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Abstract. In this paper we study analyticity properties of the pressure of
general polymer systems by application of Ruelle's theorem on the zeros of
Asano contracted polynomials to the partition function. Then we prove a
uniqueness theorem for the equilibrium state of the investigated class of
classical particle systems for a variety of finite range interactions.

1. Introduction

Lattice models are still an effective tool to solve phase transition problems in
classical statistical mechanics. In the centre of interest we find models without
restrictions. In these models the particles of the system can occupy one point of the
lattice. But there were moreover a lot of attempts to develop models for extended
particles that cover more than one point without penetrating each other.
Especially hard rod models have been widely used to explain the existence of liquid
crystals. Thus the theory of monomer-dimer systems is extensively elaborated. We
refer the reader to [6] for a brief historical sketch that shows, how monomer-dimer
systems are related to physics and chemistry.

In [5, 6] the absence of a phase transition is proved for translationally
invariant systems of noninteracting monomers and dimers. In [1, 7] Abraham and
Heilmann respectively Heilmann and Lieb proved with the help of reflection
positivity arguments the existence of a phase transition for some systems of
interacting monomers and dimers. We will mention here also the papers [8, 9,12],
that contain results for monomer-dimer systems, but their assumptions on the
interactions are very artificial.

Gruber and Kunz incorporated more complicated with respect to their
geometry particles into their model in [5]. They showed the absence of a phase
transition for noninter acting polymers and thus generalized the results of [6]. We
are going to introduce and to investigate a very general model for interacting
polymers on the lattice TLd. Under the assumption of Zd-invariance for such
polymer systems a variational principle for the pressure P(J) of an interaction J is
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proved in [14] in the form

In this formula h(μ) denotes the entropy of the Zrf-invariant state μ and μ(J)
denotes the specific energy of the system. |^0| is the number of different shapes, that
polymers are allowed to have. States μ, for which the value \^0\~i(h(μ)-μ(J})
equals the pressure P(J), are called equilibrium states for J. It is well known that
the problem of the uniqueness of the equilibrium state, i.e. the question for the
absence of a phase transition, is closely related to the question for analyticity
properties of the pressure. A powerful tool to answer the last question is the Asano-
Ruelle contraction method, that originates in the famous Lee-Yang theorems. We
use this method to find regions for the values J({G1? . . . , GJ), the interaction of the
set {G1? ..., GJ of polymers, where the partition functions do not vanish, and
hence the pressure is analytic. The main result (see Theorem 4.1 for the exact
formulation) is the following: Under the assumption J({G}) φ 0 for all polymers G,
i.e. under the assumption that each polymer will give a contribution to the
hamiltonian, for small enough values of \e-

2J((G^ ~>Gn}}\ for eacj1 polymer set
{G1 ?...,GJ with J({Gl9 ...,GJ)ΦO, the pressure is analytic, and hence the
equilibrium state for J is unique.

In the case of positive interactions J of the form J({G1? ..., GJ)

= y-^-«/'({Gl5 ... , GJ), where k is the Boltzmann constant and T is the tempera-

ture, the theorem states the uniqueness of the equilibrium state in the low
temperature region. This agrees with some results in [5, 6]. Moreover it extends
them to a much wider class of interactions by allowing the case J({Gt, . . . , GJ) φ 0
for n> 1, i.e. by allowing attractive or repulsive interactions between the particles.

In Sect. 2 we recall the construction of the configuration space, introduce
interactions and formulate exactly the variational principle. In Sect. 3 the
algebraic tools for the proof of the main theorem are prepared. In Sect. 4 the
uniqueness theorem will be stated and proved. Then we apply it to a system of
interacting dimers.

