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Abstract. Ground states of the X Y-model on infinite one-dimensional lattice,
specified by the Hamiltonian

—J[Y{A + )66 + (1 —y)aPei* D} + 213 6]

with real parameters J # 0, y and 4, are all determined. The model has a unique
ground state for |A| = 1, as well as for y = 0, | 4| < 1; it has two pure ground states
(with a broken symmetry relative to the 180° rotation of all spins around the z-
axis) for | 4| < 1, y # 0, except for the known Ising case of 1 =0, |y| = 1, for which
there are two additional irreducible representations (soliton sectors) with
infinitely many vectors giving rise to ground states.

The ergodic property of ground states under the time evolution is proved for
the uniqueness region of parameters, while it is shown to fail (even if the pure
ground states are considered) in the case of non-uniqueness region of
parameters.

1. Main Results

We study ground states of the X Y-model in the external transverse field on one-
dimensional lattice (infinitely extended in two directions). Physical observables of
the model are Pauli spins

G(aj) (O( =X, y9 Z)

on each lattice site jeZ ([6?, 6'§’] = 0 for j # k), which generates a UHF algebra .
The local Hamiltonian for an interval [a,b](a < b) is

b—1 b
H(a,b)= —J|: Y {{(1 +9)6Pai* D + (1 —y)oiPey* P} +24 Y ogj’:l, (1.1
j=a j=a

where J,y (asymmetry of x and y), A( — 2J2 being the strength of the external field)
are real parameters and we assume* J > 0.

* The sign of the first summation in H(a, b) can be inverted by 180° rotation of ¢ spins around the
z-axis at every other site (for example at all odd sites) and the sign of the last summation can be inverted
by the 180° rotation of all o-spins around the x-axis, for example. Therefore the case of J <0 can be
reduced to the case of J > 0 under consideration
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The time evolution of an observable Ae is defined by

a(A) = lim (NN g~ itH(=N.N) (1.2)

N- o
where the limit is known to exist. (See Theorem 6.2.4 and 6.2.6 in [6].) Its generator
0(A) = (d/dt)o(A)];=0 (1.3)

(defined whenever a,(A) is norm differentiable) has as its core the subalgebra 2, of %
consisting of all polynomials of ¢’s (strictly local observables) and, for any A€,

8(A)= A=i[H(— N,N), A] (1.4)

for sufficiently large N for which the right-hand side is independent of N. A ground
state ¢ is then characterized by

—ip(A*6(4)) 20, AeU,. (1.5)

(The Definition 5.3.18 of [6].) It follows from the reality of the left-hand side of (1.5)
that ¢(d(B)) =0 for B= A*A and hence for any Be¥,, which then implies

P2 (4) = o(4) (Ae). (1.6)

Theorem 1. (1) The number of external ground states (which are necessarily pure) is
as follows:

(@ Lif|A|lZ1orify=0,]Al< L

(B 2if |Al<1,y#0and (4,7) #(0, £ 1).

® o if (4,9)=(0,£1).
(2) For the case (y), which is the Ising model, there are 2 extremal ground states which
are the continuation from the region (B) and 2 additional irreducible representations of
A in which any vector in an infinite dimensional subspace (of the representation space)
gives rise to an extremal ground state.

Remark. Existence of two ground states in the region (f) has been previously
indicated by a study of correlation functions [5,9]. Results for the case (y) have been
obtained in Example 6.2.56 of [6].

For an extremal ground state ¢, consider the locally perturbed state

@5(4) = p(B*AB)/p(B*B) (1.7)
for BeWN. We say that ¢ has the ergodic property under the time evolution if
lim ¢5(0(4)) = ¢(4) (1.8)

holds for all 4, Be.

Theorem 2. The unique ground state in the case () has the ergodic property (1.8)
under the time evolution, while any ground state in the cases (B) and (y) fails to have such
a property.

2. Jordan—Wigner Transformation

We use the method developed in [4, 3]. We enlarge the algebra  to a larger algebra
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91, adding a new element T having the following property:
T>=1, T*=T, TA=O_(AT (Ae), 2.1)
where @_ is an (involutive) automorphism of ¥ given by
_N - —N -
@_(4)= lim < I1 oL”)A( I1 a;") 2.2
N-w \ j=0 j=o

(180° rotation of spins around the z-axis on the left half (j < 0) of the lattice). More
concretely,
0 (0)={" of izl
* —-o if j<0,
O_(¢9)=0? (V)).

9 is the crossed product of A by the group Z, (integers modulo 2) via its action
neZ,— O" and is decomposed as a direct sum:

@_m@)z{

— oW’

A=A+AT. (2.3)
We extend @ _ to an automorphism of 9 by defining
O_(A,+ A, T)= O_(A)+ O_(A,)T (A, A,e). 2.4)

Within ¥, we introduce creation and annihilation operators by the following
Jordan—Wigner transformation [8], where T plays the role of a product of ¢ from
j=0to — 0.

¥ =TS;(0? +i0l))/2, (2.52)
¢c;= TS, (0¥ — ial))/2, (2.5b)
oo™ i j22,
Sj={1 if j=1, (2.6)
¢®...q\) if j=<0.
They satisfy the canonical anticommutation relations:
[ejads =[cf ekl =0, (2.72)
[cjck]s =0y (2.7b)
and generate a C*-subalgebra of 9, which we denote AR, We have
¥ S j>
O_(c})= { e ©-)= { . " i< . 28)
Let © be an automorphism of 9, uniquely determined by
O@Y) = —a?, O@)=—o, O@cY)=0?, 29)
O(T)=T. (2.10)

(The 180° rotation of all spins around the z-axis.) Then

O(c)=—ct, BO(c)=—c; @.11)
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Both subalgebras % and ACAR of 9 are @-invariant as sets and are split into sum of
even and odd parts:

A=A, +A4_, A, =(A+06(4)2 (2.12)
A=A, +A_, A, ={4eW;0(4) = + 4}, (2.13)
QICAR Q[CAR + ‘HCAR’ QIEAR = {AEQ[CAR; @(A) — i A} (214)

Two algebras are related by
A, =ANR, A_ =AART, (2.15)

Let @_ be an automorphism of 9, called the dual action in the language of the
crossed product, defined by

O_(A,+A,T)=A, — A, T (A,,A,eN). (2.16)

According to even-odd properties under mutually commuting involutive automor-
phisms @ and @_, U is decomposed into 4 pieces:
A = AR 4 QICAR 1 QICART 4 QICART, (2.17)
in which
A = AGAR + ACART, (2.18)
The local Hamiltonian (1.1) belongs to A, = AGAR and is expressed in terms of
c’s by

H(a,b) = 2JE21 {(C¥juy + i) +9(chct,  +¢j010) ) — A i 2cte, ]
(2.19)
The limit (1.2) exists and defines the time translation automorphism «, for elements
of :
o (A, + A, T)=0,(A;) + 0 (A,)V,T, (2.20)

V,= lim eilH(—N,N)Te—itH(—N,N)T
N- o

i I dt,o, (A)--a, (4), (2.21)
0

0

nMs

A=H(—N,N)— @_(H(—-N, N))— —4J{(1 +y)oQc + (1 —y)aPValV}. (2.22)

The merit of the Jordan—Wigner transform is to enable us to write o, on AAR in a
compact form. Let

(=Yt ) =Y (2.23)

jez jez

where f=(f;)el,(Z). Further, let

B(h)=c*(f)+c(g), h= (5) (2.24)
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The B’s satisfy (and are characterized by)
[B(hy)*, B(hy)]1=(hy, hy), B(h)* = B(I'h), (2.25)

where, for h, = (;") (k =1,2), we denote
k

(hl’h2)=(f15f2)+(gla92)7 (226)
(1 f2)= Y Fiif2)0 (2.27)
2)-()

rl’)=(%). .

(g 7 (2.28)
Then
o(B(h)) = B(e*’*'h), (2.29)
[ U+U*=24 y(U-U¥

- < WU -U"  —(U+U*— u)) 230
(Uf)j=fj+1a (U*f)j=fj—1' (2-31)

3. Main Points in the Proof of Theorem 1

Ground states of (A°AR, a,) as well as those of (USAR, a,) can be determined by the
following theorems proved in Sect.9. (For an application we need only
Theorem 3(1) and 4(1a), plus 4(3) for the Ising case.)

Theorem 3. Let o,(B(h)) = B(e'*'h) where [* =L, 'L= — LI

(1) There exists a unique ground state for (U*R,«,) if and only if O is not an
eigenvalue of L. The unique ground state is the Fock state ¢, for which B(h), E .h = h,
is a creation operator and B(h), E_h = h, is an annihilation operator, E, being the
spectral projection of L for (0, o0) and for (— c0,0), respectively. More explicitly

@(B(hy)--Blhzn. ) =0, 3.1)
o(B(h;)- B(hy)) = Y sign P n (Thpaj-1 B+ hpisy), (32)

where the sum is over all pairing, i.e. over all permutations P satisfying
PR2j—1)<P(2j) (vj), P)<PB)<---<P(2n-1).

(2) If the eigenprojection E, of L for the eigenvalue O is not zero, then all ground
states are given by

©(A140) = @5, (A1)po(Ao) (3.3

where A, belongs to the C*-subalgebra UEA® of UAR generated by B(h) with h
satisfying Eoh = h, A, belongs to the C*-subalgebra UTA%; of AR generated by B(h)
with h satisfying Ech =0, @, is the Fock state of A%, specified by the spectral
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projection E , of L for (0, c0) as described in case (1) and ¢ is an arbitrary state of
AR,
Theorem 4. Consider the same situation as Theorem 3.

(1) There exists a unique ground state for (USAR,a,) if and only if one of the
Sfollowing (mutually exclusive) conditions () and (f) is satisfied:

() Eq =0 and the infimum of the positive part of the spectrum of L is not an
eigenvalue of L.

(f) dimE, = 1.

In both cases, the unique ground state is the restriction of any ground state of
(ACAR o). More explicitly

@(A; + A;B(h) = ¢ (A;) (3.4)

for Ay, A,e UK, O(A,)=A,, O(A,)= — A, and Ech=h.

