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Abstract. Invasion percolation, a recently introduced stochastic growth model,
is analyzed and compared to the critical behavior of standard d-dimensional
Bernoulli percolation. Various functions which measure the distribution of
values accepted into the dynamically growing invaded region are studied. The
empirical distribution of values accepted is shown to be asymptotically unity
above the half-space threshold and linear below the point at which the expected
cluster size diverges for the associated Bernoulli problem. An acceptance
profile is defined and shown to have corresponding behavior. Quantities
related to the geometry of the invaded region are studied, including the surface
to volume ratio and the volume fraction. The former is shown to have upper
and lower bounds in terms of the above defined critical points, and the latter is
bounded above by the probability of connection to infinity at the half-space
threshold. Provided that the critical regimes of Bernoulli percolation possess
their anticipated properties, as is known to be the case in two dimensions, these
results verify numerical predictions on the acceptance profile, establish the
existence of a sharp surface to volume ratio and show that the invaded region
has zero volume fraction. Large-time asymptotics are analyzed in terms of the
probability that the invaded region accepts a value greater than x at time n.
This quantity is shown to be bounded below by h(x) exp[ — c(x)n V] for x
above threshold, and to have an upper bound of the same form for x larger than
a particular value (which coincides with the threshold in d=2). For two
dimensions, it is also established that the infinite-time invaded region is
essentially independent of initial conditions.

1. Introduction

Invasion percolation is a stochastic growth model that was introduced and studied
numerically by two independent groups [1, 2]. (See also [28] for some related
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ideas.) This is the first in a series of papers in which we analyze the mathematical
aspects of invasion percolation. In this paper, we restrict attention to the simplest
version of the model: invasion without trapping, as defined below. Invasion with
trapping will be treated elsewhere [3].

The interest in invasion percolation is twofold:

1) The original applications [1,2,4] concerned the study of fluid flow and
transport properties in a random medium. However, unlike other models of this
sort — such as standard Bernoulli percolation or first passage problems, which in
general describe the passive diffusion of fluid particles — invasion percolation is
used to describe the active displacement of an ambient fluid by a second fluid under
pressure. The numerical simulations [4] motivated by the dynamical aspects of the
model suggested another, initially surprising, application:

2) In a sense to be made precise below, invasion seems to reproduce, both
qualitatively and quantitatively, standard Bernoulli percolation at threshold. It
can therefore be used to study the critical behavior of the standard “static”
percolation model.

The purpose of our work is to examine, and hopefully clarify the relationship
between the dynamic and static models. We provide proofs of some of the
numerically observed properties, and also several new properties which further
substantiate the claim that invasion reproduces critical percolation. In order to
put our results into context, let us first review the definition of the model and the
relevant numerical and theoretical results.

The Model and Previous Results

For simplicity, we consider only the d-dimensional hypercubic bond lattice B,
which is, by definition, the set of all bonds between nearest neighbor pairs of sites
on the site lattice Z“. (It should, however, be noted that the model is easily defined
on more general graphs, and that our results extend to these in a straightforward
fashion.) The first step is to assign independent random variables, uniformly
distributed in [0,1], to the bonds of B, For a given realization on B, one
generates the invaded regions, which are an evolving sequence of connected bond
clusters. The algorithm for generating the (n+ 1)* region from the n' is simply to
select the bond on the boundary of the n'® region with the smallest value. As
discussed in the appendix (for d =2), the zeroth region (or “starting set”) may be
chosen arbitrarily, provided that it is finite. For the purposes of this paper, we will
always start from the origin of coordinates.

It should be rather clear that the above procedure is equivalent to one in which
random numbers are assigned to bonds only when (and if) they become attached to
the boundary of the invaded region. (For obvious reasons, it is this setup which is
studied numerically.) Thus, using the origin as a starting set, the first step is to
assign values to the 2d bonds surrounding the origin and to select the one with the
lowest value. This bond is now the invaded region. Next, values must be assigned to
the 2d — 1 new bonds which have as an endpoint the other side (i.c., not the origin)
of the chosen bond. From among the total of 4d —2 as yet unselected bonds which
have already been assigned values, the one with the lowest value joins the first
selected bond. These two bonds now constitute the invaded region, and the process
continues.
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It is important to realize that, in the above procedure, new values are assigned
only to those bonds which have not been previously assigned a value. For example,
the second invaded bond described above is selected from a total of 4d — 2 bonds,
2d —1 of them having “old” values, and 2d —1 of them “new.” It is clear that the
invaded region will have a statistical preference for the new bonds. Although this
preference is somewhat offset at later stages by the preponderance of old bonds, it
is nonetheless crucial to the stochastic geometry of the invaded region.

Let us now consider the evidence for the relationship between the invasion
model and critical percolation. The numerical evidence [4, 27] falls into three
classes:

1) In [4], a quantity called the acceptance profile at value x and time n was
introduced and studied. In essence, this quantity measures the ratio of the number
of bonds accepted into the invasion cluster with values “between x and x + dx” by
time r, to the total number of bonds assigned values in [x, x + dx] by time n. The
denominator of this quantity thus counts both bonds in the cluster and those on its
boundary.

It was observed [4] that, for large times, the acceptance profile approaches a
step function which is unity below a certain value of x, and zero beyond that value.
The important observation is that the cutoff value coincides (within the quoted
uncertainties) with the percolation threshold of the graph under study.

2) The geometry of the large-time invaded region appears to be “scale
invariant.” Thus, at least numerically, it may be assigned a lattice “Hausdorff” (or
“fractal”) dimension. The values thus obtained [4] agree reasonably well with both
those found by direct numerical simulation of the “incipient cluster” of ordinary
percolation, and those computed, according to the usual scaling theories, from a
knowledge of the gap exponents and correlation length exponents of standard
percolation.

3) It has been argued [4] that the rate of convergence of the acceptance profile
to a step function contains information on the correlation length exponent, v, of
ordinary percolation. The exponents thus obtained [4] also agree fairly well with
the accepted values.

Further evidence for the assertion that invasion reproduces percolation at
threshold has been obtained via an exact solution of the invasion model on the
Cayley tree [5]. Here a function different than that introduced in [4], but also
called the acceptance profile, was shown to approach a step function with cutoff
equal to the percolation threshold of the Cayley tree. The “Hausdorff” dimension
of the invaded region was computed in terms of the root mean square cluster
radius, reproducing the standard Cayley tree result. Finally, the rate of conver-
gence of the “modified acceptance profile” was used to determine the gap
exponent, A, which again agreed with the well-known Cayley tree value for
ordinary percolation.

