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Abstract. Ground states of the X Y-model on infinite one-dimensional lattice,
specified by the Hamiltonian

- Jί Σ (a + y)<&<& + (i - y ) W + υ } + 2 λ Σ 4J )]
with real parameters J φ 0, y and λ, are all determined. The model has a unique
ground state for \λ\ ̂  1, as well as for γ = 0, \λ\ < 1; it has two pure ground states
(with a broken symmetry relative to the 180° rotation of all spins around the z-
axis) for \λ\ < 1, y φ 0, except for the known Ising case of λ = 0, |γ | = 1, for which
there are two additional irreducible representations (soliton sectors) with
infinitely many vectors giving rise to ground states.

The ergodic property of ground states under the time evolution is proved for
the uniqueness region of parameters, while it is shown to fail (even if the pure
ground states are considered) in the case of non-uniqueness region of
parameters.

1. Main Results

We study ground states of the Jf Y-model in the external transverse field on one-
dimensional lattice (infinitely extended in two directions). Physical observables of
the model are Pauli spins

σψ (<x = x,y,z)

on each lattice site eZ ([σ(

α

j), σf] = 0 for; Φ fc), which generates a UHF algebra 21.
The local Hamiltonian for an interval [α,b](α < b) is

£ l, (1.1)H(a,b)=- j\'Σ {{(1 + γ)<ήPo"+1} + (1 - y ) σ ^ + "} + 2λ £
\_j=al j = a

where J, y (asymmetry of x and y\ λ( — 2Jλ being the strength of the external field)
are real parameters and we assume* J > 0.

* The sign of the first summation in H(a, b) can be inverted by 180° rotation of σ spins around the
z-axis at every other site (for example at all odd sites) and the sign of the last summation can be inverted
by the 180° rotation of all σ-spins around the x-axis, for example. Therefore the case of J < 0 can be
reduced to the case of J > 0 under consideration
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The time evolution of an observable Ae<Ά is defined by

OLX(A) = lim e*m-N.N)Ae-um-N.N)9 ( 1 2 )

N->oo

where the limit is known to exist. (See Theorem 6.2.4 and 6.2.6 in [6].) Its generator

= (d/dt)at(A)\t=0 (1.3)

(defined whenever OLt(A) is norm differentiable) has as its core the subalgebra 2I0 of $ί
consisting of all polynomials of σ's (strictly local observables) and, for any

N,N),A] (1.4)

for sufficiently large N for which the right-hand side is independent of N. A ground
state φ is then characterized by

-iφ(A*δ(A))^0, Ae<Ά0. (1.5)

(The Definition 5.3.18 of [6].) It follows from the reality of the left-hand side of (1.5)
that φ(δ(B)) = 0 for B — A*A and hence for any Be$l0, which then implies

φ(at(A)) = φ(A) (Ae<Ά). (1.6)

Theorem 1. (1) The number of external ground states (which are necessarily pure) is
as follows:

(α) l ι / μ | = l o r ι / y = 0 , μ | < l .
(jί) 2if\λ\<lyϊ0and(λ,y)ϊ(0,±l).
(y) oo*/μ,y) = (0,±l).

(2) For the case (y), which is the Ising model, there are 2 extremal ground states which
are the continuation from the region (β) and 2 additional irreducible representations of
91 in which any vector in an infinite dimensional subspace (of the representation space)
gives rise to an extremal ground state.

Remark. Existence of two ground states in the region (β) has been previously
indicated by a study of correlation functions [5,9]. Results for the case (y) have been
obtained in Example 6.2.56 of [6].

For an extremal ground state φ, consider the locally perturbed state

= ψ(B*AB)/φ(B*B) (1.7)

for BeSΆ. We say that φ has the ergodic property under the time evolution if

limφB((xt(A)) = ψ(Λ) (1.8)
ί-»oo

holds for all A,

Theorem 2. The unique ground state in the case (α) has the ergodic property (1.8)
under the time evolution, while any ground state in the cases (β) and (y) fails to have such
a property.

2. Jordan-Wigner Transformation

We use the method developed in [4,3]. We enlarge the algebra 9Ϊ to a larger algebra
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it, adding a new element T having the following property:

where 6>_ is an (involutive) automorphism of 21 given by

Θ.(A) = lim ( f ί OAA( Π σf\ (2.2)

(180° rotation of spins around the z-axis on the left half ( ^ 0) of the lattice). More
concretely,

\ σ y

j ) i f J ^ l

^[ is the crossed product of 91 by the group Z 2 (integers modulo 2) via its action
neZ2 -* 6>"_ and is decomposed as a direct sum:

(2.3)

We extend (9_ to an automorphism of it by defining

Θ-(Aί + A2T)=θ-(A1)+Θ-(A2)T (Aί9A2e<a). (2.4)

Within it, we introduce creation and annihilation operators by the following
Jordan-Wigner transformation [8], where T plays the role of a product of <ήp from
j = 0 to — oo.

cj = TSj((τ^p -\- i(Ty^)/2, (2.5a)

Cj= 1 Sj((Tχ'— ισκy)/29 (2.JΌ)

(σ[»-σri} if j*λ
Sj = U if ; = 1, (2.6)

U 0 ) 4 Λ if 7^0.

They satisfy the canonical anticommutation relations:

rc c -\ _ rc* c*"i _ Q̂  (2.7a)

[Cj,cn+=δJ (2.7b)

and generate a C*-subalgebra of ίί, which we denote 9lCAR. We have

Cj
 T

 J < o ί")

— c7- if 7^0.

Let 6> be an automorphism of it, uniquely determined by

θ(tήP) = - σ</>, Θ(σy

j)) = - σ^, Θ{σψ) = σ[j\ (2.9)

Θ(T)=T. (2.10)

(The 180° rotation of all spins around the z-axis.) Then
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Both subalgebras 21 and $IC A R of $ are Θ -invariant as sets and are split into sum of
even and odd parts:

A = A++A_9 A±={A±Θ(A))/29 (2.12)

(2.13)

μ = ± Aγ p. 14)

Two algebras are related by

SΆ+=SΆC

+

AR, M_=HίCART. (2.15)

Let &- be an automorphism of Φ, called the dual action in the language of the
crossed product, defined by

&_(A1 + A2T) = A1-A2T (A1,A2e
<Ά). (2.16)

According to even-odd properties under mutually commuting involutive automor-
phisms θ and <?L, $ί is decomposed into 4 pieces:

in which
^ ^ ^ C A R ^ g j C A R ^ ( 2 1 8 )

The local Hamiltonian (1.1) belongs to 91 + = 9I+AR and is expressed in terms of
c's by

H(a,b) = 2j\bj] {(cfcj+ x + cf+lCj) + γ(cfcf+1 + cJ+ lCj)} - λ f (2Cj*c, - 1)1.

(2.19)

The limit (1.2) exists and defines the time translation automorphism α, for elements
of<&:

a.iA, + A2T) = α.MJ + *,(A2)VtT, (2.20)

Vt= nm e^-
JV-»oo

00 t t

= Σ '"" ί dh • • • 7 ' Λ.«, t(4) «(n(4), (2.21)
n = 0 0 0

Δ=H(-N,N)- 6>_(tf(- JV,ΛO) = -4J{(1 + γja^^ + (1 -7)σ^ 0 )σ^}. (2.22)

The merit of the Jordan-Wigner transform is to enable us to write at on 9IC A R in a
compact form. Let

Σ7U Σ
jΛ jeZ

where / = (/, )e/2(Z). Further, let

(2-24)
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The F s satisfy (and are characterized by)

[B(A1)*,B(Λ2)]=(Λ1,fc2), B(h)* = B(Γh)9 (2.25)

where, for hk = ( ) (k = 1,2), we denote

(hi,h2) = (fi,f2) + {gi,g2), (2.26)

(fiJi)=ΣTijf2p (2.27)

Then
2 J i K '/i), (2.29)

l/ + l/*-2Λ

(Uf)j=fj+i, (U*f)j=fj-ι- (2.31)

3. Main Points in the Proof of Theorem 1

Ground states of (2ICAR, α,) as well as those of (21+AR, α,) can be determined by the
following theorems proved in Sect. 9. (For an application we need only
Theorem 3(1) and 4(lα), plus 4(3) for the Ising case.)

Theorem 3. Let <xt(B(h)) = B(eiLth) where L* = L, ΓL= - LΓ.
(1) There exists a unique ground state for (9ίCAR,αf) if and only ifO is not an

eigenvalue ofL. The unique ground state is the Fock state φE+ for which B(h), E+h = h,
is a creation operator and B(h\ E_h = h, is an annihilation operator, E± being the
spectral projection of L for (0, oo) and for (— oo,0), respectively. More explicitly

^B(h2n + 1)) = 0, (3.1)

φ(B(hι). B(h2n))= ΣsignP f\ {Γhmj.^E + hmj)\ (3.2)

where the sum is over all pairing, i.e. over all permutations P satisfying

P(2j-l)<P(2j) (V;), P(l)<F(3)< . <P(2n-l).

(2) If the eigenprojection Eo of L for the eigenvalue 0 is not zero, then all ground
states are given by

o) = φE+(Ai)<Po(Λo) (3.3)

where Ao belongs to the C*-subalgebra 2l£AR of 2IC A R generated by B(h) with h
satisfying Eoh = h,Ax belongs to the C*-subalgebra 9I?AR5O of 9IC A R generated by B(h)
with h satisfying Eoh = 0, φE+ is the Fock state of 2I?ARς0 specified by the spectral
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projection E+ of L for (0, oo) as described in case (J) and φ0 is an arbitrary state of

Theorem 4. Consider the same situation as Theorem 3.
(1) There exists a unique ground state for (2I+AR,α,) if and only if one of the

following (mutually exclusive) conditions (α) and (β) is satisfied:
(α) Eo = 0 and the infimum of the positive part of the spectrum of L is not an

eigenvalue of L.
(β) dim£0 = l.
In both cases, the unique ground state is the restriction of any ground state of

(2ICAR,αt). More explicitly

φ(A1+A2B(h)) = φE+(Ai) (3.4)

for Al9 Λ 2 e2l? A R

o , ©{A,) = Al9 Θ(A2) = - A2 and Eoh = h.
(2) // dim Eo > 1, the set of all ground states o/(2ϊ+AR, α,) coincides with the set of

restrictions of all ground states o/(?lCAR,α ί) to 2I+AR.
(3) // Eo = 0 and the infimum e of the positive part of the spectrum of L is an

eigenvalue of L with the eigenprojection £, then an extremal ground state φ of
(2ϊ+AR,αf) is either the restriction of φE+ to 2I+AR or the (Fock) state φh defined by

ΨuiA) = φE+(B(h)*AB(h))/(K h) = φE+ _ P ( Λ ) + ΓP(h)M\ (3-5)

where h is any vector satisfying Eeh = h and P(h) is the orthogonal projection onto the
one-dimensional space spanned by h. The cyclic representations associated with φh are
all equivalent and are disjoint from the cyclic representation associated with the
restriction of φE to 21+AR. An arbitrary ground state of (2ICAR, α,) is of the
following form:

(3.6)Σ
ί = l

where OL} ^ 0 (j = 0,...), X O/ = 1 and h} are mutually orthogonal.
The following lemma (proved in Sect, 7(i)) shows that Eo = 0 for all cases of our

interest and Ee = 0 for almost all cases, except for the Ising model case (λ, γ) =
(0, ± 1).