(2) If dim E, > 1, the set of all ground states of (US*R, a,) coincides with the set of
restrictions of all ground states of (AR, a,) to AR,

(3) If E, =0 and the infimum e of the positive part of the spectrum of L is an
eigenvalue of L with the eigenprojection E, then an extremal ground state ¢ of
(ASAR, o) is either the restriction of ¢, to Y or the (Fock) state ¢, defined by

ou(A)= (PE+(B(h)*AB(h))/ (h,h)= PE, —Ph)+ TP r(A4), (3.5

where h is any vector satisfying E_h = h and P(h) is the orthogonal projection onto the
one-dimensional space spanned by h. The cyclic representations associated with ¢, are
all equivalent and are disjoint from the cyclic representation associated with the
restriction of @g, to U An arbitrary ground state of (U, a) is of the
following form:

@ =0oPg, + 'Zx ;P (3.6

where «;20 (j=0,...), Y. a;=1 and h; are mutually orthogonal.

The following lemma (proved in Sect, 7(i)) shows that E, = 0 for all cases of our
interest and E, =0 for almost all cases, except for the Ising model case (4,y) =
O, £ 1)

Lemma 3.1. (1) If (4,79) #(0, + 1), K has an absolutely continuous spectrum.

(@) If (A,)=(0, £ 1), then SpK = {2, — 2}, i.e. K/2 is selfadjoint unitary.

We can now discuss a ground state ¢ of (U, a,). By a version of the definition of a
ground state, requiring (1.5) for all 4 in the domain of 4 (within respective algebras
under considerations), the restriction of ¢ to 2, = ASAR is immediately seen to be a
ground state of (USA}, «,), and hence is given by Theorem 4. If ¢ is @-invariant (i.e.
@(O(A)) = ¢(A) for all AeN) in addition, then ¢ is completely determined by its
restriction to U ,. Thus we obtain the following key intermediate result:

Proposition 3.2. (1) If (4,9) #(0, & 1), then a @-invariant ground state of (W, w,) is
unique and is given by

¢E+(A+ +A—)=¢E+(A+), Aiemiv (37)



Ground States of the X Y-Model 219
(2) If (4,9)=(0, & 1), then all @-invariant ground states of (W, a,) are given by

DAy + A)=0o0p (A1) + 3 00, (A), (3-8)

where o; 2 0(j =0, 1,...),Zaj= 1 and h;= E,;h; are mutually orthogonal.

Previous argument already shows that @-invariant ground states must be of the
form given by (3.7) and (3.8). In converse direction, the existence of ground states of
(A, o) is known (for example, Proposition 5.3.23 and 6.2.44(1) in [6]) and if ¢ is a
ground state, then

?(4) = {p(4) + 9(O(4))}/2, Ae, (3.9)

is a @-invariant ground state due to @a, = «,@. Therefore (3.7) must be a ground
state in case (1). On the other hand, a ground state of a smaller system might not
have an extension to a ground state of a larger system. Thus it requires an additional
proof to see that all states of the form (3.8) are ground states of (U,«,). This is
provided by Theorem 6 of Sect. 8 along with Lemma 4.5(3) and Corollary 4.4(1).

The final step of the proofis to find all possible decompositions of a @-invariant
ground state ¢. Any ground state ¢ must be obtained by a decomposition of the
form (3.9). On the other hand, the set of all ground states of a C*-dynamical system is
known to be a face in the set of all states (Proposition 5.3.39 in [61]) and hence any
decomposition of ¢ yields ground states and any extremal ground state is a pure
state.

Our result on decomposition of @, which implies Theorem 1, is as follows:

Proposition 3.3. (1) If either |A|=1 or |A| <1, y=0, then the unique ®-invariant
ground state @y, is pure and is the unique ground state of (U, a,).

(2) If|Al <1,y #0and (4,y) # (0, + 1), then the unique @-invariant ground state
@, is an average of two pure states ¢, which exhaust extremal ground states of
(U, a)). The cyclic representations of W associated with ¢ , are mutually disjoint and @
interchanges ¢, and ¢ _: ¢, (O(A)) = ¢ (4), AU

(3) For (4,7)=(0, £ 1), ¢, and @, are averages of two pure states ¢, and ¢, ,
respectively, which exhaust all extremal ground states of (U, a,). Cyclic representations
of U associated with ¢, are mutually disjoint and disjoint from those associated with
@, Cyclic representation of U associated with @,, for different h are all
equivalent among ¢, and among @, _, but are disjoint between @, and ¢,_.

We now describe main points in the proof of this Proposition.

4. Main Points in the Proof of Proposition 3.3
Let ¢, be the (@ ® _)-invariant extension of ¢, to €A:
Gp. (A + A, T)= 0 (A1) (Af, A,eUNR), (4.1)

Let (%, B) be the cyclic representation of 9l associated with ¢, and Q€8 be the
cyclic vector giving the state ¢z,. By ® and @_ invariance of ¢, we have the
following orthogonal decomposition:

=911+ 912+ D21 + D22, 4.2
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H11=REALND)™, H12 =RALHD), 4.3)
H21 = RALNUTIV) ™, Hy, = REALHATI) . (“4.4)

The cyclic representation of U associated with @, is the restriction of #() to
911 + 9,2, while that associated with @, is the restriction of () to H;, + H,,. (For
cyclicity in the latter, note that #(B(h))*#(B(h))Q2= || h|>Qfor h = E h(= E . h).) Our
problem is to find an irreducible decomposition of these representations.

We apply the following lemma to obtain the desired conclusion. Proof will be
given in Sect. 8.

Lemma 4.1. Let w be a state of C*-algebra W and is invariant under an involutive
automorphism © of W. Let n be a representation of U on a Hilbert space $ with a
cyclic unit vector €2 giving rise to the given state w(A)= (£, 1(A)R2). (The GNS-
triplet.) Let A, be ©@-even and @-odd parts of W. Let n be the restriction of the
representation © of U, to subspaces §, = (W, ). Assume that m, is irreducible.
Then n_ is irreducible too and the following hold.

(1) The representation © of W is irreducible if and only if n, and n _ are disjoint.

(2) If =, and m_ are not disjoint, then n is a direct sum of mutually disjoint 2
irreducible representations of W and w is an average of 2 pure states w , which give rise
to mutually disjoint representations and interchanged by @:w ,(©@(A4)) = w(A).

Let the restriction of A(A**)(=#(U)) to $;; be m;;. We have to compare 7,
with 7,, (and =, with m,, in the Ising case), in order to apply the above lemma to
our problem.

The representation 7 of AR restricted to $,, + 9, is the cyclic representation
ny, associated with the pure (Fock) state ¢, (any Fock state ¢ is known to be pure
as it is uniquely defined by ¢@gz(B(Eh)B(Eh)*) = 0 for all h) and the same restricted to
921 + 92, is the cyclic representation my_g,,_ associated with the pure (Fock) state

©y_gro_(A) =g, (O_(4)=@R(T)Q2, #R(A)R(T)2) (4.5)
of AcAAR where ©_(B(h)) = B(O_(h)),
N_[6-f ) i gz,
0‘(9)_<0-g>’ (g"f)"_{—f,- if j<o. (4.6)

Since these Fock states are @-invariant, all representations 7;; of 2, are irreducible
(by Lemma 8.1. (i) in Sect. 8) and Lemma 4.1 (1) implies

Ty * My Mpp F Mape 4.7)

Since 7, is the cyclic representation of CAR associated with the @-invariant
extension to ACAR of the state of A, = AR given by a vector in H,, or H,,, and
since exactly the same situation prevails with m, ; , , 9, and $,,, we see that

Mg, ~My_g,e_ ifandonlyif m,, ~7m,, or =y ~my,. 4.8)

where the “only if” part follows from (4.7). Taking (4.7) and (4.8) together we obtain
the following result:

Lemma 4.2. (1) n,, ~ n,, if and only if

Mg, ~Ty_g,9_ and Tyt Ty 4.9)
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(2) myy ~ 7y, if and only if (4.9) holds.
To apply this result to our problem, we can use the following known criterion ((1)
by Theorem 1 of [1], (2) by Theorem 4 of [3]).

Proposition 4.3. (1) Two Fock states ¢g, and @g, of AR give rise to equivalent
representations if and only if E, — E, is in the Hilbert—Schmidt class.

(2) Restrictions of Fock states g, and ¢, of WAR to AAR give rise to equivalent
representations if and only if E, — E, is in the Hilbert—Schmidt class and dim (E; A
(1 — E,)) is even.

Note that dim (E; A (1 — E,)) is finite if E; — E, is in the Hilbert—Schmidt class
and is equal to dim (1 —E;) A E,)due to 'El ' =1—E,.

Corollary 44. (1) n,, ~ 7,, if and only if
|E, —0_E, 0_|gs<oo and dim(@_E.0_A(1—E,))isodd. (4.10)

(2) myy ~ 7,y if and only if (4.10) holds.
Quantities in (4.10) are computed in Sect. 7. The result is summarized as follows.

Lemma 4.5. (1) If either |[A|=1,y#0 or |A| <1, y=0, then
[E+—0_E.0_|us= 0. (4.11)
(2) If either |A| > 1 or (4,7) =(=% 1,0), then
|E, —0_E.0_|ys<oo, dim(@_E 0_A(l—E.))=even. 4.12)
(3) If Al <1,y #0, then
|E, —0_E 0 _|gs<oo, dim(@_E,0_A(1—E,))=odd. (4.13)

To finish up the proof of Proposition 3.3, (1) in that Proposition follows from
Lemma 4.5 (1), (2), the “only if” part of Corollary 4.4 (1), the “if” part of Lemma 4.1
(1) and Proposition 3.2 (1).(2) in Proposition 3.3 follows from Lemma 4.5 (3), the “if”
part of Corollary 4.4 (1), Lemma 4.1 (2) and Proposition 3.2 (1).

As for (3) of Proposition 3.3, the statement about decomposition of ¢, and @,
follows from Lemma 4.5 (3), Corollary 4.4 (1) and (2) and Lemma 4.1 (2).

Since the state (3.8) of 2 can be given by a density matrix on §, only 4 irreducible
representations, two each by decomposition of (%) restricted to $,; + 9, and to
912+ 9,1, can appear in the cyclic representation associated with (3.8). Since
representations of A, on H;, + H,, and on H,, + H,, are disjoint in the present
case, two irreducible representations arising from £, + 9,,, which correspond to
¢, and are mutually disjoint by Lemma 4.1 (2), must be both disjoint from each of
two irreducible representations arising from $,, + $,,, which corresponds to @,
and are mutually disjoint. The label + of ¢, , can be so chosen that the same sign of
+ gives rise to one of two irreducible representations arising from $,, + 9,1,
common for all 4. Thus the statement about equivalence and disjointness of
representations in (3) of the proportion follows.