Summary of Results

Our results address various aspects of points 1, 2, and 3 presented above. We begin
in Sect. 2 by defining three versions of the invasion model — which are useful for
different elements of the subsequent proofs — and showing that the versions are
equivalent. The relevant random variables are also introduced in Sect. 2.
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In Sects. 3 and 4, we consider the (infinite-time) behavior of the acceptance
profile and a closely related quantity, the empirical distribution function. The latter
function, which is perhaps the more useful one for theoretical work, is defined as
follows: The empirical distribution at value x and time n, Q,(x), is (1/n) times the
number of bonds accepted with value less than or equal to x. Thus, up to
normalization, the empirical distribution is essentially the integral of the
acceptance profile. As such, the evidence presented earlier indicates that it should
scale linearly with x below the percolation threshold, and approach 1 above
threshold. That this (infinite-time) behavior occurs with probability one is proved
in Sect. 3, modulo the usual conjectures of rigorous percolation theory.

By the above proviso it is meant that the linear behavior of lim Q,(x) is

established for x below the point, n., at which the expected cluster size diverges,
and that lim Q,(x)=1is proved for x greater than p,, the half-space percolation

threshold. It is worth remarking that in d=2, it is known [6-8] that n,=p,.=p..
Furthermore, equality of these critical points is widely believed to hold in all
dimensions. Lacking the strong result n,=p,=p, for d=3, we can nonetheless
establish a.s. convergence of a subsequence to a linear function for x < p,, and that
for x>p., Q,(x) converges to 1 with nonzero probability.

In order to make contact with the numerical work, in Sect. 4 we define a
quantity which we identify as the acceptance profile, a,(x). For finite n, it is shown
that this quantity is continuous. However, as observed numerically, continuity
fails for infinite times. In particular, we prove that

1 x<m,
0 x>p,.

lim a,(x)= { (1.1)
Again, modulo the conjecture 7, = p,, this confirms the observations of Wilkinson
and Willemsen [4].

In Sect. 5, we examine the geometry of the invaded region. Although we cannot
yet establish the existence of a nontrivial lattice “Hausdorff” dimension, we prove
the weaker result that, at least in d=2, the invaded region has zero volume
fraction, with probability one.

To our knowledge, the surface to volume ratio of the invaded region has not
been measured numerically. Nevertheless, such a quantity provides additional
evidence that the geometry of the invaded region resembles that of percolation
configurations at threshold. This follows from the theorem (see [9] and [26]) that,
for p>p, the surface to volume ratio of the infinite cluster(s) in ordinary
percolation is (1—p)/p, and from a related theorem [10] which says that, at
threshold, the surface to volume ratio of large finite clusters is asymptotically
bounded below by (1 —p,)/p.. In Sect. 5, we prove that with probability one, the
(infinite-time) surface to volume ratio of the invaded region is bounded above and
below by (1—=,)/n, and (1—p,)/p,, respectively. Assuming the usual conjecture,
this is of course the appropriate ratio for percolation at threshold.

In Sect. 6, we examine the rate of convergence of a quantity related to the
“modified acceptance profile” introduced in [5]. For our purposes, the modified
acceptance profile, b,(x), is taken to be the probability density for acceptance of
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1
value x at time n, so that B,(y)=]b,(x)dx is the probability that the n'* value

y
accepted is greater than y. On the Cayley tree, the asymptotic decay rate of B,(y)
was determined for both y=p_ and y>p, [5]. In the latter case (i.e., y>p,), it was
found that B,(y) vanishes as e " as n—o0. In Sect. 6, we use the results [11] of
rigorous percolation theory to provide the following lower bound on the
convergence of B,:

B,(y)Zh(y)e " Wy>p.. (1.2)
We also supplement the bound (1.2) with an upper bound of the same form
B,()SH(y)e” O vy>1—n¥, (1.3)

where 7 is the critical point at which the expected cluster size of (d —1)-cells
diverges. Ind =2, itisknown [12, 13] that 1 — z* = p,, so that the asymptotic decay
is determined by (1.2) and (1.3). In higher dimensions, 1 — 7z} > p,; nevertheless, we
conjecture that a bound of the form (1.3) holds for all y > p... The Cayley tree result
is seen to correspond to the “d— oo limit” of this behavior.

Finally, in the appendix, we provide a proof that in d=2, the infinite-time
invaded regions which evolve from different (finite) starting sets differ on only a
finite number of bonds.

2. Preliminaries

The process of invasion percolation has already been described as two equivalent
procedures. It turns out that there is a third process which allows, in a direct
fashion, the incorporation of well established results from ordinary percolation.
Indeed, it is by this method that the majority of the results have been rigorously
established. Below we describe all three procedures and demonstrate their
equivalence.

1. Dynamic Growth

This procedure resembles most closely the numerical simulations. Here we follow,
bond by bond, a dynamic evolution of the invaded region. At t=0, random values
uniformly distributed between zero and one are assigned to the 2d bonds
emanating from the origin. These numbers are compared, and the bond with the
smallest value is chosen. (With probability one, the choice is unambiguous.) The
chosen bond constitutes the invaded region at time t=1. At time t=n— 1, valuesin
[0, 1] are assigned, at random, to any previously unassigned bonds which have an
endpoint in what is currently the invaded region. Then the values that have been
assigned to all those bonds which have not yet been chosen are compared and the
bond with the smallest value joins the existing cluster.

2. Deterministic Invasion

In this approach, the rules of invasion are the same as in 1, except that the random
numbers (which are again uniformly distributed in [0, 1]) are assigned to every
bond of the lattice before the process begins. Thus the sample space of all
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realizations is [0,1]®4 and the probability measure is the infinite product of
Lebesgue measures on the unit interval. In this model it is seen that, once chosen, a
I' [0, 1]« determines the entire history of the invasion.

3. Percolation Cluster Method

This is a third, intermediate scheme which is dynamic in the sense of 1, but provides
advance, global information asin 2. We let y € (0, 1) and consider configurations of
occupied bonds at density y. The set, Q of all such configurations (i.e., the set of all
subsets of B,) is endowed with Bernoulli (product) measure at density y, u,. The
invasion percolation problem is defined by a combination of the rules described in
1 and 2. First one picks an w € Q. Then, as in 1, values are dynamically assigned to
the bonds as they join the boundary of the invaded region. Here, however, if a bond
is occupied, its value is assigned uniformly in [0, y], while an unoccupied bond is
assigned a random value with a uniform distribution in (y, 1]. Once values have
been assigned to all bonds on the boundary of the existing cluster, the bond with
the smallest value is the next one invaded.

Equivalence of the Three Methods. In this paper, we will be concerned with the
behavior of the invaded region, as described by certain collections of random
variables. These random variables have the same distributions for the three
processes. The key observation in this regard is that the finite-time invaded regions
are “self-determined clusters,” as defined in [14]. For our purposes this means the
following:

Let C CB? be a connected cluster of n bonds containing the origin, and let 6C
denote its boundary (i.e., C consists of those bonds not in C which share a vertex
with a bond of C). Then the event, I, that at time t=n the invaded region is C
depends only on the values assigned to the bonds of C and those on the boundary,
0C. The important point is that I is therefore determined by a relatively small set
of variables (e.g., in the dynamic growth model, I may be identified with a subset of
[0’ 1]|C1+|6C|).