Lemma 3.1. (1) // (λ9y) ̂ (0 , + 1), K has an absolutely continuous spectrum.
(2) If (λ,γ) = (0, ± 1), then SpX = {2, - 2}, i.e. K/2 is selfadjoint unitary.
We can now discuss a ground state φ of (21, oct). By a version of the definition of a

ground state, requiring (1.5) for all A in the domain of δ (within respective algebras
under considerations), the restriction of φ to 91+ = 2I+AR is immediately seen to be a
ground state of (9l+AR, αj, and hence is given by Theorem 4. If φ is (9-invariant (i.e.
φ(Θ(A)) = φ(A) for all Ae%) in addition, then φ is completely determined by its
restriction to 21+. Thus we obtain the following key intermediate result:

Proposition 3.2. (1) If{λ,y) ^(0, ± 1), then a Θ-invariant ground state of(%oct) is
unique and is given by

ΦEΛA++A-) = ΨEΛAΛ Λ±eSa±. (3.7)
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(2) // (λ,γ) = (0, + 1), then all Θ-invariant ground states of(%OLt) are given by

A+) + Σ0ίj<Phi(
AΛ (3.8)

where α,-^ 0 (/ = 0,1,...), ]Γα,- = 1 and hj = EAJh} are mutually orthogonal.
Previous argument already shows that (9-invariant ground states must be of the

form given by (3.7) and (3.8). In converse direction, the existence of ground states of
(91, αt) is known (for example, Proposition 5.3.23 and 6.2.44(1) in [6]) and if φ is a
ground state, then

φ(A) = {φ(A) + φ(Θ(A))}/2, Ae% (3.9)

is a Θ-invariant ground state due to Θα ( = α,<9. Therefore (3.7) must be a ground
state in case (1). On the other hand, a ground state of a smaller system might not
have an extension to a ground state of a larger system. Thus it requires an additional
proof to see that all states of the form (3.8) are ground states of (91, α,). This is
provided by Theorem 6 of Sect. 8 along with Lemma 4.5(3) and Corollary 4.4(1).

The final step of the proof is to find all possible decompositions of a Θ-invariant
ground state φ. Any ground state φ must be obtained by a decomposition of the
form (3.9). On the other hand, the set of all ground states of a C*-dynamical system is
known to be a face in the set of all states (Proposition 5.3.39 in [61]) and hence any
decomposition of φ yields ground states and any extremal ground state is a pure
state.

Our result on decomposition of φ, which implies Theorem 1, is as follows:

Proposition 3.3. (1) If either \λ\ ̂  1 or \λ\<ί, γ = 0, then the unique Θ-invariant
ground state φE+ is pure and is the unique ground state o/(9I,α f).

(2) If\λ\<ί9yΦ0 and (λ9 γ) Φ (0, ±1), then the unique Θ-invariant ground state
φE+ is an average of two pure states φ±9 which exhaust extremal ground states of
(91, a,). The cyclic representations o/9I associated with φ± are mutually disjoint and Θ
interchanges φ+ and φ_: φ+(Θ{A)) = φτ(A\ Ae^Ά.

(3) For (λ,γ) = (0, + 1), φE+ and φh are averages of two pure states φ± and φh±9

respectively, which exhaust all extremal ground states o/(9ί, a,). Cyclic representations
of 21 associated with φ± are mutually disjoint and disjoint from those associated with
φh+. Cyclic representation of 91 associated with φh± for different h are all
equivalent among φh+ and among φ Λ _, but are disjoint between φh+ and φ Λ _.

We now describe main points in the proof of this Proposition.

4. Main Points in the Proof of Proposition 3.3

Let φE+ be the (6>$_)-invariant extension of φE+ to Φ:

ΦEΛΛ1+A2T) = φE+(Ai) (AuA2e<ilCAR). (4.1)

Let (π,§) be the cyclic representation of $ϊ associated with φE+ and Ue$> be the
cyclic vector giving the state φE+. By Θ and ©_ invariance of φE+, we have the
following orthogonal decomposition:

ξ> = S l l + δ l 2 + $21+522, (4.2)
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(4.3)

= (π(2Ic_AR)π(Γ)£)-. (4.4)

The cyclic representation of 21 associated with φE+ is the restriction of π(2I) to
δ n + £>22> while that associated with φh is the restriction of π(2ί) to § 1 2 + § 2 i (For
cyclicity in the latter, note that π(B(h))*π(B{h))Ω = \\ h \\2Ωϊoτ h = Eeh{=E + h)) Our
problem is to find an irreducible decomposition of these representations.

We apply the following lemma to obtain the desired conclusion. Proof will be
given in Sect. 8.

Lemma 4.1. Let ωbe a state ofC*-algebra 21 and is invariant under an involutive
automorphism Θ of 2ϊ. Let π be a representation of 21 on a Hubert space § with a
cyclic unit vector Ω giving rise to the given state ω(A) = (Ω, π(A)Ω). (The GNS-
triplet.) Let 21 ± be Θ-even and Θ-odd parts of 21. Let π ± be the restriction of the
representation π of 21 + to subspaces 9>+ = π(2I+)ί2. Assume that π+ is irreducible.
Then π_ is irreducible too and the following hold.

(1) The representation π of^ 2ί is irreducible if and only if π + and π_ are disjoint.

(2) Ifπ+ and π_ are not disjoint, then π is a direct sum of mutually disjoint 2
irreducible representations o/2I and ω is an average of 2 pure states ω+ which give rise
to mutually disjoint representations and interchanged by Θ:ω±(Θ(A)) = ωτ(A).

Let the restriction of π(2I+AR)( = π(2ί+)) to § f J be π 0 . We have to compare π l t

with π 2 2 (and π 1 2 with π 2 1 in the Ising case), in order to apply the above lemma to
our problem.

The representation π of 2ίCAR restricted to § n + £) 1 2 is the cyclic representation
πE+ associated with the pure (Fock) state φE+ (any Fock state φE is known to be pure
as it is uniquely defined by φE(B(Eh)B(Eh)*) = 0 for all h) and the same restricted to
£hi + S22 is the cyclic representation πθ_E+θ_ associated with the pure (Fock) state

Ψe.E.θM) = <PE+(Θ-(A)) = (π(Γ)α τt(A)π(T)Ω) (4.5)

of ΛG2ίCAR, where &4B(h)) = B(0_(ft)),

; Mί ί &
Since these Fock states are Φ-invariant, all representations πi} of 2Γ+ are irreducible
(by Lemma 8.1. (i) in Sect. 8) and Lemma 4.1 (1) implies

π n ^ π 1 2 , π 2 1 ^ π 2 2 . (4.7)

Since πE is the cyclic representation of 2IC A R associated with the Θ-invariant
extension to+2lCAR of the state of 21+ = 2I^.AR given by a vector in § x x or § 1 2 , and
since exactly the same situation prevails with nΘE+θ_, § 2 1 and f>22, we see that

πε+ ~ πβ-E+θ- if a n d o n l y i f π n ~ π 2i or π n ~ π 2 2 . (4.8)

where the "only if" part follows from (4.7). Taking (4.7) and (4.8) together we obtain
the following result:

Lemma 4.2. (1) π x l ~ π 2 2 if and only if

πE+~πθ.E+θ_ a n d π u ^ π 2 i ( 4 9 )
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(2) π 1 2 ~ π 2 1 if and only if (4.9) holds.
To apply this result to our problem, we can use the following known criterion ((1)

by Theorem 1 of [1], (2) by Theorem 4 of [3]).

Proposition 4.3. (1) Two Fock states φEί and φE2 of 2I C A R give rise to equivalent
representations if and only if Eγ — E2 is in the Hubert-Schmidt class.

(2) Restrictions of Fock states φEl and φEl of 2I C A R to 21+AR give rise to equivalent
representations if and only if Eί— E2 is in the Hίlbert-Schmidt class and d i m ^ Λ
(1 — E2)) is even.

Note that dim (E1 Λ (1 - E2)) is finite if Ex - E2 is in the Hilbert-Schmidt class
and is equal to dim ((1 — Ex) A E2) due to ΓEtΓ = 1 — Et.

Corollary 4.4. (1) πlx ~ π22 if and only if

\\E+ - Θ_E + Θ_ | |H S < oo and d im(0_£ + 0_ Λ (1 - £+)) is odd. (4.10)

(2) π 1 2 ~ π 2 1 if and only if (4.10) holds.
Quantities in (4.10) are computed in Sect. 7. The result is summarized as follows.

Lemma 4.5. (1) If either \λ\ = 1, γ Φ 0 or \λ\ < 1, γ = 0, then

\\E+-θ_E + θ_\\HS=oo. (4.11)

(2) If either \λ\ > 1 or (λ,y) = ( ± 1,0), then

\\E+ - Θ_E + Θ_ | |H S < oo, dim(θ_E + θ_ Λ (1 - E+)) = even. (4.12)

(3) If\λ\<l9γ*O9then

\\E+ - Θ_E + Θ_ | |H S < oo, dim(0_£ + 0_ Λ (1 - E+)) = odd. (4.13)

To finish up the proof of Proposition 3.3, (1) in that Proposition follows from
Lemma 4.5 (1), (2), the "only if" part of Corollary 4.4 (1), the "if" part of Lemma 4.1
(1) and Proposition 3.2 (1). (2) in Proposition 3.3 follows from Lemma 4.5 (3), the "if"
part of Corollary 4.4 (1), Lemma 4.1 (2) and Proposition 3.2 (1).

As for (3) of Proposition 3.3, the statement about decomposition of φE+ and φh

follows from Lemma 4.5 (3), Corollary 4.4 (1) and (2) and Lemma 4.1 (2).
Since the state (3.8) of 21 can be given by a density matrix on §, only 4 irreducible

representations, two each by decomposition of π(8ϊ) restricted to § n + § 1 2 and to
$>i2+£>2i> c a n appear in the cyclic representation associated with (3.8). Since
representations of 21+ on § u + ξ>22 and on § 1 2 + § 2 1 are disjoint in the present
case, two irreducible representations arising from § n + § 2 2 , which correspond to
φ+ and are mutually disjoint by Lemma 4.1 (2), must be both disjoint from each of
two irreducible representations arising from § 1 2 + § 2 1 , which corresponds to φh+

and are mutually disjoint. The label ± of φh± can be so chosen that the same sign of
± gives rise to one of two irreducible representations arising from ξ>12 + ξ)2ί,
common for all h. Thus the statement about equivalence and disjointness of
representations in (3) of the proportion follows.