Finally, to see that ¢, and ¢, exhaust all pure ground states, any pure ground
state ¢ belongs to one of 4 irreducible representations and (p(4)+ @(@(4)))/2 =
@(4) is of the form (3.8), in which either (i) all «;,j#0, are 0 or (ii) a,=0
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(due to the difference in associated representations. In either case, a decompo-
sition into two irreducible parts (one for the original ¢ and the other for its @-
transform, which is always not equivalent to the original representation for each of
the 2 representations under consideration) is unique and therefore ¢ must be one of
0@, in case (i) and one of Xa Ph+ in case (ii). In the latter, only one of «’s should be
non-zero in order that ¢ be pure and hence ¢ must be one of ¢, and ¢,,,. Q.E.D.

5. Concrete Decomposition of ¢_into ¢,

Except for the cases |4| =1,y #0 and |A| < 1, y =0, representations 7z, and y_g_ 4
of UCAR are equivalent (Proposition 4.3 (1) and Lemma 4.5 (2), (3)), and hence there
exists a unitary U“X(@_) on the cyclic representation space $,; + 9y, of 7,
satisfying UAY@ ), (A)UAR(O_)* = m; (O _(A4)). Since n, _is irreducible, it
belongs to mg (AAR)” and, since ny, and m,_g,,_ are equivalent, it extends to a
unitary operator U(@_)er(ACARY".

Consider the case [A| <1, y #0. Since the representation m,,°@_ of UL is
disjoint from 7, ; and is equivalent to =, ,, and since 7, ,° @ _ is disjoint from =, , and
is equivalent to 7, ((4.8), Proposition 4.3 (2) and Lemma 4.5 (3)), U“*}(® _) has to
interchange $,, and 9,, in this case.

Let U(®) be a unitary operator whichis 1 on §,; + $,;, and —1on 9,, + H,,.
It implements @ on U (hence on ACAR) and U(O) anticommutes with UAR(® _) on
911+ H12- Hence if n; (4,) is a net tending to UAR(O_) with 4,e AR, then

g, (A=) = {75, (4) — U(O)n; (4)U(©)}/2 - UR(O.)
with 4,_ = (4, — ©(4,))/2e AR, and hence
USAR(O _)emy (ALY~ U(O_)er(ULR)", (5.1)

where — on the shoulder indicates closure. Since USAR(@_)? commutes with
g (UAR) due to O =id, and since 7, is irreducible, U*(@_) is a scalar
operator, which can be made to be 1 by redeﬁnmg UAR(@_) (through multiplic-
ation of a phase factor e'®). Thus we assume

0.2 =1. (5.2)
We have, for Ae UCAR,
0(O_)#(A)0(O_) = AT AA(T). (5.3)
By approximating U(@_) by #(4), AR, we obtain
0(©_)=#T)0(@_)H(T). (54)

Thus W= U(@_)#(T) is a selfadjoint unitary element (W = W*, W2=1) in the
center of #(2)” (due to (5.3) and (5.4) together with the selfadjoint unitary property of
U(©_) and #(T)), belonging to A(A_)".

Proposition 5.1. Assume || <1,y #0. Let U(©_) and W be as above. Let
0, =277 1+W)Q, (5.5)
0.(4) = (Q,, #(A2,) (Ae) (5.6)
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(1) @, are pure states of W and

Pp, =0+ +9-)/2. (5.7)
(2) The cyclic representation w, associated with ¢, can be realized on $,, by
m(A)=7(A4,) £ AAIW, (5.8)
A, =(A+O(4))2, AU
0.(A) =@, (HD). (5.9)
In terms of UCAR
AW =#(A_T)U(O_), (5.10)

with A_TeUAR and U(O_)eA( AR~
(3) m, and n_ are disjoint.

Proof. Let

9. =1 EW)(H11 + H22) (5.11)

Since W is in the center of #(2) (in the center of #(%) and belonging to A(A_)7), .,
are invariant subspaces under (). Since £ is cyclic for () on §,, + H,,, 2, are
cyclicon $, . Since W = W* =W ™1, §, is orthogonal to § _, and hence (5.7) holds.

Since WeR(U_)~, (2, W) =0 (by @-invariant of ¢ £,) and hence Q2 are unit
vectors and ¢, are states. Furthermore, for Ae¥, -

(Q,, H(A)Q,) = (@ AA)(1 £ W)Q) = (2 (#(A,) £ AHA_YW)Q) = (2,7, (A)Q),

where the first equality is due to [#(4), W] = 0 and (1 + W)? = 2(1 + W), the second
equality is due to

(QAA )Y =(QAA,)W2)=0

(0(0)2= 2 and U(O)xU(O)= —x for x =7#(4_) and for x = %(4,)W), and the
third equality is the definition (5.8) for which the representation property is
immediate because W commutes with #(4) and W= W* =W~ Since n,(U,)=
A( ) is irreducible on §,,, n, () is irreducible there and ¢, are pure states. This
proves (1) and (2).

Let A, _ be such that #(4,)— W. Then n,(4,) = + #(AJW >+ W? =+ 1.
Therefore the two representations 7, can not be equivalent and hence are
disjoint. Q.E.D.

Exactly the same decomposition can be made for @, in the case (4,y) = (0, + 1).

6. Proof of Theorem 2

Case (y). The local Hamiltonian is —2JX¢{¢Y* " with « = x or y according as
y = + 1. Therefore a,(6%) = ¢¢” for all j. Since A is simple (being a UHF algebra), a
straightforward argument shows existence of Be for any given state ¢ such that
¢p(A) given by (1.7) differs from ¢(A) for 4 = ¢¥, and hence the ergodic property
(1.8) fails for such A and B.
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Case (). Because K has an absolutely continuous spectrum
[B(hy)*, o0(B(h)]+ = (hy, e*'K'hy)1 >0
as t— + oo by the Riemann-Lebesgue Lemma. Therefore
lim || [4;,%(42)]ell =0 (A, A,€UAAK), (6.1)

t~w
where the @-graded commutator is defined by
[A, A ]e=[A1+, A1+ [A1 -, A3 1+ [A, -, 4514, (6.2)
A=A + A, A AR (j=1,2,..).
Lemma 6.1. In case («) and (B), the following holds for AeACAR:
w-lim #(o(4)) = ¢ (A)1. 6.3)

Proof. The restrictions of 2(A*R) to H,, + H1, and H,, + H,, are both irreducible
representations of ACAR associated with @-invariant (Fock) states. Therefore the
last half of Lemma 2 in [ 2] is applicable (separately on $;, + $1, and on H,; + H,,)
and we obtain (6.3) on $H,, + 9H,, and

w-lim (#(2,(A)) — @g_p . 6_(2(4))1) =0 (6.4)

on 9, + Hyo. '
Now ¢g_g,_(0(A4)) = @p,(4) with
Ft =e” ZJiKte _E+ 0_ eZJiKt — (e - ZJiKtegeZJiKt)E +(e - ZJiKtO B eZJiKt).
By the next lemma, (e~ 250 _e?/X") strongly tends to a selfadjoint unitary operator

commuting with E, as t— =+ oo (different limits for t — oo and for t - — o), and
hence lim F, = E, . Therefore

lim ¢, 5 o (2dA)) = @g (A), 6.5)

t— o
and we obtain (6.3) on the whole space §. Q.E.D.

Lemma 6.2. (1) The following limit exists in cases () and ().

w, = lim 0_e*/Kif_g~ 27K, (6.6)

t—>to0

(2) Both 6_w, are selfadjoint unitary and commute with spectral projections of K
as well as with I

Remark. e~ 27Kt _e2/Kt 0 _w_ as t— F oo by (6.6).

Proof. Because §_Uf_—U is rank 1 (being O for all fel,(Z) with f,=0),
0_K0_ — Kisatmostrank 4. Furthermore, the spectrum of K and that of 6 _ K6 _ are
both absolutely continuous by Lemma 3.1. (1). Hence

w, = hm eZJi(()_KB_)te—ZJiKt, (67)

which is the same as (6.6), exist and are both unitary by Theorem X.4.4 (and Theorem
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X.3.5) in [7]. Equation (6.7) implies [w,I"] = 0. Further

. H 2JiKt —2JiKt
0_w, = lim e*’*'0_e

t—t oo

shows (0_w_)*=(0_w,), (_w,)* =1 and
eZJiKtB_Wie—ZJiKt — owi’

which implies the commutativity of 6_w, with the spectral projections of
K. Q.ED.
Let £, be the (Bogoliubov) automorphism of AA* determined by

Z,(B(h)) = B(w_h), (6.8)
which exists due to [I,w,] =0 and due to the unitarity of w,. We have
lim o(T)Ao(T)=limo,® _o_(A) = O_Z (A4). (6.9)
t—t o0
Properties of @_w, given by Lemma 6.2 imply
O 5 u=00_5,6 (O_E)Y=id, (6.10)
¢, (O_E (A) = ¢g (4). (6.11)

We now concentrate on the case () for a while.

Lemma 6.3. In case (@) (ie. |A]=1or |4 <1, y=0),
w-lim 7z (2,(4)) = ¢, (A)1 (A€, (6.12)

t—+ oo

where 7y is the cyclic representation of U associated with ¢ .

Proof. @y, can be identified with the restriction of #(U) to H;; + H,,. By
Lemma 6.1, (6.12) has already been shown for Ae?, = AGAR. It remains to show
(6.12) for A€ _ (= ACART),

Let Z be a weak accumulation point of 7, (,(A)) as t > + co. For any BeAGA®
=UA,, we have

Z7gp, (B) =17, (0_Z.(B))Z (6.13)

by (6.9) and (6.1), where ® graded commutator is an ordinary commutator for
BeU , = AP,

Since @g, =g, on U, =APR is invariant under O_F,, 7, (O_E,(B)),
BeW, on $,, isequivalent to 7, (B), Be U, on H,;, which is disjoint from 7, (B),
BeU, on $,, in the present case by Lemma 4.5 (1), (2) and Corollary 4.4 (1). Also
g (@_Z,(B)), BeU, on 9,, is disjoint from 7z (@_Z,(B)), BeU, on H,, by
Lemma 4.5 (1) and Corollary 4.4 (1) (mapped by automorphism @_Z_), and the
latter is equivalent to ng (B), BeA, on H;.

Since Z is in the weak closure of 7 (2 _), it maps §,, into 9,,,and 9,, into H,;.
Thus Z from §,, into $,, intertwine 7z, (B), BeW, on $,, with 7, (@ _Z . (B)).
BeU, on 9,, and Z from $,, into H,, intertwine 7, (B), BeW, on $H,, with
g (@ _E(B)), BeU, on $,,. From disjointness proved above, if follows that
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Z =0. Thus

w-lim g (o, (4)) =0 (AeA_). (6.14)
t—=+w
The same argument works for t —» — co.
By ©@-invariance of ¢p,, ¢, (4)=0 for AeW_ and we have proved
(6.12). Q.E.D.