Using the above observation, it is easy to establish that I, has the same
probability in all three models. To this end, consider further the invasion pattern
event, I¢.p CI, that the cluster C has been invaded through a particular sequence,
P, of steps. Let us demonstrate the (stronger) result that the events I p, which form
a disjoint partition of I, have the same probabilities for the three processes.
Consider the set of realizations contributing to an I¢,p in the deterministic
invasion picture. The invasion pattern, P, allows us to transcribe this set into the
(measurable) set of |C|+]0C| random numbers which, by fiat, “would have”
produced the same sequence of events in the dynamic growth model. Evidently, the
two I¢p’s have the same probabilities. A similar argument holds for the
percolation cluster method. The only necessary observation is that the |C|+|0C|
bond values in a configuration I' € I.p also determine the pattern of density y
occupied bonds in the corresponding realization of the percolation cluster
process.

Below we will introduce the random variables which form the basis of our
investigation. We need only condition on the appropriate I¢ or I,p in order to
show that these random variables have the same (conditional) distributions in the
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three languages. As an example, consider the random variable x,, which represents
the value of the n'™ bond absorbed. Here we simply condition on any I,p with
IClzn.

The Random Variables. We begin by defining functions related to the random
variables x,, introduced above. Let ye[0, 1] and define

1; ifx,<y
X, (=15 "= 2.1
) {O; otherwise . @D
The empirical distribution function is given by:
1 n
Q== % X,(»). 2.2
nj=1

Next, we denote by R, the random number of new bonds which must be
checked after selection of the n™ bond (e.g., Ry =2d, R, =2d —1, etc.). Evidently,
Vn=>1,0=R,=<2d—1. The total number of bonds which have been looked at prior
to the selection of the (n+1)* bond will be denoted by

L,=3 R, (2.3)
j=0
Observe that n <L, =n+(no. of bonds which are currently in the boundary of the
cluster).

It is often convenient to assign the values to the R, new bonds in some definite
order. This may be implemented via some local rule (e.g., in d =2, we can agree to
go counterclockwise), or by deterministically ordering the lattice once and for all.
Having done so, we may consider the random variable v, which represents the k™
value checked. We also define

I, ifvsy
Vi) = {0; otherwise. @4)
The empirical distribution function of values looked at by time t=n is given by:
Ly
P,=1 2 V). (2.5)
nk=1

As indicated by the following proposition, the large n behavior of P, is not
particularly interesting.

Proposition 2.1. With probability one, P, (y)—y.

Proof. This is most easily seen in the context of the dynamic growth picture. Here,
although it is clear that the numbers R, depend on all values previously checked,
by definition, the distribution of the v,, L, _ ; <k<L,, does not. The desired result is
a consequence of the standard law of large numbers. [J

Corollary. For every interval (x, y)C[0, 11, the growth of the empirical distribution
Sfunction is (asymptotically) bounded as follows:

limsup|Q,(x)—Q, (M= (2d—1)|x—y| with probability 1.
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Proof. This follows from the above proposition and the observation that the
number of values selected in any interval is smaller than the number of values
looked at in that interval. Explicitly,

. . L
lim sup|Q,(x) ~ Q,(y)| slimsup—*|P,(x) =P, (= 2d—Dlx—yl. T (2.6)

3. The Empirical Distribution Function

In this section, we prove some results concerning the large n behavior of the
empirical distribution function, Q,(x). As explained in the introduction, this
quantity is basically the integral of the acceptance profile, studied numerically in
[4]. Thus it is expected to have dramatically different behaviors above and below
the threshold, p,, of the associated Bernoulli percolation model. The two regimes
are examined separately.

(i) Invasion Above Threshold

Here, as in much of what follows, we employ the percolation cluster method. The
basicidea is simple: We pick x > p, and draw a Bernoulli configuration of occupied
bonds at density x. By definition, the occupied bonds form infinite clusters with
probability one. Since, if ever checked, an occupied bond will be assigned a value
less than or equal to X, it is clear that once the invaded region comes into contact
with an infinite cluster, it will never again select a value larger than x (see Fig. 1).
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As an illustration of this method, we prove the following:
Theorem 3.1. Let x> p,. Then with nonzero probability,
Q.(»=1 VYnand Vyzx.

Proof. Since x > p,, the event that we have selected a percolation configuration in
which the origin is part of an infinite cluster has nonzero probability. []

Under the hypothesis of half-space percolation, it is possible to obtain a far
stronger result.

Definition. Let H_(0)CQ denote the set of configurations in which the origin is
attached to an infinite cluster of bonds in the half space (x; >0; —00 <x;< + o0,
j=2,...,d), and define u,[H(0)]=P ,(p). The threshold for half-space percola-
tion is given by 3

p.=inf{pe [0, 1]|P,(p)>0}. (3.1)

Remark. Evidently p, = p,. It is widely believed that p, = p, in all dimensions, but as
of yet, this has only been rigorously established in d=2 [13].

Theorem 3.2. Let y > p,. Then, with probability one, only finitely many of the X,(y)
are zero.

Proof. Let A,, denote the cube of side 2m centered at the origin

A,={xeZWNi=1,2,....d |x|<m}, (3.2)
and let 04,,C 4,, denote its boundary
oA,={xed, |Fi=1,2,...d |x]|=m}. (3.3)

We define n,, to be the stopping time which represents the number of bonds that
have been absorbed when the invaded region “breaks out” of A,,. In other words,
n,, is the earliest time at which a site in 04,, becomes attached to the invaded
region.

The strategy of the proof is roughly as follows: At each “break-out” time, 14,
the invaded region has a fresh chance to come into contact with an infinite cluster
of density y occupied bonds in Z%A,,. If y>p,, the probability of this event is
bounded away from zero. Moreover, one can construct infinitely many boxes, each
providing a new chance. Thus, the invaded region should eventually contact an
infinite cluster.

Let y > p, and consider percolation configurations at density y. Let s denote the
event that at time t=n, , the invasion has broken out at the site s € 04,,. Observe
that the event s depends only on the distribution of values assigned to those bonds
with both endpoints in 4,, and at most one endpoint in 94, It is therefore
independent of the event that s is attached to infinity by a path of occupied bonds
in the complement of the interior of A,,. The latter event occurs with probability
not smaller than P_(y).

Now let n
M,(y)= j‘; [1-X;(] (3.4)

denote the number of unoccupied bonds which have been invaded at time n.
Conditioning on the events s, and using the above observation, it is seen that
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Vk < (ro. of bonds in 4,,),

Prob(M,,(y) =o0|M, , (1) 2k)S1—P,(y). (3.5)
Letting A,,1Z¢%, we obtain
Prob(M,,(y) = 00) < Prob(M_,(y) 2 k) [1 - P ,(y)]. (3.6)
Taking the limit k— 0o, we conclude that
Prob(M_(y)=0)=0, (3.7)

whenever y>p,. U

Corollary. Vy = p,,
Q.(y)—1 with probability 1.