Finally, to see that φ+ and φh+ exhaust all pure ground states, any pure ground
state φ belongs to one of 4 irreducible representations and (φ(A) + φ(Θ(A)))/2 =
φ(A) is of the form (3.8), in which either (i) all OLJ9J Φ 0, are 0 or (ii) α0 = 0
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(due to the difference in associated representations. In either case, a decompo-
sition into two irreducible parts (one for the original φ and the other for its Θ-
transform, which is always not equivalent to the original representation for each of
the 2 representations under consideration) is unique and therefore φ must be one of
αo<P± in case (i) and one oiEa^h± in case (ii). In the latter, only one of α's should be
non-zero in order that φ be pure and hence φ must be one of φ± and φh±. Q.E.D.

5. Concrete Decomposition of φE+ into φ ±

Except for the cases \λ\ = 1, γ Φ 0 and \λ\ < 1, γ = 0, representations πE+ and πθ_E+θ_
of 2IC A R are equivalent (Proposition 4.3 (1) and Lemma 4.5 (2), (3)), and hence there
exists a unitary £/CAR(<9_) on the cyclic representation space § n + § 1 2 of πE+

satisfying UCAK(Θ-)πE+(A)UCAK(Θ-)* = πE (Θ^(A)). Since πE is irreducible, it
belongs to π£ +(3IC A R)" and, since πE+ and πΘ_E+θ_ are equivalent, it extends to a
unitary operator ί/(6>_)eπ(9tCAR)".

Consider the case \λ\ < 1, γ φθ. Since the representation π x l

o 6>_ of $l+AR is
disjoint from π n and is equivalent to π 1 2 , and since π 1 2

o Θ_ is disjoint from π 1 2 and
is equivalent to πlx ((4.8), Proposition 4.3 (2) and Lemma 4.5 (3)), t/CAR((9_) has to
interchange § n and § 1 2 in this case.

Let U(Θ) be a unitary operator which is 1 on § X 1 + § 2 i a n d — 1 on § 1 2 -h § 2 2 .
It implements Θ on Φ (hence on 9lCAR) and U(Θ) anticommutes with [/CAR(<9_) on
S i i + §i2 Hence if πE+(Aa) is a net tending to £/CAR(6>_) with Λαe2ίCAR, then

with Λα_ = (ylα - 6) (^ α ) )/2e^ A R , and hence

(7CAR(6>_)Gπ£+(«S.AR)- ί?(Θ_)eπ(2I^A R)-, (5.1)

where-on the shoulder indicates closure. Since £/CAR((9_)2 commutes with
πE (9ICAR) due to Θ 2 = id, and since π £ is irreducible, £/CAR((9_)2 is a scalar
operator, which can be made to be 1 by redefining (7CAR(Θ_) (through multiplic-
ation of a phase factor eiθ). Thus we assume

£/(6>_)2 = 1. (5.2)

We have, for AeMCAR,

ϋ(θ.)fi(A)U(θ-) = π(T)π(A)π(T). (5.3)

By approximating £?(Θ_) by π{A\ A G 9 1 C A R , we obtain

ϋ(Θ_) = π(T)U(Θ.)π(T). (5.4)

Thus W= U(Θ_)π(T) is a selfadjoint unitary element (W = W*, W2 = 1) in the
center of π(&)" (due to (5.3) and (5.4) together with the selfadjoint unitary property of
£/(6>_) and π(Γ)), belonging to A(9I_)~.

Proposition 5.1. Assume \λ\ < 1, y ^ 0 . L^ί f/(6>_) «̂rf M̂  fc^ «5 Λfcoi e. Let

Ω±=2~^2 (l±W)Ω, (5.5)

(Aen (5.6)
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(1) φ± are pure states of$l and

φE+=(φ++φ-)/2. (5.7)

(2) The cyclic representation π + associated with φ+ can be realized on ξ)lί by

π±(A) = π(A+)±π(A-)W, (5.8)

A±=(A±Θ(A))/2, Ae%

φ±(A) = (Qπ±(A)Ul (5.9)

In terms of MCAK

ύ(A-.)W = A(A-T)ϋ(Θ-)9 (5.10)

with X _ T e ^ A R and tf(Θ_)eA(9I-AR)~.

(3) π + and π_ are disjoint.

Proof. Let

Si^αiWHSn + δ^). (5.11)

Since W is in the center of Λ(9I) (in the center of π($) and belonging to Λ(2l_)~), § ±

are invariant subspaces under π(2I). Since ί) is cyclic for π(2ϊ) on § n + § 2 2 5 ^ + a r e

cyclic on § ± . Since W =W* = W~ι, §+ is orthogonal to § _ , and hence (5.7) holds.
Since Wert(?l_)~, (A H^β) = 0 (by Θ-invariant of φ£ +), and hence Ω± are unit

vectors and φ± are states. Furthermore, for Ae%

(Ω±,it(A)Ω±) = (Aπ(Λ)(l ± W)U) = (Q{π(A+) ± π(A^)W)Ω) = (Λ,τu±(i4)Λ),

where the first equality is due to [π(A), W] = 0 and (1 ± W)2 = 2(1 + W\ the second
equality is due to

(Aπ(A-)A = Φ,π(A+)WU) = 0

(U(Θ)Ω=Ω and ί/(Θ)xί7(Θ)= - x for x = π(>l_) and for x = x(A+)W), and the
third equality is the definition (5.8) for which the representation property is
immediate because W commutes with τt(A) and W= W* = W~ι. Since π±(5X+) =
π(^U+) is irreducible on § n , π±(2I) is irreducible there and φ± are pure states. This
proves (1) and (2).

Let AaeM_ be such that π(Aa)-*W. Then π±{AJ = ± π(Aa)W-+ ± W2 = ± 1.
Therefore the two representations π + can not be equivalent and hence are
disjoint. Q.E.D.

Exactly the same decomposition can be made for φh in the case (λ,γ) = (0, ± 1).

6. Proof of Theorem 2

Case{y). The local Hamiltonian is —2JΣσ^σ^+ί) with α = x or y according as
y = ± 1. Therefore oit(σψ) = a(j} for all j . Since Φί is simple (being a UHF algebra), a
straightforward argument shows existence of Be$l for any given state φ such that
φβ(v4) given by (1.7) differs from φ(A) for A = σJ/}, and hence the ergodic property
(1.8) fails for such A and B.
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Case (α). Because K has an absolutely continuous spectrum

[BίAJ , oct(B(h2m+ = (hue
2Jίκ%)ί ^ 0

as t -• ± oo by the Riemann-Lebesgue Lemma. Therefore

hm\\ίAl9(xt(A2)2θ\\=O (AuA2eKCAR), (6.1)
f->oo

where the Θ -graded commutator is defined by

lAl9A2']θ=lA1+,A2] + [A1-,A2 + -] + lA1-,A2--] + 9 (6.2)

AJ = AJ++AJ-9 Aj±eSac

±

AR ( j = l , 2 , . . . ) .

Lemma 6.1. In case (α) and (/?), the following holds for Ae$lCAR:

w-Hmπ(xt(A)) = φEΛA)ί. (6.3)

Proof The restrictions of π(2ICAR) to § n + § 1 2 and § 2 1 + § 2 2 a r e both irreducible
representations of 2ίC A R associated with θ-invariant (Fock) states. Therefore the
last half of Lemma 2 in [2] is applicable (separately on § x x + § 1 2 and on § 2 1 + §22)
and we obtain (6.3) on § u + § 1 2 and

w-lim(τt(at(A)) - φΘ_E+β_MA))^) = 0 (6.4)

Now φθ_E+θ-MA)) = φFt{A) with

Ft = e~ 2Jiκtθ _ E+θ _ β2 J ι Ί i : ί = (e " 2 J ί X ί θ _ e 2 JiKt)E+(e~ 2JίKtθ

By the next lemma, (e-
2JiKtQ_e

2JiKt>) strongly tends to a selfadjoint unitary operator
commuting with E+ as ί-> ± 00 (different limits for ί-> 00 and for t-> — 00), and
hence limFt = E+. Therefore

lim φθ_E+θM(A)) = <PEM)> ( 6 5 )

and we obtain (6.3) on the whole space § . Q.E.D.

Lemma 6.2. (1) The following limit exists in cases (α) and (β).

w±= lim θ_e2Jiκtθ.e-2JiKt. (6.6)

(2) Both θ_w± are selfadjoint unitary and commute with spectral projections ofK
as well as with Γ.

Remark. e~2JiKtθ_e2JiKt^θ.w± as ί-> + 00 by (6.6).

Proof Because Θ.UΘ--U is rank 1 (being 0 for all fel2(Z) with Λ = 0 ) ,
θ _ Kθ _ — K is at most rank 4. Furthermore, the spectrum of K and that of θ _ Kθ _ are
both absolutely continuous by Lemma 3.1. (1). Hence

w±= lim e2W-κβ_)te-2Jiκt9 ( 6 7 )

t-*±oo

which is the same as (6.6), exist and are both unitary by Theorem X.4.4 (and Theorem
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X.3.5) in [7]. Equation (6.7) implies [w±,7"] = 0. Further

θ_w±= lim e2Jiκtθ.e'2JiKt

ί-> ± oo

shows (θ_w±)* = (0_w±), (0_w±)2 - 1 and

which implies the commutativity of 0_w± with the spectral projections of
K. Q.E.D.

Let Ξ± be the (Bogoliubov) automorphism of 2ίCAR determined by

Ξ±(B(h)) = B(w±h), (6.8)

which exists due to [Γ7, w+] = 0 and due to the unitarity of w±. We have

lim oct(T)Aoct(T) = limαf0_α_f(>4) = Θ_Ξ±(Ά). (6.9)
t-> ± oo

Properties of Θ_w± given by Lemma 6.2 imply

© - ^ α ^ α , © , ^ , (6)_Ξ)2 = id? (6.10)

φE+(Θ_Ξ±(A)) = φE+(A). (6.11)

We now concentrate on the case (α) for a while.

Lemma 6.3. Jrc case (α) (i.e. |λ | ^ 1 or |Λ| < 1, γ = 0),

{AeK\ (6.12)

πE+ is the cyclic representation of *2ί associated with φE+.

Proof. πE+ can be identified with the restriction of π(9ϊ) to § n + § 2 2 ^Y
Lemma 6.1, (6.12) has already been shown for Ae^ί+ = 2I+AR. It remains to show
(6.12) for AeM_ ( = 3 1 ^ 7 ) .

Let Z be a weak accumulation point oΐπE+(ott(A)) as t -> + oo. For any Be9l+AR

= 5ί + 5 we have

ZπE+(B) = πE+(Θ_Ξ+(B))Z (6.13)

by (6.9) and (6.1), where Θ graded commutator is an ordinary commutator for

Since φE+=φE+ o n ^ ί + = 9 I + A R is invariant under Θ-Ξ+, πE+(Θ-Ξ+(B)\
on § l x is equivalent to π£+(J5), JBG9I + , on § x l 5 which is disjoint from πE+(B\

Be<iί+ on § 2 2 i n the present case by Lemma 4.5 (1), (2) and Corollary 4.4 (1). Also
πE+(Θ-Ξ+(B)\ Bety+ on § 2 2 is disjoint from πE+(Θ^Ξ+(B)), BeW+ on § n by
Lemma 4.5 (1) and Corollary 4.4 (1) (mapped by automorphism Θ-Ξ+\ and the
latter is equivalent to nE+(B), Be(ϋ+ on § n .