Case (f). Lemmas 6.1 and 6.2 are still valid. Due to the invariance ¢ (@ _ =, (4))
= ¢p. (A), Ac W, = AR, there exists a unitary operator V, on $,, which satisfies

V.Q=0, V,n,(AV*=n,,(0_5,(4) (6.15)

for AeU,. Since n, is an irreducible representation of A, V, en,,(A,)". Since
my, and 7,, are equivalent in the present case, we have V, emg (2,)" defined on
911 + 9., and satisfies

V, g (A)VE =7 (@ _E,(4) (4€U,). (6.16)

Since (@_Z,)* =id by (6.10), (V,)? commutes with all 7_(4), AW, and must
be in the center of 7z (U.,.)". Since g, (A 1) is isomorphic to 7, (2 )" in the present
case, and since 7, ()" is irreducible on H,, 7z, (W) is a factor and (V,)* are
multiples of identity. ¥, Q2= given by (6.15) then implies

(V)2 =1. 6.17)
Proposition 6.4. In case (f) (ie. |A| <1,y #0, (4,7) # (0, + 1)),
o Gp.(A1  if AeN,, (6.18)
1 A)) = VB
Y Te. (1)) {<p+(A)ViW if Ae_. (6.19)

Remark. ¢ ,(A)= —@_(A) for AeU_, while ¢ .(A) =@ _(A4) = ¢z, (A) for AcU,.
Proof. Equation (6.18) follows from (6.3), as 7, is the restriction of # and U, =
AR, Let Z be a weak accumulation point of 7t (,(A4)) with A€ _ as t— + co.
For any Be, = AR, we obtain (6.13) again by (6.9) and (6.1), which hold also for

the case (). Since (@_ £, )* = id by (6.10), and since W introduced in Sect. 5is in the
center of 7z ()", we obtain

[ZV., W,7s,(B)] =0 (6.20)

for all Be ... Furthermore, Zen, (U_)", V,eng (A,)" and Wenr, (U_)~ (where
we restrict W to 9, + 9,,). Therefore ZV, W must be in the center of 7z (2 ,)". In
the present case 5 (U )" is a factor as we have seen above, and ZV, W is a multiple
of identify. By W2 =1 and (6.17), we obtain

Z=aWV,. (6.21)

The number a can be found by computing

a=QzZWD)= lim (27 ((A)WR)= ¢, (4(4) = ¢+ (A)(= — 9_(4)),

t—= + oo

(6.22)
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where we have used V, 2 = Q ((6.15)) in the first equality, (5.8) and (5.9) in the third
equality and the a,-invariance of the ground state ¢, (a general property of any
ground state) in the fourth equality. This proves (6.19) for t — + co. The same
argument holds for t - — c0. Q.E.D.

Consider a ground state ¢, (A4) = (2, 7y, (A)$2;). For 2, =2, and ¢, = ¢, we
have

(2, 0 (W) = (A), (6.23)

and hence the same holds for any ground state ¢, =a¢p, +(1 —)p_ (0=Za=1)
with 2, = a'20Q_ + (1 — «)*Q_. (Note the orthogonality of invariant subspaces
9, of 11+ 9,,.) Since 7 (A,)" is a factor, if V, eng (A,)" is not an identity
operator, there exists Be such that

(%, (B)2y, Witg (B)$2,) # (s, (B)2,, V. Wity (B)€2,),

and (1.8) would fail for any ¢, and t — + co. Similarly, if V_ is not an identity, (1.8)
would fail for any ¢, and t— + co.

We now want to see that V, # 1. Due to (6.16), it is enough to see that @_ %=, are
not an identity, or equivalently it is enough to have the following lemma, proved in
Sect. 7(v). Q.E.D.

Lemma 6.5. In case (f), 0_w, #1, 0_w_#1.

7. Fourier Analysis on Test Function Space
(i) Proof of Lemma 3.1. We use the Fourier transform

JO) =3 e"f, fu=0m)""fe™](0)d0 (7.1)

neZ

for f=(f,)el,(Z) and fel?*([0,2n]) to analyze the operator K. Due to (Uf)(6)
= ¢~ "9f(0), the operator K is represented as

(Khy(6) = K(0)h(0), (7.2)
_,fcosB—A —iysinf
K®)= 2<iy sin 0 —(cos 0 — /1)>' (7.3)

The eigenvalues of the 2 x 2 matrix K(6) are + u(6),
w(®) = 2[(cos O — A)* + y*sin? 0] /%, (7.4)

which is an algebraic function of cos f and is not a constant except for the case
(4,9) = (0, £ 1), when (7.4) is 2. This proves Lemma 3.1.
(ii) Computation of E .. E, is the multiplication of

E . (6) = (K(6) + u(6))/(2u(0))- (7.5

In some special cases, it takes a simpler form.

Ify=0, =1, then
00
= ) 7.6
E. (0 1) (7.6)



228 H. Araki and T. Matsui

10
= . 7.7
E. <0 0) .7
Ify=0,|A] <1, then

0 0
E.(0)=(1 —x;(9))<0 1) +x;(9)(0 0) (18)
where y,;(0)=1if cos@ > 1 and y,(0)=0if cos0 < A

Ify=0,A< — 1, then

(i) Computation of Hilbert-Schmidt Norm. We have to estimate

IE.—0_E.0_ |3s=21E_6_E. lis=8IE-gE, s (7.9)

where E_ =(1 —E,)and g = (1 + 6_)/2.(See (5.2) in [3].) The operator g is given by
N\_(4f _ it jz1

q<g “\4g) @i=97y i <0, (7.10)

Lemma 7.1.

IE_gE, |is= lim 2m)~2[|1 - ~%|"2tr(E, (0,)E-(0,))d0,d0,, (7.11)
e>+0

&

where the suffix € to the integral denotes the integration over 0, 0,€[0,2n] excluding
the region |0, — 0,| <¢ and ||6, — 0,] — 2n| <.

Proof. Let q,(n > 0) be a bounded operator given by
f 4y f e ’”f if jz1,
= i 7.12
q”<g 4 9/ (@)= if j<0. (7.122)

Then g,— q strongly as n - + 0. We have

(4,/7(6) = Z f eli@==nn7(9')do’ /(2m)
=j(e-'(9 Ot 1)1 f(6)d0'/2n). (7.12b)

Hence

IE_qE . |s < inf lim |E_g,E, Ilfs
n—+0

= lim (2r)"2[|1— €@ =92 *n|=2r(E_(0,)E_(0,))d6, do,, (7.13)
n—=>+0

where the right-hand side is a monotone increasing limit due to
tr(E,(0,)E_(68,))=tr(E_(6,)E.(6,)E_(0,)) = 0. (7.14)
Let E(A,) be the projection operator defined by
(E(A)hY(6) = 2(0, AR(O), (7.15)
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where (6, 4,) is the characteristic function for the subset A; of [0,2r]. Let
d(A,A,)=sup{|0, —0,| and ||0, —0,|—2xn|, 6,ed,, 0,eA,}. (7.16)

If d(A{,A,)>0, then E(A,)qE(A,)=1im E(A,)q, E(A;) has a bounded integral
kernel.

(E(4)qE(A) fY(0) = x(60,A)2m) ™" [ (7" " =171 ](@)d0".  (7.17)

Az

Let A(n,j)=[3""(j — 1)2r, 3™"j2x](j=1,..., 3". Then

IE-qE, |fsZ lim Z I E(A(n, k))E - qE . E(A(n,))) | fis, (7.18)
n—>o k,j
where } ' is the summation over all k, j satisfying d(A (n, k), A(n,)) > 0, and the limit
in n is monotone increasing. The right-hand side can be computed by using (7.17),
and we obtain

IE_qE. |lfs= llmZ (2m)~ “1 e Cr=9| 7 2tr(E (0,)E _(0,))d0,d0,, (7.19)

where the suffix k, j indicates the integral over A (n, k) x A(n,j). Since the integrand is

positive by (7.14) and the domains of integration Z f and jare cofinal in the limit
k,j
n— oo and ¢ — 0 (i.e. the former contains the latter for large n for any fixed ¢, and the

latter contains the former for small ¢ for any fixed n), the right-hand side of (7.19)
coincides with the right-hand side of (7.11).

Finally, the integrand of (7.13) is positive and monotone increasing as # — 0 and
tends to the integrand of (7.11). Hence the right-hand side of (7.13) does not exceed
the right-hand side of (7.11) or that of (7.19). Then (7.13) and (7.19) prove (7.11).
Q.E.D.

(iv) Proof of Lemma 4.5.

(I) The case of |A]>1 or |A] <1,y #0. Then p,(6) # 0 for all values of 6, and
hence E , (6) are holomorphic in 6 (and with period 27). Hence tr(E , (6,)E _(,)) has
Oatf, =0, and |0, — 0,| = 27. By the positivity (7.14), the degree of 0 cannot be 1.
Furthermore

[1—e'® 70272 = (45in? [(0, — 0,)/2]) "

is holomorphic for 6, # 8, and has a pole of degree 2 at 6, = 6, mod 2x. Therefore
the integrand of (7.11) is holomorphic over whole values of 6,,6, and (7.11) is
obviously finite. Namely,

IE; —0_E.0_|lys< o0 (7.20)

in this case.

We also see that E , is holomorphic in the real parameters A and y. Hence the Z ,-
index (the even-odd property of dim(@_E,6_n(1 — E.)) is constant in each of 4
connected components of this region by Theorem 3 of [3].

For [A| =1, y=0, we have E_(0) independent of 6 by (7.6) and (7.7). Hence
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0_E.0_=E, and
dim(@_E.0_A(1—-E,))=0.

Together with (7.20), this shows Lemma 4.5(2) for the case of |1] > 1.
For |A]| <1, y+#0, we compute the Z,-index at (4,y) = (0, &- 1) after making a
unitary transform:

dim(@_E,0_ A E_)=dim(0_vE  v0_ A vE_v), (7.21)
where
v=2“1/2<1 1) (7.22)
1 —1

is a selfadjoint unitary commuting with 6_. We have

1 0 U*
inv=§{1i<U O)}. (7.23)

We want to determine the number of linearly independent solutions of the following
simultaneous equations:

vE v0_h=h, vE_vh=h. (7.24)

From the second equation with h =< j;), we obtain

f=U%, g=Uf (7.25)
From the first equation, we obtain
0_f=—-U*0_g, 0_g=—-UbO_f. (7.26)

Thus we obtain
U*+60_U*0_)g=0, (U+6_Ub_)f=0.