Proof. This follows immediately if y > p.. The result for y=p, is a consequence of
the corollary to Proposition 2.1. [J

(ii) Invasion Below Threshold

We now investigate the behavior of the empirical distribution function for x <p,.
The results that follow indicate that the distribution is uniform below threshold.

Theorem 3.3. For every y<p,, there exists a (random) subsequence (n,) and a
positive (random variable) C, bounded away from 0 and oo, such that for every x <y,

Q,,(x)— Cx with probability 1.

Proof. This is again most easily seen in terms of the percolation cluster method.
Choose y <p,and let w € Q. With p, probability one, the occupied bonds of o form
finite clusters. The key observation is that whenever the invaded region contacts
one of these clusters, the entire cluster must be absorbed prior to further
absorption of unoccupied bonds.

Let ny,ny, ..., 1, ... denote random variables with values equal to the total
number of bonds absorbed immediately after absorption of the 1%,2"¢ .. k™, ...
occupied clusters. Observe that the n, are in fact stopping times. They are
characterized by the condition that t is one of the n,’s iff (1) x,_; <y and (2) each
bond on the boundary of the invaded region at time t has value greater than y!.
Note that, by the definition of the stopping times, at any t=n,, all occupied bonds
which have been checked have also been absorbed. Thus

nx Ly

3 X,0)= X V,0). (38)
which impiies that !

mQ,(y) =L, P, (y) . 3.9)

Let us denote by s, the size of the k™ cluster of occupied bonds which has been
absorbed:

s= Y X, (3.10)

Jj=ng-1+1

1 Although the n,’s depend on the value of y chosen, we shall suppress the y-dependence in our
notation when no confasion should result. In case of ambiguity, we shall use the notation n{’
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In terms of this quantity

Q,,k(y)~ni ‘; S;s (3.11)
so that Vx<y i 10
Q,.(%)/Q,, ()= ;. (3.12)
,; Sj

In the above, f,(j) is the fraction of the j* occupied cluster absorbed with value less
than x.

The event that a given cluster of w is invaded is independent of the ultimate
distribution of values which are assigned within the cluster. Thus each f.(j)
depends only on s; (not on w), and for each value of s; may be calculated according
to the usual (i.e., binomal) distribution. It therefore follows from (3.12) and the law
of large numbers that

Q,.(x)/Q,,.(y)—x/y with probability 1. (3.13)

The theorem is proved by taking a further subsequence, also denoted by (n,),
which ensures that Q,,(y)—Cy. That C is bounded away from 0 and oo is
guaranteed by Eq. (3.9) and Proposition 2.1:

y2d=1zlim Q, )=y, (3.14)

where we have used the obvious bound 2d—1)+(2d/n)= L,/n=1. O

Remark. By choosing a sequence of stopping times based on a fixed sequence
Y«—D., Theorem 3.3 can be improved to show that there is a single (random)
subsequence (n,), not depending on any y, so that for all x<p,, Q,,(x)— Cx with
probability 1. In any case, we note that if the two critical points for Bernoulli
percolation, p. and 7, [defined in (3.17)] coincide, as they do in d =2 and should for
any d, then it follows from Theorems 3.5 and 5.1 that with probability one, Q,(x)
—(1/p)x for all x=Zp,.

Let us define Q) =(/L)Q,(). (3.15)

In terms of this quantity, the above theorem can be restated as: For every x<p,,
there exists a subsequence (n,) such that

Q;,(x)—x with probability 1. (3.16)

The proof of this (perhaps more transparent) reformulation is easily seen, again by
using Eq. (3.9) and Proposition 2.1.

Even this reformulation is, nonetheless, somewhat unsatisfactory since we have
established convergence only for a subsequence. Indeed, the distribution of values
absorbed in the times n, <t=<n,, , — when typically a cluster of occupied bonds is
being invaded — could be badly skewed towards lower values. In order to ensure
that this skewing does not effect the large n behavior of Q;(x), we must have some
control over the size of the occupied clusters which are encountered by the invaded
region. It turns out that finite expected size of connected clusters is a sufficient
condition. That is, if C(0) denotes the connected cluster of the origin in the
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Bernoulli system, and E,(|C(0)]) denotes its expected size, then we consider
densities less than

n.=inf{p e [0, 1][E,(|C(0)})= o0} . (3.17)

We first establish the following property of the stopping times n$’ when y <.

Lemma 3.4. Let y<mn,, and denote by n, the stopping time corresponding to
absorption of the k™ cluster of density y occupied bonds. Then, with probability one,

IiankH—Lnk =0
k— i

Proof. We first show that E[(L,, ,,—L, )*] is bounded above uniformly in k. To
this end, observe that

L, . —L, =<[the size of the (k+ 1)* cluster absorbed]

R+ 1 n =

+ [the number of bonds on the boundary of the (k+ 1)* cluster
absorbed]

+ [the number of bonds checked from the time t=n, until the
first bond of the (k+ 1)* occupied cluster has been contacted].
(3.18)

The first of the above three quantities has already been denoted by s, ;. Let us
denote the third by h,. Since the boundary of the (k+ 1)* cluster absorbed cannot
exceed (2d —1)s; 4 1, we have

L

M+ 1

_Lnkézdsk+1+hk. (3.19)
From the dynamic growth model, it is clear that Vm=1
Prob(h,zm)=(1—y)" " *. (3.20)

Thus, if we can show that Prob(s,,,=m) also decays exponentially in m,
uniformly in k, then L, —L,, has finite moments of all orders.

To this end, consider the first bond of the (k+ 1)* occupied cluster to be
invaded. (This is the bond which, when checked, determines the value of the
random variable &,). The event {s, . ; =m} is the event that this bond is connected
to at least (m— 1) other occupied bonds which lie in the complement of the set of
bonds already checked. Relaxing this constraint, it follows that Yk, Prob (s, , ; =m)
is bounded above by the probability that the number of occupied bonds attached
to a pair of nearest neighbor sites is at least (m— 1). For y <, it is known that the
latter quantity decays exponentially in m [15, 16].

The lemma is now easily established. Let ¢>0. Then

® L, —L @ L, —L
> Prob[M%a} <y Prob[M>8]
K=1 L,, k=1 k

<L 3 BE,, LT (2)

™8

™
N|’_“

k=1
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by the Tschebycheff inequality. Since the above quantity is finite, we may apply the
Borel-Cantelli lemma to conclude that
L

L—‘L —0 with probability 1. [ (3.22)

hx

Theorem 3.5. For every y<m,,
Q,(y)—y with probability 1.

Proof. Let I'e [0, 1]®¢and y <n.. Denote by n(I'),j=1,2, ..., the “stopping times”
which correspond to absorption of clusters of bonds with values <y occurring in
this realization. Let m be any positive integer and denote by k (= k(m)) the largest k
such that n, <m. Then

L
Mg+ 1 ’ >0’ >
Lnk an+1(y)=Qm(y)= L

By Lemma 3.4, if y<m,, then L, /L, . —1 with probability 1. The result now
follows from Eq. (3.16) for y <=, and then from the corollary to Proposition 2.1
for y=n. O

Lo o). (3.23)

e+ 1

4. The Acceptance Profile

In [4], the acceptance profile at value x and time n was defined as the ratio of the
number of bonds accepted with values between x and x + dx, before time n, to the
number of bonds checked with values “in that range.” Since this quantity, or rather
its average over many simulations, is the principal subject of the numerical
investigations of invasion percolation, it is worthwhile to translate some of our
earlier results into statements about such a function. This is the content of
Theorems 4.2 and 4.3.