Since Z is in the weak closure of π£+(2ί_), it maps § x x into fj2 2, and § 2 2 into § x x.
Thus Z from § n into § 2 2 intertwine πE+(B), Be^Ά+ on § n with π£+(6)_ i5'+(Jβ)).

+ on § 2 2 and Z from § 2 2 into § X 1 intertwine π£+(B), Be<ϋ+ on § 2 2 with
), Be(iί+ on § 1 X . From disjointness proved above, if follows that
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Z = 0. Thus

t-* + oo

The same argument works for ί-̂  — oo.
By Θ-invariance of φE+, φE+(A) = 0 for Ae$l_ and we have proved

(6.12). Q.E.D.

Case (β). Lemmas 6.1 and 6.2 are still valid. Due to the invariance φE+(Θ_Ξ±(A))
= φE+(A% Ae$l+ = 5I+AR, there exists a unitary operator V± on § X 1 which satisfies

for Aeςϋ + . Since π n is an irreducible representation of 9I+, V±eπ11(
<Ά+)ff. Since

π x l and π 2 2 are equivalent in the present case, we have F ± eπ £ + (2ί + )" defined on

θ i i + §22 a n d satisfies

Since (6>_Ξ±)2 = id by (6.10), (F ± ) 2 commutes with all πE+(A)9 Ae$l+ and must
be in the center of π£ +($!+)". Since πE+(A+)" is isomorphic to π n (2I+)" in the present
case, and since nil(Vl+y is irreducible on § n , πJB+(9ϊ+)" is a factor and (F ± ) 2 are
multiples of identity. V±0 = ύ given by (6.15) then implies

(V±)2 = L (6.17)

Proposition 6 .4 /n case (β) (i.e. \λ\<ί9yΦ09(λ9γ)Φ(0, ± 1)),

if AG<Ά+, (6.18)

y i/ AeS&_. (6.19)

Remark. φ + (A) = — (/>_04) for Ae^t_, while φ + (A) = ψ-{A) — φE+(A) for Ae$ί + ,

Proof. Equation (6.18) follows from (6.3), as πE+ is the restriction of π and 2ί+ =
9I+AR. Let Z be a weak accumulation point of πE+(oct(A)) with v4e2ϊ_asί-> + oo.
For any BeW+ = 9I+AR, we obtain (6.13) again by (6.9) and (6.1), which hold also for
the case (β). Since (<9_Ξ±)2 = id by (6.10), and since W introduced in Sect. 5 is in the
center of π£+(2I)", we obtain

lZV+W,πE+(B)~]=0 (6.20)

for all Be?Ά+. Furthermore, Zeπ £ + (21_Γ, V+eπE+(SΆ+γ and WeπE+(SΆ-)~ (where
we restrict Wtoξ>11+ §22)- Therefore ZV+ W must be in the center of π£ +(2I+)". In
the present case π£ +(2ϊ+)" is a factor as we have seen above, and ZV+ Wis a multiple
of identify. By W2 = 1 and (6.17), we obtain

Z = aWV+. (6.21)

The number a can be found by computing

= lim {Ω9nE+(at{A))WΩ) = φ + (θLt(A)) = φ + (A)(= - φ_{A))9
ί-> + 00

(6.22)
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where we have used V+U = Ω ((6.15)) in the first equality, (5.8) and (5.9) in the third
equality and the αΓinvariance of the ground state φ + (a general property of any
ground state) in the fourth equality. This proves (6.19) for ί-> + oo. The same
argument holds for ί-> — oo. Q.E.D.

Consider a ground state (Pi(A) = (Ωί,πE+(A)Ω1). For Ωx = Ω+ and φx = φ+9 we
have

(Ωl9φ + (A)WΩ1) = φ1(A), (6-23)

and hence the same holds for any ground state φx = otφ+ + (1 — α)φ_ (0 g α ̂  1)
with Ω1 = a1/2Ω+ + (1 — α)1 / 2ί2_. (Note the orthogonality of invariant subspaces
§ + of § n +§22 ) Since π£ +($l+)" is a factor, if F+eπ £ + ($ί + )" is not an identity
operator, there exists Be21 such that

(πE+(B)Ωl9 WTCEWΩJ Φ (πE+(B)Ωl9 V+

and (1.8) would fail for any φγ and t-* + oo. Similarly, if K_ is not an identity, (1.8)
would fail for any φ1 and ί-> + oo.

We now want to see that V± Φ 1. Due to (6.16), it is enough to see that Θ_Ξ± are
not an identity, or equivalently it is enough to have the following lemma, proved in
Sect. 7(v). Q.E.D.

Lemma 6.5. In case (β), #_w+ φ 1, #_w_ φ 1.

7. Fourier Analysis on Test Function Space

(i) Proof of Lemma 3.1. We use the Fourier transform

(7.1)
neZ

for /=(/B)e/2(Z) and /eL2([0,2π]) to analyze the operator /C. Due to (Uf)~{θ)
= e'wJ{θ\ the operator K is represented as

(7.2)

- A - i y s i n θ

-(ooβfl-A)

The eigenvalues of the 2 x 2 matrix K(θ) are ± μ(θ),

μ(θ) = 2[(cos θ - λ)2 + y2 sin2 0] 1 / 2

? (7.4)

which is an algebraic function of cos θ and is not a constant except for the case
(λ,y) = (0, + 1), when (7.4) is 2. This proves Lemma 3.1.

(ii) Computation of E + . E+ is the multiplication of

(7.5)

In some special cases, it takes a simpler form.
If 7 = 0, λ ^ 1 , then

°λ
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If y = 0, λ ^ - 1, then

E+=(l °Y (7.7)

If y = 0, | λ | < l , then

where χλ{θ) = 1 if cos θ > λ and χλ(0) = 0 if cos θ S λ.

(iii) Computation of Hilbert-Schmidt Norm. We have to estimate

| | £ + - β _ £ + θ . | | έ s = 2 | |£_θ-£+ | |έs = 8 | |£-^ + | | έ s , (7.9)

where £_ = (1 - E+) and q = {l+ θ-)/2. (See (5.2) in [3].) The operator q is given by

«β-(2> ^-{ ί : ίϊά
Lemma 7.1.

| | £ _ 9 £ + | | έ s = lim ( 2 π ) - 2 J | l -eκβι-<h)r2tr(E+(θ1)E.(θ2))dθ1dθ2, (7.11)

w/zerβ the suffix ε to the integral denotes the integration over θί9 θ2e[09 2π] excluding

the region | ^ i - ^ 2 l < £ and \\θί-θ2\-2π\<ε.

Proof. Let qη(η > 0) be a bounded operator given by

Then ^ -• q strongly as η -• + 0. We have

n = 1

= J ( e -««-«•)+»_!)- ιf(θ')dθ'/2π). (7.12b)

Hence

||£_<7£+|βs;ginf lim | |£_^£ + | | έ s

= lim (2π)- 2 ί | l-e i < 9 '- β 2 » + 'Ί- 2 tr(£ + (θ 1 )£-(0 2 ))^ 1 ^ 2 , (7.13)

where the right-hand side is a monotone increasing limit due to

tτ(E + (θ1)E_(θ2)) = tr(M02)£+(0i)£-(0 2 )) ^ 0. (7.14)

Let E(Δ1) be the projection operator defined by

, (7.15)
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where χiβ.Δ^ is the characteristic function for the subset Δγ of [0,2π]. Let

- 0 2 | and H ^ - Θ2\ - 2π|, θxeΔl9 θ2eΔ2). (7.16)

If d ( 4 1 , 4 2 ) > 0 , then £(4 1 )g£(4 2 ) = l i m £ ( 4 1 ) ^ E(4 2) has a bounded integral
kernel.

(E(Δ1)qE(Δ2)fT(θ) = χφ^ΔJilπΓ1 J (*-«'-*'> - \)^J{ff)dff. (7.17)

Let 4 (n,j) = [3-"(/ - l)2π, 3-»/2π] (7 = 1,..., 3"). Then

(7.18)

where £ ' is the summation over all k,j satisfying d(Δ (n, fc), zl (n,;)) > 0, and the limit
in n is monotone increasing. The right-hand side can be computed by using (7.17),
and we obtain

\\E.qE + |β s £ ΠmΣ'(2πΓ2 J |1 -e^-^ΓHτiE^Θ^E^Θ^Θ^Θ^ (7.19)
n-*cokj k,j

where the suffix kj indicates the integral over Δ (n, fe) x Δ (nj). Since the integrand is

positive by (7.14) and the domains of integration £ ' j and j are cofinal in the limit
k,j kj ε

n^κχ) and ε -> 0 (i.e. the former contains the latter for large n for any fixed ε, and the
latter contains the former for small ε for any fixed n), the right-hand side of (7.19)
coincides with the right-hand side of (7.11).

Finally, the integrand of (7.13) is positive and monotone increasing as η ->0 and
tends to the integrand of (7.11). Hence the right-hand side of (7.13) does not exceed
the right-hand side of (7.11) or that of (7.19). Then (7.13) and (7.19) prove (7.11).
Q.E.D.

(iv) Proof of Lemma 4.5.

(I) The case of\λ\ >ίor\λ\<l,γφ 0. Then μ + {θ) φ 0 for all values of 0, and

hence E±(θ) are holomorphic in 0 (and with period 2π). Hence tv(E + {θ1)E_(θ2)) has
0 at 0! - 02 and \θx - Θ2\ = 2π. By the positivity (7.14), the degree of 0 cannot be 1.
Furthermore

I 1 _ gi(βi ~θ2)\ -2 = ( 4 s i n 2 [ ^ i _ 0 J / 2 ] ) - 1

is holomorphic for θγ φ θ2 and has a pole of degree 2 at θx = θ2 mod 2π. Therefore
the integrand of (7.11) is holomorphic over whole values of 0 1 ? 0 2 and (7.11) is
obviously finite. Namely,

| | £ + - 0 _ £ + 0_ | | H s<oo (7.20)

in this case.
We also see that E+ is holomorphic in the real parameters λ and y. Hence the Z 2 -

index (the even-odd property of dim(0_£ + 0_ n ( l —E + )) is constant in each of 4
connected components of this region by Theorem 3 of [3].

For \λ\ ̂  1, γ = 0, we have E + (θ) independent of 0 by (7.6) and (7.7). Hence
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Θ^E + Θ_=E+ and

dim(#_£ + #_ Λ ( 1 - £ + ) ) = 0.

Together with (7.20), this shows Lemma 4.5(2) for the case of |λ| > 1.
For \λ\<l,γΦ0,we compute the Z2-index at (λ9γ) = (0, ± 1) after making a

unitary transform:

vE + vθ-. ΛVE-Ό), (7.21)

where

) (7 2 2 )

is a selfadjoint unitary commuting with 0_. We have

Ή;< )}
We want to determine the number of linearly independent solutions of the following
simultaneous equations:

vE + vθ_h = h, vE_vh = h.