Namely, g, = 0 except for n = 0 and f,, = 0 except for n = 1. Furthermore, f, = g, by
(7.25). Conversely, this solution

fn = 5n17 In= 5110 (727)
satisfies (7.25) and (7.26) and hence (7.24). Thus
dim(@_E.0_AE_)=1 (7.28)

for (4,7)=(0, 1).

In the case of (4,y)=(0, — 1), E, are transposed matrix of E, for the case
(4, 7) = (0, 1). Hence the roles of U and U*, and hence the roles of f and g are inter-
changed in the above calculation and we obtain the same conclusion. Thus we have
proved Lemma 4.5 (3).

(II) The case of (4,7)=(+1,0). As already indicated above we have E,
independent of 8 and E, =60_E,0_. Hence E, —6_E,0_=0and §_E.0_ A
(1 — E,)=0. This proves Lemma 4.5 (2) for this case.

(II) The case of |A] <1,y =0. We have
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tr(E . (0)E_(6,)) = x2(01) + 1:(02) — 2x:(0 1)x:(02)
_ 1 if(cos0; —A)(cos8, — 1) <0
~ |0 otherwise

(modulo a set of measure 0). The integration domain contains the region
0<0, <86y, 0,<0,<mn, where 0 <8, <m, cosf, = A Then

6o T
[1d0, | dbs]1 — @ ~02|72 = 0

because the integrand is bounded below by
|1— e 7072 = (4sin* [(0, — 0,)/2]) "' 2 (0, — 0,) "> (7.29)

This proves Lemma 4.5 (1) in the present case.
(IV) The case of A =1, y #0. In this case, u(6) vanishes at § = 0 and 2n. We use
the fact

. . L —iy/lyl
imE,@)= lim E_(0)=4% )
ogr(l) +(0) ,Jm ) 2<iy/|y| 1 , (7.30)

and hence
lim tr(E.(6,)E_(0,)=1.

61—~ +0,02—22n—0

Thus, there exists d€(0, 7) such that, for 0 <6 < ¢ and 2n — 6 <, <2m,
tr(E.(0,)E_(6,)) = 1/2. (7.31)

Since the integrand of (7.11) is positive due to (7.14), (7.11) is bounded below by the
integration over 0 < 6, <6 and 27— § <8, < J,, which is estimated below, using
(7.31) and a variation of (7.29):

9 T o [
8r)71[d0, [ dOy0,—0,+2m) 2 =(8x) ! [dO, [dO,0, +6,) *=0. (7.32)
0 2n—6 0 0

This proves Lemma 4.5 (1) in the present case.
(V) The case of A= — 1,7 #0. In this case u(6) vanishes at 8 == and we have

L
lim E,()= lim E_(0)=3<, W”'). (7.33)
0->n—0 60-m+0 2\ /Iyl 1

We can proceed as in the case of (IV) and the contribution from
n—0<0,<m, w<0,<m+9,
for example, becomes infinite. This completes proof of Lemma 4.5.
(V) Non-triviality of 6_w .
We compute
(hy,0_w, hy)= lim (hy,e*’®'(2q — 1)e~2ViKtp,)

t—+ o

=2 lim lim (2m)"2(R,(6,), e/ KOte=20iK @ (g y)

to+oon™+0

(e7 TN —1)"1d0,d0, — (hy, hy), (7.34)
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where the first equality uses the definition (6.6) of w, and 6_ =(2g — 1), and the
second equality uses (7.12a, b). The following explicit formula confirms that 0 _w _ is
not a multiple of the identity operator.

Proposition 7.2. If |A] <1,y #0 and (4,7) #(0, £ 1),
(hl,G_Wih2)= T (hy, (Es _E—)S}.,yhz)a (7.35)

where E , are the spectral projections of K for (0, c0) and (— o, 0), respectively, and
S,,, is defined by

Lo _ | hO) if k(6)>0,
(S3,)16) = {— hO) if k(6)<O.

k(0) = sin 0{(1 —y?)cos § — 4}. (7.37)

Computation. Since (7.35) is bounded by | h, || || h, ||, it is enough to prove it for a
dense set of h; and h,. We propose to prove (7.35) for h’s which vanish in a
neighbourhood of 6 =2x and are bounded. We decompose

(e M —1)T =0, + 0y + 05, (7.38)
Qi=(=i0,—0;)+m) 'ne"—1)71,
0, =g(— 0, — 0,),n) — g(—i(6, — 0,),0),
Q3 =g(—i(6, —0,),0) = {(e—iw1 0 —1)7 (6, - 0,1},
gO,m="""=1)" = (O +n) " "nle"— 1!
=0 +n)""(9:00 +m) —g1(m)),
91(0) = 0/’ - 1).
We start with the third term Q, which gives rise to a contribution of the form
(hy, ¥Kigse™2iKy), (7.39)

where g3 is an operator with the kernel Q; for 0 < 0; < 2n — ¢ and 0 kernel for other
values of 6’s where ¢ > 0 is chosen so that [0, 27 — ¢] contains the support of Ej,
Jj=1,2. Since g, is a Hilbert—Schmidt operator (having a bounded kernel), it can be
uniformly approximated by finite rank operators, for which evaluation of (7.39)
reduces to that of (h,,e?’*®'h,) (h,, e~ 2/*K*h,) for finite number of h,, h,. Because K
has an absolutely continuous spectrum, (h;,e**®'h,)—>0 as t— + oo by the
Riemann-Lebesgue Lemma, and hence (7.39), which is independent of #, tends to 0
as t— + 00.

We now come to the second term Q,. Since g,(f) is holomorphic for
Im 6| < 2m, 0~ Y(g,(0 + n) — g,(n)) is uniformly bounded for real 5 (|| <7,) and
pure imaginary 6 satisfying || < 2r — ¢ for some ¢ > 0. Since |6/(0 + #)| < 1 for pure
imaginary 6, Q, is uniformly bounded for |0;] < 27 — ¢,|n| < 5. Furthermore, for | 0|
= 4, for any given 6 > 0, g(0, ) for pure imaginary 6 and real  is continuous in (6, ),
and hence Q, tends to 0 as 7 — O uniformly in 6, in the region 2n — £ = 6; = 6. Since h;
are bounded by our choice and ¢ can be arbitrarily small, the contribution of Q, to
the integral in (7.34) tends to 0 as n— + 0.

(7.36)
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We are now left with Q; which gives rise to

(hl’eZJiKthe—z.liKrhz) = lim (27.[)—21'3'(;{1(91), eZJiK(el)te—ZJiK(OZ)tEZ(ez))
n—=+0

X (91 _ 02 + in)_ldeldez, (7-40)

where we have omitted #n(e" — 1)~ which tends to 1 as n—0. We substitute
e2JIK(B ) o= 2TiK@2) ZE 0,)E.(0,) exp 2Jit(ou(0,) — tu(6,)) (7.41)

+ and p(0) is given by (7.4).

In the term with opposite signs for ¢ and 7 in (7.41), we may replace E, (6,) by
E.(0,) — E.(6,) due to orthogonality of E , and E _. Since E.(6) is holomorphicin § in
the present case, (E(0,) — E.(8,))/(6, — 8,) is a uniformly bounded kernel and our
previous argument for Q5 term is applicable with the conclusion that such a term
gives a vanishing contribution in the limit of t —» + oco.

For the remaining term, we apply the following (more or less known) lemma, for
which we give a proofin the Appendix for completeness sake, and we obtain (7.36) by
noticing that the sign of — u'(0) is the same as that of k(6).

into (7.40) where 0 = +, 1= +

Lemma 7.3. Let F be a piecewise C? function, which is nowhere constant and
fi(i=1,2) be L, functions, all in one real variable. Then

lim lim {dx,dx, f;(x;)f2(x2)(x; — X, + 0i6)~ Lexpi(F(x,) — F(x))t

t—>+00d->+0
= — 2nic [ dx/, (x) f2()2( £ o F (X)), (7.42)

where 0 = + 1, and y is the characteristic function of (0, o0).
(In our application, o= +1, F(x)= —u(x) and (2y(=+ F'(0))— Dh(6)=
+(S,,,h) (0). Note that (hy, hy) = (2m)~* [ (k,(6), ,(0))d0.)

8. Ground States of the Even Part of an Algebra—Proof of Lemma 4.1

Before going into proof of Lemma 4.1, we discuss its significance, in terms of
Theorem 5 below which follows easily from Lemma 4.1. For a ground state ¢ of a
C*-dynamical system (2, &), the cyclic representation r, of U on the Hilbert space

9, = n—(p(QT.Q(,, with Q,e9,, giving rise to ¢(4) = (2, 7,(4)£2,) allows a continuous
one-parameter group of unitaries U ,(t) implementing o,
U, () (AU ,(t)* = m,(,(A)), 8.1)
U, (02, =14, (8.2)
and with a positive generator
U,(t)=expith,, h,=0. (8.3)
Any cyclic representation 7, associated with a ground state will be called a ground

state representation.
Let ® be an involutive automorphism of N (@2 =id) and A, be the O -fixed-
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point subalgebra of A (consisting of all AeA such that O(A4)= A).
We assume o, = @«,. Then U, is o,-invariant as a set and (U ,,«,) is another
system. Since the restriction of a ground state ¢ of (2, «,) to 2, is a ground state of
(A, a,), a ground state representation n of A “contains™ a ground state represent-
ation 7, of U, in the sense that = restricted to 2, contains n; as a subrepresent-
ation. If ¢ is an extremal ground state, then ¢ is pure (because the set of all ground
states is a face of the set of states) and the associated representation is irreduci-
ble. The following theorem describes all possibilities for irreducible ground state
representations of (U, «,) and irreducible ground state representations of (U, ,«,)
contained in the former.

Theorem 5. (1) The correspondence between irreducible ground state representations
of (W,a,) and those of (U,,a,) by containment up to unitary equivalence is either
(i) one-to-two, (ii) one-to-one, or (iii) two-to-one, depending on individual ground state
representation.

(2) For a given pure ground state ¢ of (A, a,), (iii) occurs if and only if ¢ and o @
give rise to non-equivalent representations.

(3) If ¢ and @°® give rise to equivalent irreducible representations, then there
exists a @-invariant pure ground state ¢, giving rise to the same representation.
(i) occurs if and only if the infimum of the spectrum of the restriction of h , to 7, (U _)€2,,;
belongs to its point spectrum.