However, we must start with a workable definition. This requires some caution
since, with nonzero probability, both the numerator and denominator of the above
quantity are zero. It turns out that what corresponds best to the object studied is
the function

14
B £ o0 -xco1| i FIQU 40~ 0,09

a,(x) =lim J 0 E[P,(x+2)—P,(x)]"’

TE| ¥ V- Vil

4.1)

which we will identify as the acceptance profile. In the above, Q,(x) and P,(x) are
the unnormalized analogues of the empirical distributions Q,(x) and P,(x). That
the definition (4.1) makes sense, and indeed corresponds to a “nice” function, is the
content of the following proposition.

Proposition 4.1. For every n, the right-hand side of Eq. (4.1) defines an analytic
function a,.

Proof. By 'Hopital’s rule
d d . -
0,(x)= - E[Q, ()] / —E[P,(], “2)
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provided that everything is well-behaved. That the denominator is well-defined
follows from the (not entirely obvious) relation

E[P,(x)]=xE[L,]. (4.3)

To see this, write E[L,] =3 E[R;]. The claim is clearly true for n=0 (i.e., E[P,(x)]

=2dx=xE[L,]). Supposej the result has been established for some n,. Then
E[P,,, ,()]=E[P,,(0)]+E[P,,. ,(x)—P,,(0]. (44)

The second term may be rewritten as % (xk) Prob(R, ;= k)} =xE[R,, ] since,

regardless of the value of R, . , the distribution of values on the new bonds looked

at will be uniform. The claim (4.3) now follows by combining this observation with

the inductive hypothesis and the expression for E[L,] in terms of the E[R;].
Since E[Q,(x)] is monotone, it is a.e. differentiable. Furthermore,

1Q.(x+8)— Q)| £ [P, (x +&)—P,(x), (4.5)

so the derivative is bounded. Below we will show that E[Q,(x)] is in fact analytic,
and indeed a polynomial.
To do this, we first note that

E[Q,()]= 3. Prob(x,<x). (4.6)

Let 4; denote the cube of side 2j centered at the origin, let y, denote the uniformly
distributed random variable assigned to the bond b in the deterministic invasion
procedure and let W denote the ordering of the y,’s inside A ;. The bond which is
invaded at time j is a deterministic function, g(W), of the order W but does not
otherwise depend on the y,’s. Thus x;=y,u, Conditioning on the possible

orderings, w, yields
Prob(x; £ x) =3 Prob(W=w) Prob(y,u, < x|W=w). 4.7

For each j and w we number the bonds in increasing order according to W, so that

Prob(y,m < x|W=w)=Prob(U,=x|U,<U,< ... <U,), (4.8)
where k is the number (in the above ordering) of g(w), m is the number of bonds in
A, and Uy, ..., U, are independent and uniformly distributed on [0, 1]. The
existence and analyticity of %E[Qn(x)] now follow by combining (4.6), (4.7), (4.8)

and the easily verified fact that

d
a;Prob(Uk§x|U1 <U,<...<Uy=constx* {(1—x)""%. [0 (4.9
Remark. 1t is worthwhile to note that the analyticity of (4.9), which proves the
analyticity of a,(x), deteriorates as m and k increase. E.g., as m—oo and k/m
—1€[0,1], (4.9) tends to a delta function at A. This is not an artifact of our proof.
Indeed, it has been observed numerically that the acceptance profile approaches a
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step function as n— oo. Below we will study the limiting behavior of the acceptance
profile for all noncritical values of x (ie., xe[0, 1\[n,p.]), and rigorously
establish the results indicated by the numerical simulations [4].

Our analysis is facilitated by fixing a concrete realization of the percolation
cluster process. To this end, we deterministically order the lattice (with, say, spiral
order) thus specifying, for each n, the order in which values are assigned to the R,
new bonds. Then the sample space may be realized as Q&® A ® B, where Q is the set
of all subsets of IBY, A is the set of all real sequences with range [0, x] and B is the set
of sequences in (x,1]. The probability measure is just Bernoulli percolation
measure at density x, crossed with the two infinite products of (normalized)
Lebesgue measures. A configuration, w,;=((w, o, f)lo € Q,0.€ A, f € B), determines
the invasion uniquely by assigning the value «; to the i occupied bond and f;to be
j™ unoccupied bond examined.

We now show:

Theorem 4.2. For every x> p,,

lim a,(x)=0.
Proof. Let x> p,, so that for a.e. ,, the occupied bonds percolate. Denote by Sy
the event that by time t= N the invaded region has already made contact with an
infinite cluster. Note that for each N, Sy depends on essentially all coordinates of
w, but only on a small number of coordinates of « and S.
For ny >n,, let us define the function

P, ..0)=P, (x)-P, (x). (4.10)
We first show that Vn> N,
E[P, y(x+8)— P, y(x)IS5]Led— 1) (n—N)/(1-x), (4.11)

where S% is the event that the invaded region has not yet contacted an infinite
cluster by time t=N. The relation (4.11) is seen by observing that the integrand is
determined by the values, f;, of the bonds for which Ly —Py(x)<i<L,—P,(x).
These are independent of the conditioning since the only ;s on which the event S5
depends are those with i<Ly—Py(x). Now the number of s such that
Ly—Py(x)<i<L,—P,(x) is bounded above by the maximum number of bonds
which could have been looked at during times N <t=<n. This is simply
(2d—1)(n—N). The integrand counts only those bonds for which ;e (x, x+¢];
hence the factor g/(1 —x).

The proofis now straightforward. Choose N > 1 and let n > N. Using the usual
notation for the indicator function, and the simplified notation Q,=Q,(x+¢)
—Q,(x)and P, =P, (x +¢) — P,(x) for increments of the empirical distributions, we
have

Qn = Qn[ﬂsw + (1 - ]ISN)] = QN + [1 - ]ISN]Qn\N
SPy+[1 -1 1 [Qy—Py]+[1 -1, 1Q,x
=]PN + [1 - 11sN] [Qn _IPN] = ]PN + [1 - 11SN]]Pn\N'

4.12)
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Taking expectations of both sides of the above equation, and using (4.2), (4.3)
and the bound (4.11), we obtain

a,(x) = [E[Ly]+Prob(Sy) (2d—1) (n—N)/(1 —x)J/E[L,], (4.13)
so that
lim supa,(x) £ Prob(S%) 2d—1)/(1—x). (4.14)

Finally recall that, by Theorem 3.2, Prob(S%)—0 as N—co, which establishes the
desired result. [

Next, we examine the behavior of the acceptance profile below threshold.