/ A
From the second equation with h = \ , we obtain

(7.24)

f=U*g, g=Uf. (7.25)

From the first equation, we obtain

0_/= - U*θ.g, θ_g = - Uθ-f. (7.26)

Thus we obtain

(17* + θ_U*θ_)g = 0, (U + 0_ UΘJ)f= 0.

Namely, gn = 0 except for n = 0 and/n = 0 except for n = 1. Furthermore,/! = # 0 by
(7.25). Conversely, this solution

fn = Snl, gn = δn0 {121)

satisfies (7.25) and (7.26) and hence (7.24). Thus

_E + 0_ Λ £ _ ) = 1 (7.28)

for (A, y) = (0,1).
In the case of (λ,y) = (O, - 1), E± are transposed matrix of E± for the case

(zi? -y) = (0,1). Hence the roles of U and £/*, and hence the roles of/ and gf are inter-
changed in the above calculation and we obtain the same conclusion. Thus we have
proved Lemma 4.5 (3).

(II) The case of {λ,γ) = (± 1,0). As already indicated above we have E +

independent of θ and E+ = 0_£ + 0_. Hence E+ - 0 _ £ + 0 _ = 0 and 0_£ + 0_ Λ
(1 — E+) = 0. This proves Lemma 4.5 (2) for this case.

(III) The case of\λ\ < l,y = 0. We have
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+ χλ(θ2) - 2χλ(θ1)χλ(θ2)

0 otherwise

(modulo a set of measure 0). The integration domain contains the region
0 < θx < θ0, θo<θ2< π, where 0 < θ0 < π, cos θ0 = λ. Then

! 1 ] 2 \ \
0 0o

because the integrand is bounded below by

| l - ^ - θ r 2 = (4sin 2 [(f l 1 -θ 2 )/2])- 1 ^(β 1 -β 2 )- 2 . (7.29)

This proves Lemma 4.5 (1) in the present case.

(IV) The case of λ = 1, γ Φ 0. In this case, μ(θ) vanishes at θ = 0 and 2π. We use
the fact

\imE+(θ)= lim E-(θ) = i(.l i y / l y l ) , (7.30)
0 o β 2 o \ιy/\y\ l /

and hence
lim

0i->+O,02-
>2π-O

Thus, there exists ^e(0, π) such that, for 0 < θ < δ and 2π — δ<δ2< 2π,

! / ^ (7.31)

Since the integrand of (7.11) is positive due to (7.14), (7.11) is bounded below by the
integration over 0 < θ± < δ and 2π — δ < θ2 < δ2, which is estimated below, using
(7.31) and a variation of (7.29):

) l \ = oo. (7.32)
2π-δ 0 0

This proves Lemma 4.5 (1) in the present case.
(V) The case of λ = — l,γ φ 0. In this case μ(θ) vanishes at θ = π and we have

lim E+{θ)= lim E.(θ) = \(. ) ^ λ (7.33)

We can proceed as in the case of (IV) and the contribution from

π — δ < θ1 < π, π < θ2 < π + δ,

for example, becomes infinite. This completes proof of Lemma 4.5.
(V) Non-triviality of #_w±.
We compute

(huθ_w±h2)= lim (hue
2JίKt(2q-l)e-2JiKth2)

t~*±co

= 2 lim lim (2π)-2$(ϊϊ1{θ1),e2Jiκ«>l)te-2Jiκ«h><h2(θ2))

.(e-m-<h)+"-l)-1dθ1dθ2-{h1,h2), (7.34)
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where the first equality uses the definition (6.6) of w± and 0_ = (2q - 1), and the
second equality uses (7.12a,b). The following explicit formula confirms that 0_ w± is
not a multiple of the identity operator.

Proposition 7.2. // \λ \ < 1, y φ 0 and (λ, y) φ (0, ± 1),

{hl9θ.w±h2) = ±(hl9(E+-E-)Sλtyh2), (7.35)

where E+ are the spectral projections of K for (0, oo) and (— oo,0), respectively, and
Sλ y is defined by

= s in0{( l -y 2 )cos0-Λ} . (7.37)

Computation. Since (7.35) is bounded by || hx || || h2 II, it is enough to prove it for a
dense set of hx and h2. We propose to prove (7.35) for /ι's which vanish in a
neighbourhood of 0 = 2π and are bounded. We decompose

i)- i = ρ x + ρ 2 + ρ 3 , (7.38)

η(e^-l)-\

-g(- Kθ, - Θ2\ 0),

We start with the third term Q3 which gives rise to a contribution of the form

(hue
2JiKtq3e-2JiKth2\ (7.39)

where q3 is an operator with the kernel Q 3 for 0 g 0, ίg 2π — ε and 0 kernel for other
values of 0's where ε > 0 is chosen so that [0, 2π - ε] contains the support of Kp

j = 1,2. Since q3 is a Hilbert-Schmidt operator (having a bounded kernel), it can be
uniformly approximated by finite rank operators, for which evaluation of (7.39)
reduces to that oϊ(hl9e

2JiKtha) (hb, e~2JiKth2) for finite number of ha, hb. Because K
has an absolutely continuous spectrum, (hl9e

2JiKtha)-*0 as ί->±oo by the
Riemann-Lebesgue Lemma, and hence (7.39), which is independent of η, tends to 0
as t -+ ± oo.

We now come to the second term Q2. Since g^θ) is holomorphic for
| I m 0 | < 2 π , θ~ι(gι(θ-\-η) —g^η)) is uniformly bounded for real η (\η\^η0) and
pure imaginary θ satisfying |θ\ :g 2π — ε for some ε > 0. Since 10/(0 + η)\<l for pure
imaginary 0, β 2 i

s uniformly bounded for | θ} \ ̂  2π — ε, | η \ ̂  η0. Furthermore, for 101
§: 5, for any given δ > 0, #(0,77) for pure imaginary 0 and real η is continuous in (0, η\
and hence β 2 tends to 0 as η -> 0 uniformly in 07 in the region 2π — ε ̂  07 ̂  (3. Since hj
are bounded by our choice and δ can be arbitrarily small, the contribution of Q2 to
the integral in (7.34) tends to 0 as η -• + 0.
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We are now left with Qx which gives rise to

(hue
2JiKtQ1e-2Jiκth2)= lim ( 2 π ) " 2 f J ^ ^ ) , e2JiK(θί)te-2JiK(θ2)tK2(θ2))

η->+0

x (θ1 -Θ2 + ίηΓ^Θ^Θ^ (7.40)

where we have omitted η(eη — I ) " 1 which tends to 1 as η-+0. We substitute

e2Jmeo,e-2Jwe2)< = γjEσ(θι)Eτ(θ2)cxV2Jit(σμ(θ1) - τμ(θ2)) (7.41)
σ,τ

into (7.40) where σ = ±, τ = ± and μ(#) is given by (7.4).
In the term with opposite signs for σ and τ in (7.41), we may replace Eτ(θ2) by

Eτ(θ2) — EJiβγ) due to orthogonality of E+ and £_. Since Eτ(θ) is holomorphic in θ in
the present case, (Eτ(θ2) — Eτ(θ1))/(θ1 — θ2) is a uniformly bounded kernel and our
previous argument for Q3 term is applicable with the conclusion that such a term
gives a vanishing contribution in the limit of ί-> + oo.

For the remaining term, we apply the following (more or less known) lemma, for
which we give a proof in the Appendix for completeness sake, and we obtain (7.36) by
noticing that the sign of — μ'(θ) is the same as that of k(θ).

Lemma 7.3. Let F be a piecewίse C2 function, which is nowhere constant and
fj(j =1,2) be L2 functions, all in one real variable. Then

lim lim Jdx1dx2f1(xί)f2{x2)(x1-x2 + σiδ) 1 expί(F(x2)-

= - 2πiσ \dxfι{x)f2{x)χ{± σF\x)), (7.42)

where σ = ± 1, and χ is the characteristic function of (0, oo).
(In our application, σ = + 1, F(x) = - μ(x) and (2χ{ ± F'(θ)) - ί)K(θ) =

±(Sλtyh)~(θ). Note that (ft1,Λ2) = (2π) ^ ^

8. Ground States of the Even Part of an Algebra—Proof of Lemma 4.1

Before going into proof of Lemma 4.1, we discuss its significance, in terms of

Theorem 5 below which follows easily from Lemma 4.1. For a ground state φ of a

C*-dynamical system (91, αf), the cyclic representation πφ of 91 on the Hubert space

ξ>φ = πψ{^)Ωφ with Ωφe9)φ giving rise to φ(A) = ( β ? , πφ(A)Ωφ) allows a continuous

one-parameter group of unitaries Uφ(t) implementing oct

Uφ(t)πφ(A)Uφ(t)* = πφ(oct(A)), (8.1)

Uφ(t)Ωφ = Ωφ, (8.2)

and with a positive generator

Uφ(t) = expithφ, hφ^0. (8.3)

Any cyclic representation πφ associated with a ground state will be called a ground
state representation.

Let Θ be an involutive automorphism of 91 (Θ2 = id) and 91+ be the Θ-fixed-
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point subalgebra of 21 (consisting of all Ae<Ά such that Θ(A) = Λ).
We assume octΘ = Θoct. Then 21+ is αΓinvariant as a set and (9I+,α f) is another
system. Since the restriction of a ground state φ of (21, αr) to 21+ is a ground state of
(21+,^), a ground state representation π of 21 "contains" a ground state represent-
ation πx of 21+ in the sense that π restricted to 21+ contains πx as a subrepresent-
ation. If φ is an extremal ground state, then φ is pure (because the set of all ground
states is a face of the set of states) and the associated representation is irreduci-
ble. The following theorem describes all possibilities for irreducible ground state
representations of (21, α,) and irreducible ground state representations of (3l + ,αf)
contained in the former.

Theorem 5. (1) The correspondence between irreducible ground state representations
of (31, α,) and those of (21+,^) by containment up to unitary equivalence is either
(i) one-to-two, (ii) one-to-one, or (iii) two-to-one, depending on individual ground state
representation.

(2) For a given pure ground state φ of (A, αf), (iii) occurs if and only if φ and φ°Θ
give rise to non-equivalent representations.

(3) // φ and φ°Θ give rise to equivalent irreducible representations, then there
exists a Θ-invariant pure ground state φ0 giving rise to the same representation.
(i) occurs if and only if the infimum of the spectrum of the restriction ofhφ to π^0(3I ~)Ωφo

belongs to its point spectrum.
(4) The restriction of a pure ground state φ of (21, oct) to 21 + is not pure if and only if

φ Φ ψo Θ and φ and φ°Θ give rise to equivalent representations. This can happen only
in case (i).

(5) // φ is a pure ground state of (21+, oct), and the associated cyclic representation
of 21+ is contained in a ground state representation of (21, αf), (iii) occurs if and only if
the Θ-invariant extension φ of φ to 21 defined by

, A±eSH± (8.4)

is not pure.
For the proof of this theorem, we need the following lemma, which we prove first.

