
(Se{{~ ΣlncosπJΛ, a n d since the most important contributions to ί/N large
V κ )
order behaviour come from the lowest-action instanton, we shall restrict ourselves
to the smallest possible number of eigenvalues. The simplest possible case is then
j ; = ± + 0 f o 2 ) [since Cjc~0G7)].

The second gap equation can be studied in a similar way:

+ continuum contributions. (4.19)

[See note following (3.31) for explanation of the "trθ-symbol.] We therefore need at
least two critical eigenvalues otherwise we shall get 0 = singularity. If we have two
eigenvalues —\—Θ{g2) and | + tf%2) when gR-+0~, then Eq. (4.19) implies, to
leading order in (l/#), that

4 t r θ ( Φ ^ ® Φ ^ ) = αc xtr θ(Φ x(x)Φ x) (αe<C). (4.20)

It is difficult to go any further in (4.19) since we would have to study the (assumedly
finite) continuum contributions. However, it is possible to draw conclusions on the
saddle-points. Cancellation of singular parts in (4.17) and (4.18) implies, if we
assume that neither w(r) nor Φκ are singular:

jJ =β+ gR-π; cosπJ^ =β~ -gR-π; (4.21)

sinπJ^ = 1 sinπJ^ = — 1

| (simplest eigenvalues) =±^±β±gR, (4.22)

β+

(4.23)

(4.24)
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Inserting (4.2) in the diffusion problem (2.12) leads to compatibility equations
for Φ | :

= Φ-KI2Q. (4.25)

It is possible to solve (4.25) and (4.24) numerically. However, it will not give us
more indications about these instantons. In fact, Eq. (4.25) looks like a "field
equation" for the Lagrangian £e = Ψ$Ψ + g^Ψψ)2 + g2(Ψγ5 Ψ)2 were it not for the
term (m + v) that replaces the ~ t r θ (Φκ®Φκ)term w e would expect. However, the
Φκ in (4.25) are c-numbers, while the Ψ in the Lagrangian ^£ are anticommuting
(Grassmann) numbers; it is known [31] that large orders in gR do not follow from
such "classical" equations, merely because the "classical" limit of a fermionίc field
is not the same thing as the classical limit of a bosonic field. We cannot therefore
obtain the same "limit exchange" between 1/iV-governing instantons and
g-governing instantons, as we had done in the bosonic case.

Our conclusion will be simply that Seff is probably dominated by the term
+ 00

ί/gR J w2(r)rdr, since other evaluable terms behave like lngR. Large orders
o

behaviour in ί/N is 2£{K)~K\/( — Sc)
κ, where Sc is generically complex. The large

orders exhibit a phase oscillating behaviour, and therefore the series can be
probably resummed by Borel transformation.

Appendix

+ 00

We shall here derive the trace identity for J r\nmr(v2 + 2mv + w2)dr, which
o

appears in the effective action after dimensional regularization. We shall here
extensively use the relations of differentiation of the potential with respect to the
scattering data, which were derived in Sect. III. We recall that we have obtained:

δv(r) 1 sinhπτ

OV(r) 2--(**'-* ®Φκ(r,Jκ)\, (lb)
JR

ψ r)). (lc)
ocκ r

The same relations hold for iw, except that we have to replace tr(a®b)
( = aίbί + a2b2) by trθ(α®fo) ( = a1b1-a2b2) in (1).
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We shall also use the linear system:

βφ
w--φw = (Ό+l-iw)φw

Q ( m = l ) , (2)

and the wronskian property:

~ W{ΦM, Φ2(e)) = ~ ^ (vϊV?+ΨΨΨΨ) (3)

Now we shall proceed as follows: Computing the functional derivatives of

+ 00

Q = ί r\nr(v2 + 2mv + w2)dr,
o

we shall obtain from (1) expressions that can be computed exactly, thanks to (2)
and (3), in terms of the scattering data. A trivial integration then leads to the
solution.

Let us compute the cκ dependence. We get:

Using (lc), we get:

+0° 1
=2 ί rlnr - [(ι> + 1 - iw)φ$ψ? + (v+l+ ivήφψφψ^dr. (5)

o r

T=2 ί rlnr
ocκ o r

Using now (2) gives:

δcκ o

= 2 j ψκ ψκ dr after integration by parts. (6)
o r

Hence - — = — l/cκ. Note that Q, as a functional of the potentials, only depends
δcκ

analytically on the S.D. and not on their complex conjugate. Hence

,Jκ). (7)

We have here given in detail the procedure of computing the functional
derivative and integrating with respect to the S.D. For the two other derivations,
we shall merely give the framework of computation,

lf\r. (8)
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Using (1) and (2), together with the expression of Φ-solutions near the origin

and the definition
dΦ(r,J) _Φ(r,J')-Φ(r,J)

dJ J'-J
, we obtain:

δJκ F\Jκ)'

An exactly similar computation for , using the same tricks for integrating
δD(τ)

~^~ ° ° dv
terms like ~ $ v- φ(Jχ) φ(Ji) — , leads to:

o r

δQ 1 (F\(iτ) F_(f

2πD(τ) \ ^ + 0'τ) ί'-O

Using the dispersion relations obtained in Sect. Ill for the Jost functions F+ and
F~ allows one to integrate these two differential equations, not forgetting that the
independent variables are {cκ, Jκ,D(τ)}:

+ 00
2Q= J rlnr(v

o

άτdτ'

iτ) + «P(i-iτ)-2Σ
o L κ - ί τ

-21n2Σ sgn(Re Jκ) J κ - Σ21nΓ(|+Jκ(sgn Re Jκ))
K K

-2 Σ sgn(ReJκ)sgn(ReJ'κ)\n{Jκ-J'κ)-Σtecκ. (12)
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