(4) Therestriction of a pure ground state ¢ of (U, a,) to W, is not pure if and only if
@ # ©° O and @ and @ O giverise to equivalent representations. This can happen only
in case (i).

(5) If  is a pure ground state of (U ., a,), and the associated cyclic representation
of W, is contained in a ground state representation of (U, a,), (iil) occurs if and only if
the ©-invariant extension  of Y to A defined by

FA. +A)=Y(A,), A, (8:4)

is not pure.
For the proof of this theorem, we need the following lemma, which we prove first.

Lemma 8.1. Let ¢ be a @-invariant state of W, 9, , 2 be the GNS-triplet associated
with ¢, $, = (U, )Q and n, be the representation n of W, restricted to invariant
subspaces 9. Then both n. and n_ are irreducible if one of the following three
conditions are satisfied. (i) ¢ is pure, (ii) 2 = + o © withy pure and not equivalent
to Yo O, (iii) . is irreducible.

Proof. (i) Let ¢, be the restriction of ¢ to AU . If Ap , = ¢, for A > 0 and for a state
@, of A, then for @-invariant extensions ¢ = ¢, and @, of ¢, and ¢, we have

P1((Ar +A )AL +A)=0(A%A,) + 0 (AX A )< lp (A% A})
+ A0 (A* A )=Ap((A, + A_)*(4, + A_)). (8.5)

Since ¢ is assumed to be pure, ¢, = ¢ and ¢, = ¢ . This shows that ¢, is pure,
n, is irreducible and we are in case (iii).

(i)) The same computation shows that ¢, < Ay + > ®@)/2. Since ¢ is assumed
to be pure, o @ is also pure. Since Y and > @ are assumed to be not equivalent, we
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conclude @; =y + (1 — p)ro @ for some nef0, 1]. Since ¢, is @ -invariant, we have
u=1/2, and hence ¢, = ¢ and ¢, = ¢ .. Again ©, is irreducible.

(iii) Let Ye9H_, ¥ #0. We consider two possibilities (a) (U _) ¥ =0, (b) there
exists A_eW_ such that n(4_)¥ #0. In case (a), ¥ is orthogonal to n(A_)N2
(because w(WU_)*==n(A_)). It is also orthogonal to n(W,)R2<=$H, because
Ye$H_19H,.Hence ¥ is orthogonal to (). Since 2 is cyclic, ¥ = 0. Thus case

(a) does not occur. Since 7, is irreducible, 7(W_ )n(WU_)¥ = H. 302 in case (b).

Hence #(UA_)a(U )n(A_)¥ contains H_=n(U_)Q2. Since =n(A,)>
(W)W )n(W ), ¥ is cyclic for =_ (A, ) (in H_). Since every non-zero Pe$H_ is
cyclic for n_(,), n_ is irreducible. Q.E.D.

Proof of Theorem 5. (I) First consider the case where ¢ is a ®@-invariant pure
ground state of 2. Then the restriction ¢, of ¢ to 2, is a pure ground state of 2,
with 7, and 7 _ both irreducible by Lemma 8.1 (i). If there is an eigenvector ¥e$ _
(in the notation of Lemma 8.1) of h,, belonging to an eigenvalue which is the infimum
of the spectrum of the restriction of h, to $_, then (¥, n_(A4) ¥), AU, is a ground
state and m, are both ground state representations.

Since 7 _ is irreducible, U ,(t) on $_ satisfying U () _(A) U ,()* = n _(e,(A4)) for
all Ae . is unique up to multiplication of numbers ¢, and hence the eigenspace
belonging to the eigenvalue at the infimum of the spectrum of the generator of such
U,(t) on $_ does not depend on the ground state (of A,) from which this
representation might be constructed. Hence if the infimum in question is not an
eigenvalue of i, then m_ is not a ground state representation. By Lemma 4.1 (2), 7,
and 7 _ are disjoint, and hence the cyclic representation associated with ¢ contains
either 2 or 1 ground state representations depending on the condition about the
spectrum of h,, discussed above.

Conversely, if an irreducible (ground state) representation 7, of 2 on a space §,
contains either 7, or n_, then there exists a vector ¥, €9, and ¥ eitherinH, or H_
(representation spaces of 7, and n_) such that y,(4) = (¥, 7,(4)¥,) and Y(4) =
(¥, m(A)¥) coincides for all Ae . By construction, i is @-invariant, and hence
(W, +¥1°0)/2=1. Since n is irreducible in the present case, ¥, = . The cyclic
representation associated with i/, is 7; and hence n; and = are equivalent. This
shows that an irreducible representation 7, containing 7, or m_ is unique and the
correspondence is either one-to-two or one-to-one.

(IT) Consider the case where ¢ is a pure ground state and is not equivalent to
@°®. We apply Lemma 8.1 (ii) to ¢ = (¢ + @° @)/2 to see that the restriction of ¢ to
A, is a pure state, and hence gives rise to an irreducible ground state representation
7. of A .. By Lemma 4.1, 7, and n_ are equivalent and ¢, being pure, must coincide
with w, or w_ given in that lemma. Since ® commutes with a,, if one of w, (which
coincides with ¢) is a ground state, then the other is also a ground state and both
representations (which are disjoint) contain 7.

Conversely, if an irreducible (ground state) representation contains 7, and 7 _, it
must be a subrepresentation of the cyclic representation associated with ¢ by the
same argument as in the case (I), and hence it must coincide with the cyclic
representation associated with either ¢ or ¢°® (w, or w_ in the notation of
Lemma 4.1). Thus the correspondence is two-to-one in this case.



236 H. Araki and T. Matsui

(ITT) Finally we consider the case where ¢ is a pure ground state of (2, ),
¢ # ¢° O and ¢ equivalent to ¢°®. Let H,, 7, 2, be the GNS triplet associated
with ¢. Since @ and @° @ give rise to an equivalent representation, there exists a
unitary operator U(®) on $,, such that U(@)r,(4)U(O)* = n,(O(A4)). Since 7, is
irreducible, U(®)? is a multiple of identity due to @2 = id, and we can redefine U(®)
such that U(®)? =1, which we now assume.

Since ® commutes with a,, U(@)U ,()U(O)U ,(t)* must be a multiple of the
identity, say c(t)1. We then have

U,0U@O)U, (1) =c()U(O).

By taking square, we have c(t)? = 1 and hence ¢(t) = + 1. Since ¢(t) is continuous in ¢,
we have c(t) = 1. Hence U(@) commutes with U, (t). The vector U(®)£2, is not
proportional to £2, as it gives rise to the state ¢°® # ¢. Let

02,=192,+U(0)2,| '(2,+U(0)2,).

Since h, commutes with U(@), h,2,=0 and £, gives rise to a ground state
©o(A) = (£2o, 1, (A)€2,) which is @-invariant due to U(®),=€,. Since 7 is
irreducible, ¢, is a pure state giving rise to 7. We are now in the situation (I) as far as
representations are concerned.

We now use the notation $, 7, £2, §, relative to @,. Then ¢ is a vector state by
some @e$, not belonging to either H, or H_ because ¢ # @o O. Itis decomposed as

O=0_+0_, &, =(1+U(O)P/2€9,,

where @, # 0 give rise to pure ground states of 2 (due to h,®, = 0 which follows
from [h,, , U(®)] = 0). Denoting their restriction to 2, by l// 1 the restriction ¢, of
@ to ‘ZI+ is decomposed as

Pr =P Py Q1P -, Y (A=D1 P, 7, (D)D)
Since . and n_ are disjoint, t, # _ and ¢, is not pure. Q.E.D.

Proof of Lemma 4.1. The irreducibility of = _ is already proved by Lemma 8.1. (iii).
(I) Assume that =, and n_ are disjoint. Let Cen()'. Since Cen(A ), C has to
leave §, invariant because 7, are disjoint and must be multiples of identity c, 1, on
each of §, (due to the irreducibility of 7, ). Since (U _) brldges 9. and H_ (cyclicity
of 2), ¢, =c_ and C is a multiple of identity. Therefore = is irreducible.
(IT) Assume that 7, and n_ are equivalent. Then there exists a unitary map u
from $, to H_ satistying un_(4) = n_(A)u for all AecU.

Claim. There exists a unitary U in the weak closure of 7(2 _) such that U ¥ = u'? for
all Ye9,.

Claimis proved as follows. If 7(2 _) = 0, we have $ _ = 0, which contradicts with
$ .22 # 0and the equivalence. Thus we have n(A4) # 0 for some Ae _. Let {¢;} be a
complete orthonormal setin § ., , u;; be the matrix unit of (2, )" relative to {e;}. (We
use the isomorphism of #(2 )" with = (A ,)" = #($ ,) due to the equivalence of 7,
and 7_.) For some i and k, (ue,, n(A)e;) #0. Let U; = Auym(A)u;;, where A is adjusted
so that U¥ U, = u;;. (Since u;; is a minimal projection in 7( )", U¥ U, is proportional
to u; in general) Then UXU;=u; and Ue; = d;ue;. Since U;=u;Uu;; has the
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initial and final projection u;;, which are mutually orthogonal for different j, the sum
U =) U, converges and belongs to the weak closure n(2_). By definition, U ¥ =

u¥ fc;r ¥ = e, for any j and hence for all ¥e$.

Since (@, U*U W) =(®, ¥) for all @, Pe$H, and U*Uen(U,)", U*U =1 by the
isomorphism of #( )" and = (A.)". Since U maps H, into H, U*=u*on H_,
and we have (@, UU*¥) = (D, ) for all @, Pe$H_. By the isomorphism of 7(2 )"
and 7_(U,)", we have UU* = 1. Therefore U is a unitary element of the closure of
(WA _). This completes proof of Claim.

From the property of u, we have Un(4) ¥ = un(A) ¥ = n(Au¥ = n(A)U ¥ for
all AeA, and Ye©H .. Therefore U*n(A)U —n(4)=0 on ©.. Since U*n(A)U —
—n(A)en(U )" for AeU ., we have U*n(A)U — n(4) =0 for all AeU .. Therefore
[U,x]=0 for all xen(A,)". If 4eU_, n(A)U*en(U,)" and n(A4)= (n(4A)U*)U.
Hence [U, n(A)] = 0for AeU _. We have now proved that U is in the center of 7()".

Since U belongs to the closure of n(A_), U2en(A ,)". Since n(A , )" is a factor, U?
must be multiple of identity. By redefining U by a multiplication of a number e, we
may assume that U2 =1.

Let U(®) be a unitary selfadjoint operator being 1 on $, and — 1 on H_. Then
U(@)n(A)U(O)=n(O(4)) and U(O)UU(O)= —U.