Theorem 4.3. For every x<m,,

lim a,(x)=1.
Proof. Let us write a,(x) in the form

a,(x)=1—lim (¢E[L,])" "E[(P,(x + &) ~ P,(x) = (Qu(x + )~ Q,(x))]
z 1—~lim (en)” 'E[(P,(x+8)~P,(x))~(Q,(x +8)—Q,(x)]. (419

It suffices to demonstrate that the limit on the right-hand side of (4.15) tends tozero
in the large n limit.

To this end, recall the definition of the stopping times given in Sect. 3.ii. By the
reasoning of Theorem 3.3, it is seen that if n* is a y density stopping time, with
y<m,, then

Qu(x+8) = Qu(x) =P (x+2)—Pu(x) (4.16)

Vx, ¢ such that x+&<y.

The next observation is somewhat more subtle: If n* is a stopping time in a
given realization w,;, then the value of the next stopping time is independent of the
values of the «; € [0, y] for all i>P,.(y). To see this, recall that at time t=n*, the
final bond of the most recently attacked occupied cluster has just been absorbed.
Every bond on the boundary of the invaded region is now “unoccupied.” The next
stopping time will occur when the invaded region contacts and absorbs another
occupied cluster. Which cluster it absorbs and how long it takes to get there
depend only on what clusters are “nearby” the currently invaded region and on the
evolution of the invasion pattern through the intervening unoccupied territory.
These quantities are determined exclusively by w, the values on the current waiting
list and the values of f;€(y, 17, j>L,«— P,.(y). Hence they are mdependent of o,
i>P,.. The latter values influence only the nature of the invasion pattern after
the next occupied cluster has been struck. (Of course, the values of subsequent
stopping times will depend on these ¢;.)

Now assume that n is not a stopping time, and let n* <n be the last stopping
time before n. Conditioned on n*, it is obvious that P, .(x +¢)—P,,«(x) is zero
unless the invaded region has already made contact with the next occupied
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cluster.? Calling o (n) the event that at time n, the invaded region has spent T units
of time in contact with the “next” cluster, it is clear that

E[P, .(x +¢)— P, (x)In* last stopping time before n; ap(n)] < e(2d —1)T/x.
4.17)

Summing over all values of T'and n* (here we conveniently define t=0 to be a
stopping time) we have, from (4.16) and (4.17),

[on] B[R, (x-+2) - B,(0)~ @,(x-+) - Q0= 2§ TProbla,(m].
(4.18)

Now Prob[o(n)] is just the probability that at time t=n the invaded region
has spent T units of time engrossed with its most recent cluster. As was shown in
Lemma 3.4, this probability tends to zero exponentially in T, which establishes the
desired result. [J

5. Geometry of the Invaded Region

The results of the previous sections suggest that the configurations generated by
invasion percolation may resemble those of ordinary percolation at threshold.
Indeed there is much indirect numerical evidence to support such a claim [4]. Here
we study the geometry of the invaded region in an attempt to compare it to the
(admittedly scarce) rigorous knowledge on the structure of percolation configura-
tions at threshold.

The Surface to Volume Ratio

Prior to the selection of the (n+1)* bond, the boundary of the invaded region
consists precisely of those bonds which have been checked, but not selected (i.e., the
current “waiting list”). The number of such bonds at time t=n is therefore L, —n,
and the surface area to volume ratio is (L, —n)/n.

One can define a similar notion of boundary for the infinite cluster(s) in
ordinary Bernoulli bond percolation at density p> p.: Simply consider all those
bonds which are not occupied, but which share an endpoint with a bond of an
infinite cluster. It has been shown (see [9] and [26]) that the surface to volume ratio
for the infinite cluster(s) in ordinary percolation at density p>p, is precisely
(I=p)/p.

Below we study the large n limit of (L, —n)/n, and establish (modulo the usual
conjectures of percolation theory) that this reproduces the anticipated surface to
volume ratio of ordinary percolation at threshold.

Theorem 5.1. With probability one, the large n limit of the surface to volume ratio has
the bounds

l—p. .. ., L,— . L,— 1—
—_&ghmmf " nghmsup 2 "g e

n—co n n— o0 n T,

De

2 The authors would like to thank the referee for pointing out this simplification
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Proof. By Theorem 3.5, with probability one,

n 1z
—_— > =0
L1, ; X, (m)=Qy(m,)— .. (5.1
Thus L .
lim sup%n < ;nc with probability 1. (5.2)

On the other hand,

n -
L_n L, ,Z X{P)+ L E‘, [1-Xp)]l= L E‘, V) +[1-Q,p)1. (53)

By Proposition 2.1, the first term above converges a.s. to p,. By the corollary to
Theorem 3.2, as n— oo, the second term a.s. vanishes. This gives
L,— 1—p, . o
liminf " = —_—p‘ with probability 1. O (5.4)

n—>w n .

Remarks. 1) It follows immediately that if 7, =p, = p,, then with probability one,
the limit of [L, — n]/n exists. That n,=p.=p, is of course known for d=2 [6,13],
and is widely believed to hold in all dimensions.

Conversely, should it be the case that with probability 1 a limit exists, the
subsequence argument of Theorem 3.3 establishes that the limit is bounded above
by (1 —p,)/p.. Finally, if the limit exists and is a.s. a constant, it is equal to (1 —p,)/p.,
since by Theorem 3.1, Ye> 0, the limit must be larger than (1 —p_)/p.—¢ on a set of
nonzero measure.

2) The asymptotic surface to volume ratio treated in Theorem 5.1 is defined
dynamically. An alternate static definition, analogous to the one used for infinite
clusters in [9], is to begin with the infinite-time invaded region C and its boundary
0C, intersect these with a cube A,, of side 2m centered at the origin and take the
limit of the ratio of the sizes, lim(|0CnA4,,|/|CA4,,]), as m— co. It should be possible
to show (at least in d=2) that this definition is equivalent to the one used in
Theorem 5.1.

The Volume Fraction

The above theorem shows that, in some sense, the invaded regions are “all surface.”
However, in light of the analogous results for positive density infinite clusters
mentioned previously [9], this alone does not indicate that the invaded region has
a “fractal” or even “scale invariant” structure.

The existence (and value of) a “Hausdorff” dimension can, at this point, only be
studied numerically. In lieu of such strong results, it is at least possible to establish
— modulo the usual conjectures — that the invaded region has a zero volume
fraction. This provides further justification for the assertion that invasion
percolation is representative of critical point phenomena.

Theorem 5.2. Let b € B, and denote by @, the event that b is eventually invaded. Then
the volume fraction, defined by

?'=limsup — > 1,,

m— o IAml bedm
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satisfies
v < P (p,) with probability 1.