Lemma 8.1. Let φbea Θ-invariant state o/3l, §, π,Ωbe the GNS-triplet associated
with φ, §+ = π(2I+)ί2 and π+ be the representation π of 21+ restricted to invariant
subspaces §+. Then both π+ and π_ are irreducible if one of the following three
conditions are satisfied, (i) φ is pure, (ii) 2φ = φ + \j/° Θ with φ pure and not equivalent
to φ°Θ, (iii) π+ is irreducible.

Proof, (i) Let φ+ be the restriction of φ to 21+ . If λφ+ ^ φx for λ > 0 and for a state
φγ of 21+, then for Θ -invariant extensions φ = φ+ and φγ of φ+ and φγ we have

+ λφ + (A*A_) = λφ((A+ + A_)*(A+ +A.)). (8.5)

Since φ is assumed to be pure, φγ — φ and φx = φ + . This shows that φ+ is pure,
π+ is irreducible and we are in case (iii).

(ii) The same computation shows that φ1 ^ λ(φ + φ°Θ)/2. Since φ is assumed
to be pure, φ ° Θ is also pure. Since φ and φ ° Θ are assumed to be not equivalent, we
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conclude φx = μφ + (1 — μ)φ ° Θ for some μe[0,1]. Since φί is (9-invariant, we have
μ = 1/2, and hence φί = φ and φx = φ + . Again π+ is irreducible.

(iii) Let •FeS-, ¥* ^ 0. We consider two possibilities (a) π(9I_) Ψ = 0, (b) there
exists ^4_e9ί_ such that π(AJ)ΨΦ§. In case (a), Ψ is orthogonal to π(2l_)β
(because π(2I_)* = π(2I_)). It is also orthogonal to π(9ϊ + ) ί2cz§ + because

)- J-S + . Hence Ψ is orthogonal to π(3l)ί2. Since f2 is cyclic, Ψ=0. Thus case

(a) does not occur. Since π + is irreducible, π(9I+)π(9ϊ_)ϊ / = § + 9 ί 3 in case (b).

Hence π(9ί_)π(9I+)π(9I_)ίP contains §_=π(Sl_)f l . Since π(2I+)=>
π(3l_)π(3ϊ+)π(9ί_), !P is cyclic for π_(9I+) (in §_). Since every non-zero *Fe§_ is
cyclic for π_(2I+), π_ is irreducible. Q.E.D.

Proof of Theorem5. (I) First consider the case where φ is a Θ -invariant pure
ground state of 91. Then the restriction φ+ of φ to 9ί + is a pure ground state of 91,
with π+ and π_ both irreducible by Lemma 8.1 (i). If there is an eigenvector Ψeξ)-
(in the notation of Lemma 8.1) of hφ belonging to an eigenvalue which is the infimum
of the spectrum of the restriction of hφ to § _, then (Ψ9 π _ (A) Ψ\ A e9ί + is a ground
state and π ± are both ground state representations.

Since π_ is irreducible, Uφ(t) on § _ satisfying ί / ^ ί ή π - ^ l / ^ ί ) * = π_(αf(^l)) for
all Ae<iί+ is unique up to multiplication of numbers eia\ and hence the eigenspace
belonging to the eigenvalue at the infimum of the spectrum of the generator of such
Uφ(t) on § _ does not depend on the ground state (of 2ί+) from which this
representation might be constructed. Hence if the infimum in question is not an
eigenvalue oΐhφ, then π_ is not a ground state representation. By Lemma 4.1 (2), π +

and π_ are disjoint, and hence the cyclic representation associated with φ contains
either 2 or 1 ground state representations depending on the condition about the
spectrum of hφ discussed above.

Conversely, if an irreducible (ground state) representation nx of 21 on a space § x

contains either π + or π_, then there exists a vector Ψιeξ)1 and Ψ either in § + or § _
(representation spaces of π+ and π_) such that φ1{A) = (Ψl9πί(A)Ψ1) and φ(A) =
{Ψ,π(A)Ψ) coincides for all Ae<Ά + . By construction, φ is Θ-invariant, and hence
(Φι+Φι°Θ)/2 = φ. Since π is irreducible in the present case, φί = φ. The cyclic
representation associated with φ1 is π1 and hence π1 and π are equivalent. This
shows that an irreducible representation πί containing π+ or π_ is unique and the
correspondence is either one-to-two or one-to-one.

(II) Consider the case where φ is a pure ground state and is not equivalent to
φ°Θ. We apply Lemma 8.1 (ii) to φ — (φ + φ° Θ)/2 to see that the restriction of φ to
91 + is a pure state, and hence gives rise to an irreducible ground state representation
π + of 9ί + . By Lemma 4.1, π + and π _ are equivalent and φ, being pure, must coincide
with ω+ or ω_ given in that lemma. Since Θ commutes with αί? if one of ω+ (which
coincides with φ) is a ground state, then the other is also a ground state and both
representations (which are disjoint) contain π + .

Conversely, if an irreducible (ground state) representation contains π + and π _, it
must be a subrepresentation of the cyclic representation associated with φ by the
same argument as in the case (I), and hence it must coincide with the cyclic
representation associated with either φ or φ°Θ (ω+ or ω_ in the notation of
Lemma 4.1). Thus the correspondence is two-to-one in this case.
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(III) Finally we consider the case where φ is a pure ground state of (91, α,),
φΦφ°Θ and φ equivalent to φ° Θ. Let ξ>φ, πφ9 Ωφ be the GNS triplet associated
with φ. Since φ and φ°Θ give rise to an equivalent representation, there exists a
unitary operator U(Θ) on ξ>φ such that U(Θ)πφ(A)U(Θ)* = πφ(Θ(A)). Since πφ is
irreducible, U(Θ)2 is a multiple of identity due to Θ 2 = id, and we can redefine U(Θ)
such that U(Θ)2 = U, which we now assume.

Since Θ commutes with αί? U(Θ)Uφ(t)U(Θ)Uφ(ή* must be a multiple of the
identity, say c(t)ί. We then have

By taking square, we have c(t)2 = 1 and hence c(t) = ± 1. Since c(t) is continuous in ί,
we have c(ί)= 1. Hence U(Θ) commutes with Uφ(t). The vector U(Θ)Ωφ is not
proportional to Ωφ as it gives rise to the state φ°Θ Φ φ. Let

Ω0=\\Ωφ+U(Θ)Ωφ\Γ1(Ωφ+U(Θ)Ωφ).

Since hφ commutes with U(Θ), hφΩo = 0 and Ωo gives rise to a ground state
φo(A) = (Ωθ9πφ(A)Ω0) which is ©-invariant due to U(Θ)Ω0 = Ω0. Since π is
irreducible, φ 0 is a pure state giving rise to πφ. We are now in the situation (I) as far as
representations are concerned.

We now use the notation §, π, Ω, § ± relative to φ0. Then φ is a vector state by
some Φ e § , not belonging to either § + or § _ because φ # φ ° Θ. It is decomposed as

Φ = Φ. + Φ_, Φ± = (1 + E/(0))Φ/2eS±,

where Φ + ^ 0 give rise to pure ground states of 21 (due to hφΦ+=0 which follows
from [hφ, U(Θ)~\ = 0). Denoting their restriction to 21+ by φ+9 the restriction φ+ of
(p to 2Ϊ+ is decomposed as

φ+ = \\Φ+\\2φ+ + \\Φ-\\2ψ-9 ψ±(A)=\\Φ±\Γ2(Φ±iπ±(A)Φ±).

Since π+ and π_ are disjoint, φ+ Φψ- and φ+ is not pure. Q.E.D.

Proof of Lemma 4.1. The irreducibility of π_ is already proved by Lemma 8.1. (iii).
(I) Assume that π + and π_ are disjoint. Let Ceπ(2I)'. Since CEπ(2l+)', C has to

leave § ± invariant because π ± are disjoint and must be multiples of identity c± H ± on
each of § ± (due to the irreducibility of π±). Since π(3ί _) bridges § + and § _ (cyclicity
of Ω\ c+ = c_ and C is a multiple of identity. Therefore π is irreducible.

(II) Assume that π + and π_ are equivalent. Then there exists a unitary map u
from § + to § _ satisfying uπ + (A) = π_(^)w for all ,4e2I.

Claim. There exists a unitary £/ in the weak closure of π(2I_) such that U Ψ = u Ψ for
all Ψeξ> + .

Claim is proved as follows. If π(3ί _) = 0, we have § _ = 0, which contradicts with
ξ)+3Ωφ0 and the equivalence. Thus we have π(A) φ 0 for some Ae2I_. Let {ej be a
complete orthonormal set in § + , Mybe the matrix unit of π(2I+)" relative to {ej. (We
use the isomorphism of π(9I+)" with π + (2ϊ+)r/ = &(ξ>+) due to the equivalence of π +

and π_.) For some f and fc, (wβfc, π(^4)ef) ̂  0. Let t/f = λuikπ(A)uih where Λ, is adjusted
so that UfUi = Mfi. (Since uu is a minimal projection in π(2l+)", C/f L/£ is proportional
to uu in general.) Then UfUi = uii and Uiej = δijuei. Since V^u^-μ^ has the
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initial and final projection ujj9 which are mutually orthogonal for different;, the sum

U = Σ Uj converges and belongs to the weak closure π(9I_). By definition, UΨ=
3

uΨ for Ψ — βj for any j and hence for all Ψeξ>.
Since (Φ9U*UΨ) = {Φ, Ψ) for all Φ, Ψeξ>+ and £7*t7eπ(9l+)", t/*l/ = l by the

isomorphism of π(9l+)" and π+(9I+)". Since 1/ maps <F>± into § τ , (7* = u* on § _ ,
and we have (Φ, UU*Ψ) = (Φ, «F) for all Φ, f e ^ , . By the isomorphism of π(9I+)"
and π_(9I+)", we have 17C7* = 1. Therefore (7 is a unitary element of the closure of
π(9I_). This completes proof of Claim.

From the property of u, we have l/π(>4)<F = uπ(>4)IP = n(A)uΨ = π(A)UΨ for
all Ae<Ά + and !FeS + . Therefore U*π(A)U-π(A) = 0 on § + . Since U*π(A)U-
- π(A)eπ(SΆ+)" for Λe9I+, we have l/*τψl)E7 - π(4) = 0 for all AeM + . Therefore
[ l / , x ] = 0 for all xeπ(9I+)". If Λe9I_, πμ)l/*eπ(3I + )" and τφ4) = (τφ4)l7*)l7.
Hence [17, π(A)~\ = 0 for A e9ϊ _. We have now proved that U is in the center of π(2I)".

Since L7 belongs to the closure of π(9I _), ^ 2 e π(9I+)". Since π(3ί+)" is a factor, L/2

must be multiple of identity. By redefining U by a multiplication of a number eiθ, we
may assume that U2 = 1.

Let £7(0) be a unitary selfadjoint operator being 1 on § + and — 1 on § _ . Then
and t/(®)t/t/(®)= - 17.