2. The Model

Ruelle developed a rather general method for the construction of configuration
spaces of classical lattice systems in [11]. In specifying his setting we are able to
give a general approach to polymer systems, that contains monomer-dimer
systems as well as more complicated systems on the lattice Έd, the set of all rf-tuples
of integers. As all systems will be assumed to be invariant under shift transforma-
tions, we define the group Θ = {Θs\seΈd} of shift transformations on TLd by:

ΘsV={tεZd\t + seV} (seZ

Θsr = {WcΊίd\^Ver such that W=ΘSV], (seZd,

where 9β(Zd) denotes the set of all subsets of Zd.
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We describe now the construction of the configuration space for polymer
systems. Each polymer will have the shape of a finite subset of the lattice. Thus we
choose for each polymer system a finite set ̂ 0 of possible polymer shapes in the
following way:

(1) ^0 = {G'0, GO, . . . , G(

0

n)} consists of finite subsets of TLd.
(2) The origin of TLd is the smallest element of G0 in the lexicographic order for

each GO e ̂ 0.
From the set ̂ 0 the set ̂  is uniquely generated by shifting ^0 over the lattice

Zd. In the following φ(0) denotes the set of all subsets of 0, while φ/0) comprises
all finite elements of ^β(̂ ). For all polymer arrangements on the lattice it is
assumed that the particles do not penetrate each other. This leads to the following
definition.

2.1. Definition. Given a set ^0 with the properties (1) and (2), the polymer
configuration space Ω for ^0 is defined by

For ̂  e φ/0) denotes

Ω such that

The dependence of Ω on the choise of ̂ 0 will be omitted because there cannot arise
any confusion.

The connection with the ideas of Ruelle in [11] will become obvious, if one
identifies Ω with

Ω* = ίω e X {0, 1} |for each s e ΊLd there exists at most
[ Ge^

one G e ̂  with 5 e G and X{G}ω φ Ol .

In this formula X{G} denotes the projection operator onto the set {G}. In this
context it is easy to see that Ω*, and thus Ω will become a compact space, if one
starts with the discrete topology on {0, 1} and uses as the topology on Ω* the trace
topology of the Tychonow-topology on X {0, 1}.

Ge&

The above construction includes the case of classical lattice gases. One has to
choose ^o = {{0}}> where 0 is the origin of TLd. In the following this case will be
excluded.

States are regular Borel probability measures on Ω. The set of ©.-invariant
states is denoted by G.

2.2. Definition. An interaction is a complex valued function J on the nonempty
finite subsets of ̂ . The elements in the support of J are called bonds, i.e. the set of
bonds for the interaction J is

If 1T e^X^X then 93r = {J>
In what follows we consider only Θ -invariant interactions of finite range. This

means that the set of bonds is generated by the group of shifts from a finite set 230

with the property ^On^0 Φ0 for each ^0 e 930.
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2.3. Definition. The partition function for the subsystem in ΊΓ E tyf(&), ̂  Φ0, is
given by

(1)

Here \Hfr\ββ\ denotes the cardinality of the set
At this point it might be that confusion arises, because this is in general the

method to describe spin interactions rather than particle interactions. But because
of the (9 1 -in variance and the finite range of the interactions the above description is
in fact no restriction of generality.

Let for ae%+d = {(s9...,s)εZd\s^Q, i= !,...,<*} denote

and

For VcTLά respectively ^C^, \V\ respectively \i^\ denotes the cardinality of the
corresponding set.

In [14] the existence of the thermodynamic limit

Jim \r(ά)\ - 1 logZr(β)( J) = P(J) (2)

is proved for all Θ -invariant finite range interactions J. The limit P(J) is called the
pressure of the system. It is known (see [14]) that the map P : J->P(J) is monotone
increasing, continuous and convex.

For a (9. -invariant state μ and an interaction J the specific energy is denoted by
μ(J), while the entropy is denoted by h(μ). These two quantities are defined by the
following limits that, indeed, exist (see [14]):

μ(J) =lim-\ V(a)\ ~l\( Σ -/(#) ( - l}^^\ dμ(1^} , (3)
fl-*oo \^eJBy(α) J

h(μ)=\im-\V(a)\'1 Σ (X^μ)(^)\og(Xna)μ)(ir). (4)

We now quote from [14] the following theorem:

2.4. Theorem. For each shift invariant finite range interaction J, we have

P(J)=sup|»0r
1(Λ(μ)-μ(J)). (5)

μe(£

The elements of

are the equilibrium states of J. The set Gj is nonempty, convex, compact and equals
the set

βj - {μ e (£ I P(J + J) ̂  P(J) - |^0Γ V<7) for all 7} . (6)

The problem of phase transitions in statistical mechanics for such polymer
systems reduces now to the question: What are conditions on the interaction J that



Uniqueness Theorem for Polymers 51

allow a rigorous proof of |βj| > 1 or |Gj| = 1? In the following we prepare a result
concerning the above case \(£j\ = 1. For this we introduce the correlation functions
of a state.