Remark. The percolation probability, P, is known to be continuous in d=2 [7],
sothat P, (p,)=0and, by Theorem 5.2, 7" =0. Moreover, continuity is expected, on
general grounds, for all finite-range percolation models defined on periodic
graphs, so that ¥"=0should follow in these cases also. In contrast, for a certain class
of long-range models in one dimension, it has recently been established [17] that
P, at threshold is positive (Thouless effect). Indeed, an invasion percolation study
on the above type of system may yield interesting and novel results. To construct
the relevant invasion processes, follow the procedures of Sect. 2 except assign to
each pair of vertices {i,j} a random number [in (0, c0)] with an exponential
distribution of parameter J;;. The resulting invasion model is then related to the
critical behavior of the bond percolation model with

Prob(occupied bond between i and j)=1—e #u

at its critical value f=pf. These procedures are well-defined provided that
2. J;j< o for every i.
j

Proof of Theorem 5.2. This is essentially a corollary to Theorem 3.1. Let y > p, and
draw, in the percolation cluster method, a sample of density y occupied bonds.
Then, with probability one, except for finitely many bonds, 1y, < 1,, where C, is
the event that b is part of an infinite cluster. The bound now follows from an
application of the Birkhoff ergodic theorem and the continuity from the right of
P(p) [12]. O

6. Large-Time Asymptotics

According to Theorem 3.2, E(1 —X,(y))—0if y> p, (and, we expect, if y > p,). Here
we examine the rate of this convergence. Indeed, this question is of interest for
both y=p, and y > p,, with different rates of convergence anticipated for the two
cases. Although we address the y = p, question briefly at the end of the section, our
principal results concern y > p..

In order to facilitate the discussion, let us introduce the notation

Z,(y)=1-X,(» - (60)
and

B,(y)=E[Z,(y)]. (6.2)

Thus B,(y) represents the probability that a value greater than y is accepted on the
n'™ step. We turn attention to the large n asymptotics.

First, however, let us relate B,(y) to other quantities considered in the study of
invasion percolation. Observe that

b=~ 1 B(¥) ©3)
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has the interpretation of a probability density for acceptance of value x at time n.
In [5], the quantity b,(x) was computed exactly on the Cayley tree. Although b,(x)
was called the acceptance profile in [ 5], it is related to the acceptance profile of [4]

and Sect. 4 by 1 "
=——— | 4
an(x) E[Ln J;l bj(x)7 (6 )
which follows from (4.2), (4.3), and (4.6).

On the Cayley tree, it was found [5] that Vy > p,, B,(y) vanishes exponentially
in n. Because of this result, there has been a temptation to conjecture that
exponential decay is true in general. Such a conjecture is in fact wrong, as
demonstrated by the theorem below. The subexponential decay seems to be a
manifestation of the essential singularity [10] in the generating function for
percolation clusters.

Theorem 6.1. For every y > p., there is a constant c(y)< oo such that

—c(y)ntd-vyd

with hy)>0. B.()Zh(ye (63)
Proof. This result follows immediately from Theorem 1 of Aizenman, Delyon and
Soulliard [11].

To see this, we use the percolation cluster method. Let y>p, and consider
configurations of density y occupied bonds. Now note that if the origin is in a finite
cluster of exactly n— 1 occupied bonds, it must be the case that the n™ bond chosen
has value greater than y. This implies that

B»zP,-1(»), (6.6)

where P,(y) is the Bernoulli probability, at density y, that the connected
component of the origin contains exactly m bonds. Theorem 1 of [11] gives lower
bounds on P,,(y) of the desired form. It is worth noting that [11] also provides
explicit bounds on the constant c(y), in terms of P (y) and d. [

Although the lower bound of Theorem 6.1 proves that the convergence is
subexponential, it leaves open the possibility of a much slower rate of convergence.
We believe, however, that the lower bound is precisely the correct asymptotic
behavior whenever y>p,. Unfortunately, we can only prove this for d=2. For
general dimension, although we can obtain an upper bound of the form (6.5), the
bound is legitimate only for y larger than some value, defined below, which exceeds
p.in d=3.

Consider the y density Bernoulli bond system on the lattice IB,. By duality, the
(d—1)-cells (e.g., bonds in d=2, plaquettes in d=3, etc.) may be regarded as
occupied with probability g=1—y. If we denote by |C*(0)| the size of the
connected cluster of occupied (d — 1)-cells of the origin, we may define the critical

point n¥=inf{q e [0, 1][E,(|C*(0)])= o0} . (6.7)

That is, ¥ is the point at which the expected size of (d — 1)-cell clusters diverges.

The point ¥ should not be confused with other critical points of the (d — 1)-cell
system. For example, in d =3 there is another transition point, presumably 1 —p,,
above which plaquettes form infinite “sheets,” as defined and analyzed in [18]. It is
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elementary to show that, for the bond-plaquette system, this transition occurs at a
point strictly above n¥*. A closely related, but more subtle result for the site system
on Z3 has been established by Campanino and Russo [19].

In Theorem 6.2, an upper bound of the form (6.5) is proved for y > 1 —z*. This
establishes the asymptotic behavior B, ~ exp(—cn'/?)for all y>p,.in d =2, since it
is known [12,13] that 1 —z¥ =p, for the two-dimensional system.

Before proving Theorem 6.2, it is worth noting that the difficulties in extending
the higher dimensional result from 1 —z* to p, are related, but not equivalent to the
problems in establishing upper bounds on P,(y) in ordinary percolation. As
exploited in the proof of Theorem 6.1, the P, provide a lower bound on the B,.
Thus, if the results of Theorem 6.2 could be extended, this would also extend the
results of Kunz and Soulliard [107] on the asymptotics of the P,. The converse is,
however, not the case since the n'® bond chosen may be greater than y even if, in the
percolation cluster method, the origin is part of a cluster of size much smaller than
n.

Theorem 6.2. For every y>1—n¥, there is a constant c'(y)>0 such that

B,(y) Sh(y)e” <o (6.8)
with h'(y) < 0.

Proof. Again, we use the percolation cluster method. Let y>1—#* and consider
the Bernoulli system of density y occupied bonds and density 1—y occupied
(d—1)-cells.