Let β ± = 2" 1 / 2(1 ± l/)β, S± = π(9l)β±. Since U is in the center of π(2ϊ)", ξ>+ and
§ ~ are orthogonal due to (1 + 17)*(1 - t7) = 0. Since i 3 e § + and UΩeξ>_, Ω± φ 0.
Since π(2ϊ+)" is a type I factor with multiplicity 2, and since § ± are both invariant
non-trivial subspaces, π(9I+) restricted to § ± are both irreducible.

Let ω+(A) = (Ω±9π{A)Ω±). They are pure states of 91 (as well as of SΪ+), being
vector states in an irreducible representation. Since U(Θ)Ω+ = ΩT, we have
co±o<9 = ω _ . B y a direct computation, we see that ω = (ω+ + ω_)/2. (Note that the
vector states by Ω and UΩ both are ω, as U is in the center of π(2l)".) Q.E.D.

By construction, we have

ω±{A++A-.) = ω{A+)±ώ{A.Uy (>l±e9ϊ±). (8.6)

(ω is the continuous extension of ω to π(2I)".) Therefore, the GNS triplet for ω ± can
be given by §+, the following representation p ± of 91 (restricted to $+) and Ω:

p±(A++A_) = π(A+)±π(A_)U (A±eK±). (8.7)

Note that p±(A)eπ(9I+)" leaves § + invariant. Thus π(9I+) is already irreducible in
the cyclic representation space of 91 associated with ω ± .

In the case (2) of Lemma 4.1, a ground state of 91 + extends to a ground state of 91:

Theorem 6. The Θ -invariant extension ώ of a pure ground state ω of 91 + to 91 is a
ground state of 9Ϊ if ώ is not pure.

Proof. We are in the situation (5) in Theorem 5. Since ω is αΓinvariant (being a
ground state) and Θ commutes with αί9 ώ is also αt-invariant. By Lemma 4.1, ώ is an
average of two non-equivalent pure states ω± of 91. The αΓinvariance of ώ implies
that ώ is also an average of ω±°α f, which are pure, ω±°at must coincide with ω+ or
ω _. By continuity in ί, we have ω ± ° at = ω ±. Hence both ω + and ω _ are αΓinvariant.
There exists one-parameter group of unitaries U+(t) in the GNS representation
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space of ω± implementing at. By using (8.7) along with §+, Ω as the GNS triplets for
ω ± , U±(t) are already determined by U±(t)π(A+)Ω = π(oct(A + ))Ω for A + E9I+ and
coincide with Uω(t) for the ground state ω of 9ί + . Hence their generators are non-
negative and ω± are pure ground states of 91. Therefore ώ is also a ground state of 91.
Q.E.D.

9. Ground States of Quasifree Motion—Proof of Theorems 3 and 4

Proof of Theorem 3. (Case I) 0 is not an eigenvalue of L.
We use the following characterization of a ground state φ of a C*-algebra 91

(Theorem 5.3.19 in [6]):

φ(A(f)*A(f)) = 0, (9.1)

4(/)=fα f(>l)/(ί)Λ, (9.2)

for all AeW and for all / of the form

/(ί) = (2π)-1Jβ- f t '/(p)dp (9.3)

with C00 function / of a compact support contained in the open interval (— oo, 0).
Applying the above characterization to A = B(h), we obtain

φ(B(h(f))*B(h(f))) = 0,

h(f) = leiL'hf(t)dt=J{L)h.

Hence, by norm continuity of B(h) as a function of h9

φ{B(h)*B(h)) = 0 (9.4)

for all h satisfying E+h = 0. (We are using Eo = 0.) This already fixes φ to the Fock
state φE+. It is easy to check that φE+ is a ground state of (9ίCAR,αf). (Cf. case (a) of
proof of Theorem 4 below.)

( C a s e I I ) £ o # 0 .
We split the Hubert space of h into images of Eo and 1 — Eo, denoting them J5?o

and $£v Since ΓL= — LΓ, [Γ, Eo~] = 0 and these spaces are /"-invariant. Let 9IoAR

and 9I?AR be the subalgebra of 9ίCAR generated by B(h) with he^0 and fteJSf l 9

respectively. By the /"-invariance of «Sf0 and Jδf l 5 they are *-algebras. Furthermore,
linear combinations of >41y40(J<40e9I0, A1e

<H1) are dense in 9ICAR.
As in case I, we have φ(B(h)*B(h)) = 0 whenever EΛ = h. By Schwarz'

inequality, φ(B(fc)M) = φ(ΛB(fι)) = 0 for any Λe9ICAR whenever EΛ = h. Since
ΓL= -LΓ,ΓE+=E_Γ. If ΛeJSfi, then /z = /i + +/i_ with E±h±=h± and
β(/ι) = B(Γh + )* + B(ft-) with both Γh+ and ft_ in £_^f x. Hence linear combin-
ation of the identity operator and

Bfa)*... B(hm)*B(hm+1)... β(/ι m + Π ), (9.5)

for various choices of m, n and /ix ...hm+n from £_JS? l s are dense in 9Ϊ^A R . For
m + n Φ 0,

*. . B(hm)*B(hm + 1)... B(hm+n)Ao) = 0 (9.6)
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for any ,4oe2IoAR because of BQiJ* if mφΰ and because of B(hm+n)Λ0 =
Θ(A0)B(hm+n) if n Φθ. Since the Fock state φE+ on 2l^AR also vanishes on (9.5),
if n + m Φ 0, we have

o) = φEo(A1)φ(Λo). (9.7)

Thus we have proved the necessity of (3.3).
We now show that (3.3) defines a ground state by explicitly constructing the

GNS triplet for such φ. Let § l 9 πl9 Ωx be the GNS triplet for the state φE+ of 2I?AR

and ξ>oπo,Ωo be the GNS triplet for the state φ0 of 9l£AR. L e t EΊ(©) be the
selfadjoint unitary operator in ξ^ί satisfying

Uί(Θ)π1(A)Ω1 = π1(Θ(A))Ωv (9.8)

Let us consider § = ξ>χ ®ξ>o a n d Ω = Ωx® Ωo. Let hoeQo, h1e2l9

π(B(ho + h1)) = π1(B(h1))®i + l / ^ Θ ) ® ^ ^ ^ ) ) . (9.9)

It is then immediately checked that (9.9) satisfies

π(B(h))* = π(B(Γh))9 (9.10)

]+=(Λβ,Λfc)1l, (9.11)

and hence it generates a representation of 9IC A R on §.
From the definition and U1(Θ)Ω1 = Ωu it follows that

for any ^ ! G ^ A R and Aoe^AR. Since π x is irreducible, U1(Θ)®ίeπ((Άί)". Hence
1 ® π o ( 2 l o ) c π W . Since Ω1 and ί20 are cyclic, ΨX®ΨO with any ^ e ^ and
Ψoeξ>Q is in the closure of π(«C A R)"ί2 3 π^aϊ f^J ί ϊ i ® πo(«gA R)ί2o. Hence ί2 is a
cyclic vector and (§, π, ί2) is the GNS triplet for φ of the form (3.3). (It also shows that
φ is a state.)

It remains to show that φ is a ground state. Let

R ) , (9.12)

Since 9IQ A R i s generated by B(h) with Eoh = h (i.e. eiLth = h), oct{A0) = Ao for any
Aoe^AR. Furthermore octθ = Θoct, which implies [Uί(t),Uί(Θ)']=0. Therefore
U(ή=Uί(ή®ί satisfies

U(t)π(A)Ω = π{0Lt(A))Ω9 (9.13)

l7(ί) = expi(Al(8)1l)ί, ^ 0 1 1 ^ 0 . (9.14)

Therefore φ is a ground state. Since 9IQ A R *S non-trivial, there are more than one φ0

and hence more than one ground state of 31. Q.E.D.

Proof of Theorem 4. The first and major step in the proof is to show that the Θ-
invariant extension {// of a pure ground state φ of 2I+AR to $lC A R always gives rise to a
ground state representation of 2ΪC A R:
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Let §, π, Ω be the GNS triplet for \jj. We use an elementary result about spectral
subspaces. For any closed subset A of the real line, let 2ICAR(zl) be the set of ,4e2ICAR

such that

[oct(A)f(t)dt = O (9.15)

whenever the support of

is disjoint from A. If ^ e 2 I C A R ( 4 ) ( i= 1,2), then ^ 1 /l 2 e2I C A R (zl) for zl ^ + 4 2

(the closure of the set of all xί + x2 with ^ e ^ , x 2ezl 2). Let h1 and /z2 be such that
their L-spectral supports are contained in (— oo, — ε] and (— oo,0], respectively.
Then Bih^sS^^ϋ- oo, - ε ] ) , B(h2)eMCAR{(- oo,0]) and

- oo, - ε]). (9.17)

We use now the characterization of a ground state ψ of 9l+AR asserting that
ψ(A*Ά) = 0 for any ε > 0 and any 4e9I+A R((— oo, - ε]). We immediately obtain

)Λ=0. (9.18)

We now have the following two alternative possibilities:
Case (/).

π(B(hί))Ω = 0 (9.19)

for all ε > 0 and for all hv Then π(B(h))Ω = 0 whenever E_h = h by continuity. By
the same argument as the proof of Theorem 2 in case II, we prove the formula (9.7)
for Φ^AQ) and show that ^ is a ground state of 9ΪC A R.

Case (II). There exists hx such that Ψ=π(B(ht))Ω φ 0 and

Ψ(B(h2))Ψ=0 (9.20)

for all h2 satisfying EΛ2 = h2. Hence ψ(A) = ( Ψ, π(A) Ψ)/( Ψ, Ψ) is a ground state of

2IC A R. Let Er be the projection operator onto the subspace π^^Ψ. By π(9ICAR)

invariance of the subspace, £'eπO«CARy. Since ( α ^ W ) * Ψ) = \\ Ψ\\2 Φ 0, we see

that EΏΦO.

Since πiBQi^EΏ = E'π&ih^Ω = E'Ψ=Ψ, E'Ω is cyclic in π(2ϊ) lF and hence
the cyclic representation of the state

φ{A) = (EΏ9π{A)EΉ)l\\EΉ\\2

of SΆCAR is a ground state representation.

By Lemma 4.1, φis either pure or ip = (ω+ -fω_)/2 with ω+ pure and giving rise
to mutually disjoint irreducible representations π+ and π~. In the former case
φ ^ | |E'Ω\~ 2φimplies φ = φ and π is a ground state representation. In the latter
case F Φ 0 can be either projection on one of inequivalent irreducible subspaces or
1. Hence either φ = ω+ or φ = \jj. The case φ = \ji is the same as before. If φ = ω+,
then π + is a ground state representation. Since Θ commutes with α, and ω_
= ω+°Θ, π~ must be also a ground state representation (equivalent to π+ o<9).
Hence \p= (ω+ + ω_)/2 is also a ground state representation. This completes the
first step of the proof.
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We now consider different cases for the ground state representation of 9lC A R to
discuss the ground state representation of 21+ , contained in the former.