2.5. Definition. If μ is a state, then the values

MM - J M«0 dμ(<3Γ) (HT E φχ#))

with σiίf(
(&) = ( — l)|Ίrn^' are called the correlation functions of the state μ.

It follows easily (see also [3]) that each state μ is uniquely determined by the set
of correlation functions μ(σw] for finite H^ e Ω. The next theorem allows us to
calculate the correlation functions for the equilibrium states of a given interaction
J and to answer the question whether |(Sj| = 1.

2.6. Theorem. Let J be an interaction and define for each finite iΓ&Q the
interaction J^ by

j l^ol if -r = Θsi^ for some se%d

^ JO otherwise.

Then, if the map £->P(J-h tJ^) is differ entiable at the point ί = 0, the value μ(σ>) is
ί/ie same /or a// equilibrium states μ of J and

μ(σ^=—P(J + tJ^)\t = 0. (7)

Proof. From the convexity of the pressure (see 2.3) and formula (6) follows that it is
sufficient to show that each equilibrium state μ of J fulfills the following equation:

- |^o| ~ VCV) = μfafr) (W e Ω, finite) .

From the definition of J^ we have that 930 is a one point set. The element of 230 is
denoted by i^0. Now we use formula (3) and the Θ -in variance of μ and calculate:

- |^0Γ VCV) = - ( Km - 1 F(α)| - 1 |00Γ
 1 J

yα^ oo

= lim|F(α)Γ1j Σ **.

=μ(σitr) O

The above theorem is the motivation to look for differentiability properties of
the pressure, i.e. of

in dependence of the values 3(β^ with ̂ 0 e S0. That's why one is at first looking
for regions, where the partition functions do not vanish. This can be done with the
help of the well known Asano-Ruelle contraction method for polynomials (see
[2, 10]), because of the possibility to write the partition functions Zr(α)(J) as
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polynomials in the variables zm^e~23(β} with 36 e SV(fl). In the next section we will
make this precise.

3. Asano Contraction and Zeros of the Partition Functions

In this section we introduce and use some algebraic operations, that allow us to
write the partition functions Zr(α)(J) as polynomials in the variables z@ = e~2J(®}

with J*eSr(α). This is necessary for the application of the Asano-Ruelle
contraction method for polynomials. We use this method to find regions for the
values of z ,̂ where the partition functions Zr(α)(J) do not vanish.

Some of the algebraic operations will be used later in different contexts. That's
why they will be introduced in a general setting. Let H be a countable set, for
example φ/(^). Then the set ty(H) of all subsets of H is an abelian group with the
operation of symmetric difference. The symmetric difference of two subsets of H is
defined by

M N = (MvN)\(MnN) (M,NcH) .

If tyf(H) is the set of all finite subsets of H, then one can define for each M e 3̂
the map

{ -!,+!} with

where |MnN| denotes the cardinality of the set MnJV. Let 5R be a subset of ̂ /
then 51 denotes the subgroup of tyf(H) that is generated by 91. The set 511 is defined
by

9lλ = {Meφ(H)\σN(M)=l for all Ne$l}. (8)

For the sake of completeness we quote from [10]:

3.1. Definition. Let H be some finite set and let {//t } be a finite covering of//. With
each hεH we associate a complex variable zh. The polynomial

P(*fl)= Σ CM Π zhMCH heM

is the Asano contraction of the family of polynomials

H Σ citMi Π

if for all Me// holds CM= Π^MΠH,-
ί

A variable zh is said to undergo contraction, if it belongs to more than one Ht.