Observe that if Z,(y)=1, then there must be a closed surface of occupied
(d— 1)~cells which surrounds the origin, encloses a volume at least as large as n,
and has at least one of the (d—1)-cells in this surface within a distance n of the
origin. However, if it encloses a volume at least as large as n, then its surface area
must be at least x(d)n“~ V4, with some explicitly computable «(d)>0. Thus
Z,(y)=1 implies that within a distance n of the origin, there is a (d — 1)-cell with
connected component of size at least x(d)n~ % We have

B,(y) = Prob, [H%)Sn{|C*(i)|ék(d)n“’*“/"}}

< 0(n) Prob, [{|C*0)| z k(d)n~ V], (6.9)

where the inequality is a consequence of subadditivity and translation invariance.
It is known [15,16] that for n*>1—y, the above probability decays
exponentially in x(d)n®~ "/, with some characteristic rate A(y)>0. Thus

Bn(y) é O(nd)e— Kl(y)n(d- 1)/d é h/(y)e —c'(y)n(d* 1)/d (610)
for some ¢’(y)>0 and h'(y)<oco. [

Let us briefly consider the decay of B,(y) for y=p,. Nickel and Wilkinson [5]
(see also [4]) argue that B,(p,)~n~ /4, where 4 is the gap exponent. On the Cayley
tree, they find B,(p,)~n~ /%, consistent with the mean field value for 4. We have
nothing as strong as a mean field bound. We do, however, note that as a
consequence of the bound (6.6),

XnB,(n) 23 nP,_(n)=E,[ICO)]=0, (6.11)



404 J. T. Chayes, L. Chayes, and C. M. Newman

so that if B,(w)~n"", then 7<2. In two dimensions, this bound can be
strengthened by using the result of van den Berg and Kesten [20]. They provided

an explicit bound at threshold for the quantity K,= > Py:
Nz=n

K, (p)=(1/2n 2 in d=2. (6.12)

From this it follows that there exists a positive constant such that infinitely many
of the P,’s have the bound P,(p,) = (const)n 2. Thus by (6.6), if B,(p.)~n"* then
T<3/2ind=2.

Appendix: On the Independence of the Invasion Pattern from the Starting Set

Here we show that in d=2, the infinite-time invaded regions that evolve from
distinct, finite starting sets differ at only a finite number of bonds, with probability
one. This is a strong form of independence from initial conditions. Indeed, one can
envision weaker forms in which the number of differing bonds grows with n in such
a way that the fraction of differing bonds still tends to zero. Although our
techniques do not extend to d=3, one might suppose that some form of
independence holds in higher dimensions. It should be noted, however, that a
proof that the infinite-time invaded regions evolving from distinct starting sets are
nondisjoint, with probability one, would imply as a corollary the uniqueness for
any p of infinite clusters in Bernoulli percolation, an as yet unproved result for d > 3
(see [9]).

Independence of the invasion pattern from the starting set is in contrast to what
is expected for certain other stochastic growth models. For example, diffusion
limited aggregation seems to have a strong dependence on initial conditions, as
indicated by an epicenter (e.g., discharge point) in the numerically generated
configurations [21-24]. That typical invasion configurations (at least in d =2) are
essentially homogeneous is the content of the following.

Theorem A.1. Let U, VCIB, be finite starting sets for the invasion process on B,, and
denote by CIYN(I') and CY(I") the corresponding infinite-time invaded regions in the
configuration I € [0, 11®2. Then, with probability one, the sets CIVI") and CYY(I')
differ at only a finite number of bonds, i.e.

|CIY(IMACYY(IN)| < oo with probability 1.
Here A denotes the symmetric difference of the sets
CYU(N)ACY(T) = YY) L CYYMN\CU)ACYT) .
Moreover, denoting by CIW(I") and CYXI') the invaded regions at time n,
sup |CIW(T)ACYY(IN)| < oo with probability 1.
Proof. Let U, VCIB, be two finite starting sets. Let I' € [0, 172 and denote by I'(b)
the value that I' assigns to the bond b € B,. As in the proofs of Theorems 3.5 and

4.3, we can map I into a y density percolation configuration by identifying the
bond b as “occupied” if I'(h) < y. Here we choose y=p,, so that our identification
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Fig. 2. Innermost circuit and its connected component

maps I' into a Bernoulli configuration at threshold. It then follows from the Harris
[25] and Kesten [6] theorems that, with probability one, there are infinitely many
circuits of these occupied bonds surrounding UUV.

Let y be any circuit of bonds (not necessarily occupied) surrounding Uu V. We
denote by G, the event that y is the innermost circuit of occupied bonds
surrounding UuV. Note that the G, form a disjoint partition of p, density
Bernoulli configurations, and thus, by our identification, a disjoint partition of
[0, 17®2 (provided that we include the zero probability event Gy that UuV is not
surrounded by an occupied circuit).

Let us partition the set [0, 1]®> even further. To this end, note that if we are
given a I'e G,, we can determine the set of occupied bonds which form the
connected component of y (see Fig. 2). With probability one, this set is finite. In any
case, we can consider all possible connected components of y, and index them by o.
We denote by G, ,CG,C[0,1]" the sub-event of G, that ¢ is the connected
component of occupied bonds of y. The G, , form a (finer) disjoint partition of
[0, 17

For any configuration I' € [0, 1]%2, we may define the set S(I')CIB, by

S(N={beatuibey®} (A1)

for the unique 0,7 for which I'e G, . Here y° denotes the set of all bonds which lie
inside y. Again we note that, with probability one, |S(I')] < co.

Now let us return to the question at hand. Given I" e [0, 1]®2, it suffices to show
that |CW(I")ACY(I)| is bounded above uniformly in n.

To this end, let us define the sets

ClV{(I)=CIP(IMNS(T) (A2)
d
o CUL ()= QOIS
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and similarly for the CYYI"). Thus CLY}(T") represents the part of the invaded region
which lies within the innermost occupied circuit or overlaps its connected
component, and CIV%(I') is the rest of the invaded region [i.e., that part in S°(I')

=B,\S(I")]. We have

|CEAN)ACTD)| = |CEHINACT )|+ ICE3(D)ACT ()] - (A.3)
The first term in (A.3) is easy to handle. We use the (ridiculous) bound:
ICRADACT YD) =[S (A.4)

The key observation in bounding the second term of (A.3) is the following: The
same bonds of S°(I') will be invaded by regions with starting sets U and V.
Moreover, these bonds will be invaded in the same order. Note that the second
statement does not mean that if a given bond b € S4(I') is invaded on the j'" step by
the U-cluster, then it will also be invaded on the j™ step by the V-cluster. Rather, it
means that if b € S¢(I') is the j™ bond of $°(I') to be invaded by the U-cluster, then it
will also be the j'™ bond of S°(I') to be invaded by the V-cluster. The conclusion is
that, at any time n, either CIV3(I") C CLV3(I") or CIVL(I") C CIV4(I). This, however,
implies

|CEA(D)ACT (D) = [ |CEA(I) | — [C A1) |- (A.5)

Now note that |CI”L(I")|, which is simply the number of bonds in S%(I') invaded
by the U-cluster by time n, has the obvious bounds

n—|S(N)| = |CP(I)| =n, (A.6)
and similarly for |CY1(I'). Combining this with Eq. (A.5), we have
[CRA(NACTED) IS (A7)
It then follows from (A.3), (A.4), and (A.7) that
ICEAN)ACTAN) < 2IS(D)].- (A.8)

With probability one, the (n-independent) upper bound is finite. [
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Note added in proof. We have recently obtained results concerning the large-time asymptotics
and the finite cluster distribution, P,(y), which significantly improve the results of Sect.6. In
particular, we have shown that

lim loglog(1/P(y))=(d—1)/d
for y above a limit of slap thresholds. This and related theorems can be found in J.T.Chayes,
L.Chayes, and C.M.Newman: Bernoulli percolation above threshold: An invasion percolation
analysis, [HES preprint.