Case (a). Eo = 0. In this case φE+ is the unique ground state of (2ICAR, oct) and
contains mutually disjoint representations π + and π_ of 2I+AR. π + is the cyclic
representation associated with the restriction of φE+ to $l+AR, which is a ground state

In order to see whether π_ is a ground state representation or not, we study
the spectrum of hφ for φ = φE+ on § _ . As is known,

ξ>+=CΩ® J Asym2

where if + is the Hubert space consisting of all E + h and Asymn is the projection onto
the totally antisymmetric part of n-fold tensor product of copies of i f+ :

AsymΠ = (nl)-1 £ sign (P)πn(P), πn(P)(hP{1) ® ... ® hP(n)) = h1®...®hn9

where the sum is over all permutations P of (1, . . . , n). We have

(9.21)

, (9.22)

for ΨeAsym2n+1Jέ?t{2n+ί\ Thus the spectrum of hφ on the nth summand
of § _ is the sum of (2n + 1) copies of positive spectrum of L and the point spectrum
of hφ on § _ is the sum of (In + 1) copies of the positive point spectrum of L. (Note
that L in (9.22) is acting on i f + .) The infimum of the spectrum of hφ restricted to
each Asym2n + 1 i f? ( 2 n + 1 ) (which is Uφ(ή invariant) is ( 2 n + l ) times the
infimum of the positive spectrum of L. Hence the infimum of the spectrum of hφ

restricted to J^_ is the infimum of the positive spectrum of L and it is an eigenvalue
of hφ if and only if the infimum e of the positive spectrum of L is a point spectrum
of L. (Then it is non-zero because Eo = 0.) By Theorem 5(2) and (3), this proves
the uniqueness of the ground state representation in case (α).

Furthermore, similar computation as above shows that the eigenspace of hφ

belonging to 0 is one-dimensional, and hence the restriction of φE+ is the unique
ground state of 9I^.AR if Eo = 0. This then completes the proof of uniqueness of
ground states of $1+AR in case (α).

If e > 0 is an eigenvalue of L and the infimum of the positive spectrum of L, then
any pure ground state giving rise to the representation π_ (still Eo = 0) is a vector
state by an eigenvector Ψ of hφ belonging to e9 which implies Ψ = π(B(he))Ω with
Lhe = ehe. In this case π(B(h)) Ψ = 0 if E _h = h and (ft, Γhe) = 0. It vanishes also for
ft = fte. Therefore π(B(h))Ψ = 0 holds whenever E'h = 0 for E' = E+-P(he) +
ΓP(he)Γ. Thus the vector state by φ is the Fock state φE.. Note that ΓET= \-E'.
This completes the proof of (3).

Case (b) d i m £ 0 = 1. ( = Case (/?).). In this case 2IQ A R is commutative and two-
dimensional, spanned by 1 and B(h0) with Eoho = ft0. Since [Γ9EQ] = 0, Γh0 = ch0

with \c\ = 1 due to Γ2 = 1. The constant c can be reduced to 1 by redefinition of h0
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with a suitable phase factor eiθ. We also normalize (hOi h0) = 2. Then B(h0) is self-
adjoint unitary due to B{h0)* = B{Γh0) = B{h0) and B{h0)

2 = 2~1 [B{ho)9 B(ho)~] + =
1. There exist two pure states of 9ί£AR characterized by φ±(B(h0)) = ± 1. Since φ±

Θ = φ-p, we have exactly two pure ground states for 9lCAR given by (3.3) with φ0 —
φ±. The two pure states are disjoint (π(B(ho))= ± 1) and are mapped to each
other by Θ. Hence we have the unique Θ -invariant ground state of 9tC A R and the
unique ground state representation of 91+AR (contained in the former) by Lemma 4.1,
for example. The restriction of two pure ground states of 9ίCAR to 9I+AR coincides and
gives the unique ground state of 91+AR. This is because the cyclic representation space
associated with either one of pure ground states of 9IC A R is the Fock space for φE+ of
9l^AR, which is generated by B(h% Eoh = 0, and can be identified with the cyclic
representation space of the ground state of 9I+AR due to π(B(h0)) = ± 1. Then the
uniqueness follows from the fact that the eigenspace of hφ with eigenvalue 0 is one-
dimensional and spanned by Ω. This completes the analysis of case (β).

Case(c) d i m £ 0 > l . ( = Case(2).). The fixed point algebra 9lgAR contains
elements in 9ί^.AR, and hence any ground state of 9l+AR giving rise to the π_
representation must also extend to a ground state of 9IC A R (via the representation π).
Note that the definition of hφ for an irreducible representation π_ does not depend
on how the representation is constructed and a ground state of 91+AR giving rise to
the π_ representation must be a vector state by Ψeξ> _ satisfying hφΨ = 0. Therefore
all ground states of 9I+AR are obtained as the restriction of a ground state of 9ίC A R to
9ί+AR. Since 9Io A R π9ί+ A R is nontrivial (which is not true for the case (β)\ there exist
different φ0

9s which have different restrictions on 91QAR Π 91+AR. (Any state of the
latter can be extended to a state of 9IQA R.) Hence the ground state of 91+AR is not
unique. Q.E.D.

Appendix

Proof of Lemma 7.3. Consider the Fourier transform

J(p) = (2πΓ1'2 f e-to'fWdx. (A.I)
— 00

Define

(A.2)

ϊ
In the Hubert space of L 2 functions / with inner product

(Λ,/ 2 )= 1 fi(x) fi(x)dx= 1 ?i(p)*?2(p)dp, (A.4)
— 0 0 — CO

we have, for δ > 0 and a = ±

ίdx1dx2f1(xι)f2(x2)(x1 -x2 + σiδΓ1 exp i(F (x2) - F(Xl))t

= -2σiπ(Utf1,qSaUJ2). (A.5)



Ground States of the X 7-Model 243

Hence the limit δ -> + 0 is given by qoσ which has norm 1. Thus (7.42) is uniformly
bounded by 2π || fι \\ \\ f2 ||, and it is enough to prove it for a dense set of /'s.

Since F is piecewise C2 and nowhere constant, there exists a countable family of
mutually disjoint open finite intervals /,- = (aj9 bj) (j = 1,2,...) with dense union such
that F is C2 and monotone on each Ijm Let Inj = [βj -f ί/n, bj — \/n\ ([α, β~] is taken to

n

be an empty set if oc>β), Δn= [j Inj,χn be the characteristic function for the

setΔn, and Pn be the multiplication of χn o n / a s an operator. Then limPΠ = 1 and

We propose to prove (A.4) for a dense set of /'s having the following properties:
(i) The support of / is contained in Λn for some n.
(ii) On each /ΠJ , / is of the following form

f(x) = τF(x)g(τF(x)), (A.6)

where τ = ± is the sign of F'(x) for xelnj (where F(x) is monotone) and g is an entire
function (polynomial, for example). It is then enough to prove (7.42) when the
integral is over (xίfx2)elnj x Ink.

lϊj φ fe, then (x1 — x2 + σiδ)~1 is uniformly bounded. By the same argument as
the case of (7.34), the contribution from Inj x Ink tends to 0 as ί-> + oo. Hence we
have only to consider the integral of xx and x 2 over the same finite interval (a, b) for
some a < b.

By a change of variable from Xj to y, = τF(x^ the left-hand side of (7.42) (apart
from limits)

β β

yx)ί, (A.7)

where α = τF(a) <β = τF(b), g} is g of (A.6) for f = fj (j = 1,2), ̂ (y) = ̂ (y) is also
an entire function, G(y>) = Xj is monotone increasing with Gf(y) = (τF'(x))"1.

We now consider the following decomposition similar to (7.38).

- G(y2) + σiδy1 =R1+R2 + R3, (A.8)

G'(y1)-1{y1-y2 + σiδG'{y ^ x)~ \ (A.9)
1 1 ^ ' ί y j - 1 } , (A.io)

We discuss the limit as <5->0 and then ί-> ± oo for each term of (A.8).
We start with R3. Denoting z = (y1- y2), G' = G'iy^, R = - z~2[_G{y1 -z)-

G()>i) - ( - z)G\y1)'] we obtain

R3 = δiσz(zG' + σiδy2G'-ίR{l + z2{G'z + σiδyiRy^l + zG'-iR)-1. (A. 12)

From (A. 11), R3 is uniformly bounded and uniformly tends to 0 as δ -> 0 if |z | ^ ε for
any fixed ε > 0. Since F is C2 and τF' is strictly positive, G is C 2 and R is uniformly
bounded. Therefore (A. 12) shows that R3 is uniformly bounded for \z\ ̂  ε due to
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Therefore the contribution from R3 vanishes in the limit of δ-+0.

We now come to R2. With the same notation as above,

R2= -zRG'-\zGr + σiδy1(\+zG'-1R)-\ (A. 13)

Since G is monotone, R2 is uniformly bounded for | y± — y2 | ̂  ε for any ε > 0 fixed by
(A. 10) and R2 is uniformly bounded for \yί - y2\ ̂  ε for sufficiently small ε > 0 by
(A. 13). (Again \z{zG + σiδ)G'\ < 1.) Furthermore R2 tends to

pointwise except at z = 0 and uniformly for \z\ ̂ ε for any ε > 0 . Therefore the
contribution from R2 in the limit of δ -» + 0 is given by an integral with uniformly
bounded kernel, and hence tends to 0 as t-» ± oo by the same reason as for (7.39).

Finally, the contribution from Rx takes the following form

ίy
1y1e-τizt. (A. 15)

α yi-β

We split g2(y1 -z) = (g2(y1 - z) - g2(yj) + g2(yγ). Since g2 is analytic,

i -z)- g2{y1))(z

is uniformly bounded and, in the limit of δ -• 0, the integral is described in terms of
the bounded kernel R(Q). By the same reasoning as before, this contribution tends to
0 as ί-+ ± oo. We are now left with

.y'r'e-^dz. (A.IO)

We deform the integration in complex z-plane to y1 uy 2uy 3, where

yi = {3Ί-i8-^;re[O,e]}, (A. 17)

72 = {r - σ'iε retii - β,yt - a]}, (A. 18)

(A. 19)

and σ' is the sign of τt. For sufficiently small δ, we obtain the contribution from the
pole at z = — aiiG'O^)" * if and only if σ = σ', which is in the limit of δ -> 0

- σ'2πif dyG'iy)- ιgγ{y)g2{y) = - σ2πi JΛMΛMdx, (A.20)
α α

where we have used the change of integration variables y — τF(x) along with (A.6)
and Gf(y)-1=τF(x).

The contribution from y2 in the limit of δ -• 0 tends to 0 as ί -• ± oo due to the
exponential factor e~τizt (due to our choice of the sign σ'). The contribution from yx

and y3 tends to 0 as ε->0 because the integrand is integrable for δ = 0.
Thus we obtain (A.20) if the sign of F'(x) in (α, b) is the same as ± σ depending on

whether t tends to + oo or — oo and 0 otherwise. This coincides with the right-hand
side of (7.42) and Lemma 7.3 is proved.
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