Let 2, =271%(1 4 U)2,$* = n(WQ, . Since U isin the center of 7(A)", H* and
$~ are orthogonal due to (1 + U)*(1 — U) =0. Since Q€% , and UQeH_, Q, #0.
Since (2 .)" is a type I factor with multiplicity 2, and since $* are both invariant
non-trivial subspaces, n(2 ) restricted to $H* are both irreducible.

Let w, (4) = (£2,,n(4)£2,). They are pure states of U (as well as of 2 ), being
vector states in an irreducible representation. Since U(®@)2, =2_, we have
w, O = w;. By a direct computation, we see that w = (w, + w_)/2. (Note that the
vector states by £ and US2 both are w, as U is in the center of n(A)".) Q.E.D.

By construction, we have

0, (A, +A4)=0(A,)+BA_U) (4,eN,). (8.6)

(@ is the continuous extension of w to n(A)".) Therefore, the GNS triplet for w, can
be given by ., the following representation p, of U (restricted to $.) and £:

P, +A)=m(A )+ n(A)U (A, €U,). (8.7)

Note that p, (A)en(WU,)" leaves $, invariant. Thus (A, ) is already irreducible in
the cyclic representation space of 2 associated with , .
In the case (2) of Lemma 4.1, a ground state of 2, extends to a ground state of U:

Theorem 6. The @-invariant extension & of a pure ground state w of W, to Wis a
ground state of W if @ is not pure.

Proof. We are in the situation (5) in Theorem 5. Since w is o,-invariant (being a
ground state) and ® commutes with a,, @ is also a,-invariant. By Lemma 4.1, @ is an
average of two non-equivalent pure states w, of A. The «,-invariance of @ implies
that @ is also an average of w, °a,, which are pure, w , °«, must coincide with w, or
w_. By continuityint,wehave w, °a, = w,. Hence both w, and w_ are a,-invariant.
There exists one-parameter group of unitaries U, (t) in the GNS representation
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space of w, implementing o,. By using (8.7) along with $ ,, £ as the GNS triplets for
w,, U, (t) are already determined by U , (t)n(4 ;)2 = n(a,(4))L2 for A, €U, and
coincide with U (¢) for the ground state o of A, . Hence their generators are non-
negative and w, are pure ground states of 2. Therefore & is also a ground state of 2.
Q.E.D.

9. Ground States of Quasifree Motion—Proof of Theorems 3 and 4

Proof of Theorem 3. (Case I) 0 is not an eigenvalue of L.
We use the following characterization of a ground state ¢ of a C*-algebra U
(Theorem 5.3.19 in [6]):

P(A(f)*A(f)) =0, (9.1)
A(f) = fol(A) f()d, 9.2)

for all AeA and for all f of the form
fO)=@Qn)~* fe "] (p)dp 9.3)

with C*® function f of a compact support contained in the open interval ( — oo, 0).
Applying the above characterization to A = B(h), we obtain

@(B(h(f))*B(h(f))) =0,
h(f) = [ hf (t)dt = F(L)h.
Hence, by norm continuity of B(h) as a function of h,
@(B(hy*B(h))=0 94)

for all h satisfying E , h = 0. (We are using E, = 0.) This already fixes ¢ to the Fock
state ¢, . It is easy to check that ¢, is a ground state of (U4, ). (Cf. case (a) of
proof of Theorem 4 below.)

(Case II) E, #0.

We split the Hilbert space of 4 into images of E; and 1 — E,, denoting them %,
and &,. Since I'L= — LT, [T, E,] =0 and these spaces are I -invariant. Let A{AR
and ATAR be the subalgebra of AAR generated by B(h) with heZ, and he %,
respectively. By the I'-invariance of £, and %, they are *-algebras. Furthermore,
linear combinations of 4;A4(4,€W,, A;€U,) are dense in AR,

As in case I, we have ¢@(B(h)*B(h))=0 whenever E_h=h. By Schwarz’
inequality, ¢(B(h)*A4) = ¢(AB(h))=0 for any AeA*® whenever E_h=h. Since
I'L=—-LILTE,=E_TI. If he¥#,, then h=h, +h_ with E.h, =h, and
B(h)= B(I'h,)* + B(h_) with both I'h, and h_ in E_<% . Hence linear combin-
ation of the identity operator and

B(hy)*... B(hy)*B(hy 1) .. B(hyn), ©.5)

for various choices of m, n and h,...h,,,, from E_%,, are dense in ATAR. For
m+n#0,

@(B(hy)*... B(hy)*B(hyi 1) ... B(hy 10)Ao) =0 (6.6)
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for any A,eUS*? because of B(h,)* if m#0 and because of B(h,,,)A, =
©(Ao)B(h,, ) if n#0. Since the Fock state ¢, on AR also vanishes on (9.5),
if n+m+#0, we have

0(A14o) = Qg (A1) p(Ay). 9.7)

Thus we have proved the necessity of (3.3).

We now show that (3.3) defines a ground state by explicitly constructing the
GNS triplet for such ¢. Let §, n;, 2, be the GNS triplet for the state ¢, of ALAR
and 97,92, be the GNS triplet for the state ¢, of AGAR. Let U,(O) be the
selfadjoint unitary operator in $, satisfying

U1(@)n(A)2, = 7,(O(4))L;. ©.8)
Let us consider = H,; ® H, and 2 =02, ® Q.. Let hyelLy, h, €8y,
(B(ho + hy)) = 11 (B(h1)) ® 1 + U (@) ® o(B(hy))- .9
It is then immediately checked that (9.9) satisfies
n(B(h))* = n(B(I"h)), (9.10)
[(n(Bha))*, m(B(hy)) ]+ = (her hy)1, ©.11)

and hence it generates a representation of AAR on &,
From the definition and U,(®), = Q,, it follows that

(2, (A1 Ap)82) = (24, 1 (A,)€2,)(Q0, o (A ) 20)
=g, (A1)Po(4o)
for any A;eAAR and A,eASAR. Since =, is irreducible, U,(O)® 1en(A,)". Hence
1 ®@me(WUy) = w(A)”. Since 2, and Q, are cyclic, ¥, ® ¥, with any ¥, €9, and
¥,e9, is in the closure of (AARY" Q2 > 1, (UAR)Q, ® 1o (ASAR)Q,. Hence 2 is a
cyclic vector and (9, 7, 2) is the GNS triplet for ¢ of the form (3.3). (It also shows that
@ is a state.)
It remains to show that ¢ is a ground state. Let
Uy (0)ny(A)2) = 7y (0 (A))2;  (AeUPR), ©.12)
U,(t)=expith,.
Since AGAR is generated by B(h) with Egh=h (ie. e''h = h), a,(A,) = A, for any
Aoe AR, Furthermore o, @ = @a,, which implies [U,(t), U,(@)] = 0. Therefore
U(t)=U,(t)®1 satisfies
U(t)n(4)2 = n(0,(A))£2, 9.13)
U =expith, ® 1), h, @1 20. (9.14)

Therefore ¢ is a ground state. Since ASAR is non-trivial, there are more than one @,
and hence more than one ground state of 2. Q.E.D.

Proof of Theorem 4. The first and major step in the proof is to show that the @-
invariant extension / of a pure ground state y of ASAR to ACAR always gives rise to a
ground state representation of ACAR:
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Let 9, w, 2 be the GNS triplet for if. We use an elementary result about spectral
subspaces. For any closed subset A of the real line, let A°A¥(A) be the set of AeWAAR
such that

Ja(A)f(t)dt =0 (9.15)
whenever the support of
Je*f(t)dt = f(p) (9.16)

is disjoint from A. If 4,eAR(A,) (i=1,2), then 4, 4,eUARA)for A=A, + A,
(the closure of the set of all x, + x, with x, €4, x,€A4,). Let h; and h, be such that
their L-spectral supports are contained in (— oo, —¢] and (— o0, 0], respectively.
Then B(h,)eAR((— oo, — €]), B(h,)eAAR((— o0,0]) and

B(hy)B(h,)e U (— o0, —&]). ©.17)

We use now the characterization of a ground state y of WAR asserting that
Y(A*A) =0 for any ¢ >0 and any AeUP¥((— o0, —&]). We immediately obtain

7(B(hy))w(B(h,))2=0. 9.18)
We now have the following two alternative possibilities:
Case (I).
n(B(h))2=0 9.19)

for all ¢ > 0 and for all h,. Then n(B(h))£2 = 0 whenever E_h = h by continuity. By
the same argument as the proof of Theorem 2 in case II, we prove the formula (9.7)
for ¥/(4,A4,) and show that i is a ground state of CAR,

Case (II). There exists h; such that ¥ = n(B(h,))€2 # 0 and

Y(B(h,))¥ =0 (9.20)

for all h, satisfying E _h, = h,. Hence y(4) = (¥, n(4) ¥)/( ¥, ¥) is a ground state of
ACAR Let E' be the projection operator onto the subspace n(AAK) ¥, By m(ACAR)
invariance of the subspace, E'en(U“ARY. Since (2, n(B(h,))* ¥) = | ¥ |2 # 0, we see
that E'Q#0.

Since n(B(h,))E'?2 = E'n(B(h,))2 = E'¥ = ¥, E'Q is cyclic in 7(2) ¥ and hence
the cyclic representation of the state

P(4) = (EQn(AEQ)/|EQ|*

of UCAR is a ground state representation.

By Lemma 4.1, ) is either pure or = (w, + w_)/2 with w, pure and giving rise
to mutually disjoint irreducible representations n* and n~. In the former case
@ < |E'2|| 72 implies ¢ = and = is a ground state representation. In the latter
case £’ # 0 can be either projection on one of inequivalent irreducible subspaces or
1. Hence either ¢ = w, or ¢ =. The case ¢ =y is the same as before. If g = .,
then 7" is a ground state representation. Since ® commutes with «, and w_
=w,°0, 1~ must be also a ground state representation (equivalent to n*-@®).
Hence = (w, + w_)/2 is also a ground state representation. This completes the
first step of the proof.
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We now consider different cases for the ground state representation of AR to
discuss the ground state representation of 2, contained in the former.

Case (a). Eo=0. In this case ¢, is the unique ground state of (U}, «,) and
contains mutually disjoint representations #, and n_ of AR, n_ is the cyclic
representation associated with the restriction of ¢, to AR, which is a ground state
of (AUGAR, o).