3.2. Theorem [10]. Let //, {//J and zh be as in 3.1. Let further Rih with heHtbe
closed subsets of the complex plane that do not contain the origin, if h undergoes
contraction. Then, if P(zH) is the Asano contraction of the polynomials {Pj(zH.)}?

and if Pi(zH)ή=0 holds when zhφRih for all heHh P(zH)=^0 holds when

For two subsets R\ J^cC the product * is defined as R'*R"
= {r / -r / / eC| r / e l? /

9 r / / eΛ / / } . For^cCtheset - R is defined by {-re<C|rE#}.
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The following theorem allows us to decide in special cases, that are closely
related to the case of partition functions, whether a given polynomial is the Asano
contraction of a given family of polynomials.

3.3. Theorem [4]. Let H be an arbitrary finite set and {Ht} be a finite covering of H.
If for 9JΪC^3(ίΓ) and for the system {SR^IMnf^lMeSOΐ}} the conditions

(1) For any M eSEίϊ the condition Mr\Hί eϊO^ for all i imply M e ΪR;
(2) The subgroup of ^β(H) that is generated by the system {9Jϊ/~ = SOΪ1nφ(/ίl )}

coincides with 9J11;
hold, then the polynomial

P(ZH)= Σ ΠZH
Mε9JΪ heM

is the Asano contraction of the polynomials

?«(zfl,)= Σ ΓU,j.
'' "Tϊ, heM

We want to apply this theory to polymer systems. For this we define for
' 6 ^Py(^) the group homomorphisms π^ and y^ by

with πr(j8) = Π ̂  5

with )v(^0 — {^e 95^ |σ^(^)= — 1}.

We denote 5V = kerπr.
With these notations we can calculate (see formula (1)):

^exp^ Σ J(Λ)(-l) | ιrn

= ̂ ?««S ^pί 7^)^^)
= ^Σ Ω Λ Π exp(-J(Λ)[l-σΛ(τT)])ΛΠ exp(J(Λ))

- Π exp(J(Λ)) |keryr| Σ Π exp(-2J(J>)).

The factor Π exp(J(^)) |keryr| does not influence the behaviour of the zeros of

the partition function. So it will be omitted, and we will continue with the
examination of

Σ Πexp(-2JO»)). (9)
m^β

This is obviously a polynomial in the variables z% = e~2J(®\ that looks like the
polynomials in the above theorem. The set 9JΪ in 3.3 is now y^X^Ω). For this set we
can prove:

3.4. Proposition. For each polymer system holds
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Proof. By the definition of the operation 1 [see (8)], we have for i^ e ̂ /(^),

[yX^Ω)]1 = {(«!,- »^π)l^e»r with σ(Λl,... iΛn)(yr(τr))=l

for all ιTeJ*Vί2}

= {(*!,. ..̂ J^ eJB^ with

for all

For each set (^1? ..., J*Je5V holds Π -̂ = 0, and thus (^1? ..., J>tt)
eCyX^Q)]1.

If on the other hand (JΊ, . . ., St^ φ 5V, then 0 φ Π ̂ . = J e φ(τΓ). Because of
_ ί=1

{G} e^Ω for each GeiT, we find for Ge J* that σ^({G})= - 1, i.e. ($19 ...,^J
D

Later it will be useful to know what happens with Stγ = [yir(XirΩ)~\λ

9 if one
enlarges the set 93^- by elements of Sr? i.e. if one uses more complicated
interactions.

3.5. Proposition. Suppose that &i9 . . ., &n e 3$^, and put 33^ = Sru{ J*1? . . ., 3Sn}, 8!^
the kernel of π^: ^(®V)-*Φ(^) L^ αι> ...5an6«P(93r) fee swc/z ίΛaί JN= Π ̂ 5

and denote a ^aj ul^J. T/zeπ ft^ is generated by {ai, ...,a^}

A similar proposition was proved by Slawny in [13] for spin-l/2-classical
lattice systems. The proof of our proposition proceeds in the same way as in
Slawny's paper. The same is true for the next proposition.

3.6. Proposition. Let 1^ e φ/(^), ana suppose that 31 { φ 23r and αf e φ(Sr) are
chosen such that ^ f= O & an^ no proper subset of αf yields 3β{. Let J be the

^eαt

interaction that determines 93 and J' be another interaction that coincides on ^3/(^)
with J with the exception of the sets ̂  and their translates. Then, if Z™d(J) φ 0 when

\e-2J^\ = \zm\<r^^e\J^ande-2J^^z^φR^^e^\^
i \ i

Z^d(Jx) does not vanish when \e~2J>(®} = \z@\<τn® - r#, ̂  e (J α f, n^ = \{i\3S 6 α f}|

4. Main Theorem

We now state the main theorem. Before proving it, we will illustrate it with the help
of an example from the literature. It is the model I in [7], a model for interacting
dimers.

4.1. Theorem. For each polymer configuration space Ω on the lattice TLά and each
shift invariant finite range interaction J with the property

J({G})ΦO (Ge#) (10)
holds:

(1) For each f e φ/(^) and all 3$ e 23r exist positive real numbers rm such that
the partition function Z™d(J) does not vanish for \
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There exist for each έ%0 e 930 positive real numbers r@0 such that in the area

\zm^<rm^
(2) the pressure is an analytic function in the variables z^0,
(3) there exists one and only one equilibrium state μ for J,
(4) the correlation functions of μ are analytic in the variables z@Q.

4.2. Remark. In the case 95 = ̂ , i.e. if there is no interaction between the particles,
the above theorem is a special case of the results proved in [5] for polymer systems.
So we have to draw attention to examples, where there is an interaction between
the particles.

4.3. Example. As mentioned above, systems of hard dimers are of essential
interest. We want to examine here a model that was introduced by Heilmann and
Lieb in [7]. It is a model for systems of hard dimers on the quadratic lattice ΊL2 ([7],
model I). A vertex of the lattice is either empty or covered by at most one dimer. A
dimer covers two vertices that are connected by an edge. For such systems we will
examine the following interaction:

J({D}) = βb>0 for each dimer D e 0 ,

J({D1? D2}) = βc>0 for each pair of neighbouring,

collinear dimers D ± , D2 e ̂  ,

where β = (kT)~1 is the inverse temperature.
In this situation it follows from 4.1 that there exists a βcr>0, such that for

β>βcr the equilibrium state is unique, i.e. at low temperature there is no phase
transition. We want to compare this result with that in [7]. For this it is necessary
to transform the "spin type" interaction J into the "particle type" form used in [7]
in such a way that the Gibbs distributions of the finite systems in ̂  e ^βf(^) will
not change. Equal families of Gibbs distributions describe equal sets of shift
invariant Gibbs states, that are by a result of [14] equilibrium states. The desired
transformation is the following:

ί/({D})-2J({D}) + 2 Σ J({D,D'}) for each dimer

The sum runs through all dimers Dr e ̂ , that are collinear neighbours of D. We use
the symbol <D, Dx> for such pairs.

U({Dί9D2}) = -4J({D19D2}) for each pair <D1? D2> .

The partition function with respect to U for the subsystem in i^ e φ/(^) is defined
by

Zr((7)= Σ exp-f Σ U({D})+ Σ

By showing that for each Hf e X^Ω the sum

D%De2r

Σ U({D})+ Σ U({DltD2})
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is independent of IF e X^Ω, we can see that the given transformation is the right
one in the sense mentioned above. It was shown in [7] that for low enough
temperature there is a phase transition, if

U({Dl9D2})=-βa<0 for each pair <D1?£>2>

and

[/({£>}) =-μβ<βa for each dimer D e 0 .

In 4.1 is proved the absence of a phase transition for low enough temperature
for

U({Dl9D2})=-4βc<0 and U({D}) = 2(βb + 2βc)>Q.

In this way we get an almost complete idea of the phase transition behaviour of the
two-dimensional dimer model with attraction between neighbouring collinear
dimers in the low temperature region.

Similar calculations can be done for the other models examinated in [7] and in

[i].
4.4. Proof of Theorem 4.1. From the assumptions follows {G} e 23 for all G e ̂ ,
and thus © = ̂ 3/(^). Let now i^ be an arbitrary nonempty finite subset of ̂ . With
the help of Theorem 3.3 we will show now that Z^d(J) is the Asano contraction of a
set of small polynomials. For this we need a covering {23V) °f $V We take

with G,Ke-T, GnKφ0

,{GJ} with J»e33r,card^>l, G,eτr,

ί=l, . . . ,n, Π
1=1

sets TT1 9..., ^eX^Ω with j8 = y^ Π ̂  - It follows <{G}

Here f runs through the set of all pairs {G, K} with the above property, and j runs
through the set of all 36 e 23y with card &> 1. The set 9JΪ in 3.3 is γ^X^Ω). For the
sets SJί; we get immediately: SRf = {0, {G}, {K}}. For the verification of the
assumption (1) in 3.3 choose an arbitrary βetfϊl^ yi/(XirΩ}, i.e. take finitely many

β. If

now jSnSV e 50li holds for all f, then Π ̂  e Xrα But this means β e 9Jί. Thus the
i = l

following implication is true:

(βeSϊ and jSnBV eSKj for all 0 =* 0 e 50! .

Hence, we have

f ε f t and
for

For the verification of the assumption (2) in 3.3 we use Proposition 3.5.
Define a new interaction J by
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Then 5V = {0}. Because of 501+ = {0} the kernel 5V is generated by the sets 2R+.
From 3.4 and 3.5 follows that SOΪ1^^ is generated by the system {$01+} and the

system {{«,G1,...,GJ}Λ 6 β ι r i C a r d Λ > l f ιfl {Gi}=Λ. It is now possible to prove

that 9W^-{0,{J ί,G1,...,Gn}}, i.e. that the condition 3.3 (2) is fulfilled. By
definition holds

9Wt = {]56{^G1,...,GΛ}|σ/,(y) = l for all y e 501,.}.

Because of 501,.= {y e φ(934)|3/ e 9K such that y - {OS, G1? . . ., GJn/}, we conclude
γ = {ό8,Glί,...,Gιm} with m odd or y = 0. Here {G/1? ..., G/m} runs through all
m-tuples of polymers in J* such that {GZl, . . ., GZm} e ZrΩ. Therefore y = 0 or card y
is even for y e $01,-.

Suppose now 0φβC{<^? G1? ..., GJ. If j8 = {^,GZl, ...,GZm}, then choose
^{^GjJeSOlj with fcφl,...,m. It follows jBny = {#}, "i.e. ]8£50l+. If
β={Gh,...,Gl }, then choose y-^G, jeϊR;. It follows βny = {G, }, i.e.

Thus the assumptions of 3.3 are fulfilled, and by this theorem Z^d(J) is the
Asano contraction of the polynomials

Σ
,GΠ

Each of these polynomials contains the additive term 1 and hence it does not
vanish for small enough values |zj|. By 3.2 exist positive real numbers r@ for
J* e 2V such that Z!̂ d(J) does not vanish when \z@\ <rm. Part (1) of the theorem is
proved.

By construction no ^e2V with cardJ*>l undergoes contraction. For
& = {G} with Ge^ the number of contractions is bounded because of the finite
range of J. Hence it is possible to choose the numbers rm independently of
i^ e tyf(&). Furthermore we have by the 6>-invariance of J the possibility to realize
that r@ = r@o for all & that are translates of J0 e 930.

In what follows we look at Z^d(J) as a function in the variables z@0 = e'
with J*0 e S30. It is easy to see that

Σχ

for |z^0|<r^0<l. In this area each partition function is bounded. It follows the
uniform boundedness of |^|~1logZr(J) in this region. Since the sequence of
boundaries \i/"(a)\~1logZif(a)(J = Q) converges for α-^oo, we conclude from
Vitali's theorem that the pressure is analytic in the variables z<%0 = e~2J(®o) with
JO e 330 in the circles |zΛJ <r^0. Part (2) of the theorem is proved.

The parts (3) and (4) follow directly from 3.3 and 3.5. Each finite *W e Ω can be
written asi^= Π {G} with G e 0. From 3.6 we have that for each τ e [0,1] the

G&W

partition function Z"d(J + ί-V) does not vanish for zG |<τrG with {G} E$O and
<9<Geι^ for at least one seZ^ and lzj<r^ for all the other ^G®O and

. From this follows the analyticity of P(J4-ίJ^) as in the
l+τ
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proof of (2) in particular for small t. Thus by 2.5 and 2.6 the equilibrium state for
the interaction J is unique, and the correlation functions are analytic functions in
the variables z^0 for \z@Q\<r<%0, J*0 e930.

The theorem is proved. D
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