In order to see whether n_ is a ground state representation or not, we study
the spectrum of h, for ¢ = @z, on H_. As is known,

0@
9. =CQ® ) Asym,, 29,
n=1

o @
H_= Z Asym,,, , | LD,
n=0

where £, is the Hilbert space consisting of all E , h and Asym,, is the projection onto
the totally antisymmetric part of n-fold tensor product of copies of & :

Asym, = (n!)~1 Y sign(P)n,(P), 7,(P)(hpy® ... ®hppy) =h @ ... ®h,,
where the sum is over all permutations P of (1,...,n). We have
U, (1) ¥ = (e!1)®Cer Dy, 9.21)
hY={L®1® -®1+I1QL® @1+ +1®1® -®L}Y¥, (922

for WeAsym,,,  £%**Y. Thus the spectrum of h, on the »™ summand
of §_ is the sum of (2n + 1) copies of positive spectrum of L and the point spectrum
of h, on $_ is the sum of (2n + 1) copies of the positive point spectrum of L. (Note
that L in (9.22) is acting on Z,..) The infimum of the spectrum of A, restricted to
each Asym,,,, £%%*Y (which is U,(f) invariant) is (2n+1) times the
infimum of the positive spectrum of L. Hence the infimum of the spectrum of h,
restricted to # _ is the infimum of the positive spectrum of L and it is an eigenvalue
of h,, if and only if the infimum e of the positive spectrum of L is a point spectrum
of L. (Then it is non-zero because E, =0.) By Theorem 5(2) and (3), this proves
the uniqueness of the ground state representation in case ().

Furthermore, similar computation as above shows that the eigenspace of &,
belonging to 0 is one-dimensional, and hence the restriction of ¢, is the unique
ground state of ASAR if E, =0. This then completes the proof of uniqueness of
ground states of ASGAR in case (x).

If e > O is an eigenvalue of L and the infimum of the positive spectrum of L, then
any pure ground state giving rise to the representation n_ (still E, = 0) is a vector
state by an eigenvector ¥ of h, belonging to e, which implies ¥ = n(B(h,))$2 with
Lh, = eh,. In this case n(B(h))¥ =0if E_h = h and (h, I'h,) = 0. It vanishes also for
h=h,. Therefore n(B(h))¥ =0 holds whenever E'h=0 for E'=E, — P(h,) +
I'"P(h,)I". Thus the vector state by  is the Fock state ¢p.. Note that 'E'T’=1—E'.
This completes the proof of (3).

Case (b) dimE, = 1. (= Case(p).). In this case AR is commutative and two-
dimensional, spanned by 1 and B(h,) with Eghg = h,. Since [I, E,] =0, I'hy = ch,
with [¢| =1 due to I'*> = 1. The constant ¢ can be reduced to 1 by redefinition of k,,
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with a suitable phase factor €. We also normalize (ho, ko) = 2. Then B(h,) is self-
adjoint unitary due to B(ho)* = B(I"hy) = B(h,) and B(hy)* =2~ *[B(ho), B(ho)]+ =
1. There exist two pure states of AGA® characterized by ¢, (B(ho)) = + 1. Since ¢,
O = ¢_., we have exactly two pure ground states for A4® given by (3.3) with ¢, =
¢,. The two pure states are disjoint (n(B(hy))= + 1) and are mapped to each
other by ©. Hence we have the unique @-invariant ground state of AA® and the
unique ground state representation of WSAR (contained in the former) by Lemma 4.1,
for example. The restriction of two pure ground states of AR to WSAR coincides and
gives the unique ground state of AR, This is because the cyclic representation space
associated with either one of pure ground states of 2“4 is the Fock space for ¢, of
ASAR, which is generated by B(h), Eoh =0, and can be identified with the cyclic
representation space of the ground state of AR due to n(B(hy)) = + 1. Then the
uniqueness follows from the fact that the eigenspace of h,, with eigenvalue 0 is one-
dimensional and spanned by 2. This completes the analysis of case (f).

Case(c) dimEy,> 1. (= Case (2).). The fixed point algebra AR contains
elements in AR, and hence any ground state of AR giving rise to the n_
representation must also extend to a ground state of AAR (via the representation ).
Note that the definition of h,, for an irreducible representation z_ does not depend
on how the representation is constructed and a ground state of AS*® giving rise to
the 7_ representation must be a vector state by ¥e 9 _ satisfying h,, ¥ = 0. Therefore
all ground states of ASAR are obtained as the restriction of a ground state of AR to
WEAR, Since WSAR A ASAR is nontrivial (which is not true for the case (f)), there exist
different ¢,’s which have different restrictions on A§AR A AGAR, (Any state of the
latter can be extended to a state of ASAR.) Hence the ground state of ASAR is not
unique. Q.E.D.

Appendix
Proof of Lemma 7.3. Consider the Fourier transform
Fo)=@2m)~ 12 | e""*f(x)dx. (A.1)
Define
(U f)(x) = eFf (x), (A2)
o Jef(p) if +p=0,
(5:)(p) —{ 0 it +p<0. (A3)

In the Hilbert space of L, functions f with inner product
()= | [1(*f2(x)dx = | T1(@)*72(p)dp, (A.4)
we have, for 6 >0 and 6= +

jdxldx2f1(x1)f2(x2)(x1 — x5 + 0id) "t exp i(F(x;) — F(x,))t
= —20in(U,f1,q5,U.f>2)- (A.5)
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Hence the limit 6 —» + 0 is given by g,, which has norm 1. Thus (7.42) is uniformly
bounded by 2z || f, || | f2 |, and it is enough to prove it for a dense set of f’s.
Since F is piecewise C2 and nowhere constant, there exists a countable family of
mutually disjoint open finite intervals I; = (a; b;) (j = 1, 2,...) with dense union such
that F is C* and monotone oneach I;. LetI,; = [a;+ 1/n,b; — 1/n]([o, ] is taken to

be an empty set if a>f), 4, = U I, x, be the characteristic function for the
ji=1
set A, and P, be the multiplication of y, on f as an operator. Then lim P, = 1 and
[P,,U]=0.
nWé propose to prove (A.4) for a dense set of f’s having the following properties:
(i) The support of f is contained in A, for some n.

(ii) On each I,; f is of the following form
J(x) =1F'(x)g(cF(x)), (A.6)

where 7 = * is the sign of F'(x) for xeI,;(where F(x)is monotone) and g is an entire
function (polynomial, for example). It is then enough to prove (7.42) when the
integral is over (xy, X,)€l,; X I .

If j #k, then (x; — x, + ¢id) ! is uniformly bounded. By the same argument as
the case of (7.34), the contribution from I,; x I, tends to 0 as t > + co. Hence we
have only to consider the integral of x, and x, over the same finite interval (a, b) for
some a < b.

By a change of variable from x; to y; = tF(x), the left-hand side of (7.42) (apart
from limits)

B B
i dy; [dy»G:(y1)92(02)(G(y,) — G(y,) + 0id) "L exp ti(y, — y1)t, (A7)

where o =1F(a) < B =1F(b), g, is g of (A.6) for f=f; (j=1,2), g(y)=g(y) is also
an entire function, G(y;) = x; is monotone increasing with G'(y) = (tF'(x))~".
We now consider the following decomposition similar to (7.38).

(G(y1) = G(y,) +0id) ' =R; + R, +R;, (A.8)

Ry =G'(y) (1 —y2 +0idG (y))™H) 74, (A9)

Ry=(y1 =y, +0i6G'(y) ™) H{I[(1 = y)/(G(y) — G(2))] - G'(y;) "'}, (A.10)
Ry=(y1 =y, +0i6G (y))™ ") {1 — y2 + 0idG (y)) ")/(G(y1) — G(y,) + id)]

—[r1 = y)/(G(y1) — G(y))1}- (A.11)

We discuss the limit as 6 >0 and then t — + oo for each term of (A.8).
We start with R;. Denoting z=(y; —y,), G =G'(y,), R= —z"*[G(y; —z) —
G(y1) — (—2)G'(y,)] we obtain

R, =0i0z(zG' + 6id)"*G'"'R(1 + z3(G'z + ¢i6) " *R)" (1 +zG'"*R)™!. (A.12)

From (A.11), R, is uniformly bounded and uniformly tends to 0 as § - 0 if | z| = & for
any fixed ¢ > 0. Since F is C? and tF’ is strictly positive, G is C? and R is uniformly
bounded. Therefore (A.12) shows that R; is uniformly bounded for |z| < ¢ due to

|6iézG'(zG' + 6id) 2| L 1.
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Therefore the contribution from R; vanishes in the limit of § — 0.
We now come to R,. With the same notation as above,

R, = —zRG' " (zG' + ¢id)"*(1 +zG' "'R) .. (A.13)

Since G is monotone, R, is uniformly bounded for |y, — y,| = ¢ for any & > O fixed by
(A.10) and R, is uniformly bounded for |y, — y,| < ¢ for sufficiently small ¢ > 0 by
(A.13). (Again |z(zG' + 6¢id)G’| < 1.) Furthermore R, tends to

Ry,o=—G 2R(1+zG'~'R)™! (A.14)
pointwise except at z=0 and uniformly for |z| = ¢ for any ¢ > 0. Therefore the
contribution from R, in the limit of 6 - + 0 is given by an integral with uniformly

bounded kernel, and hence tends to 0 as t - + oo by the same reason as for (7.39).
Finally, the contribution from R, takes the following form

B8 ,
de1 de2g_1(Y1)gz(}’2)Gl(J’1)_ 'y =y, 4+ 0idG'(yy) 1) e

B yi-a
=£ [ dz§,(y1)9:(y1 — 2)G'(yy) ™ (z + 6i6G'(y,) ™) e (A15)

}H—

We split g,(y; — 2) = (g,(y1 — 2) — 92(¥1)) + g2(y1)- Since g, is analytic,
R(0)=(92(y1 — 2) — 92(y1))(z + 6idG'(y,) 1)~

is uniformly bounded and, in the limit of § — 0, the integral is described in terms of
the bounded kernel R(0). By the same reasoning as before, this contribution tends to
0 as t > + oo. We are now left with

Idylgl(yl)gz(yl)G(yl I (2+aléG(y1) 1)~ lemmH Ly, (A.16)

yi—

We deform the integration in complex z-plane to y, Uy, UYys, where

1= {y; — B—d'ir;re[0,e]}, (A.17)
v ={r—dig;refy, — By, —al}, (A.18)
V3= {1 —a—d'ir;re[0,¢]}, (A.19)

and ¢’ is the sign of t. For sufficiently small §, we obtain the contribution from the
pole at z= — ¢iéG'(y,) ! if and only if o = ¢’, which is in the limit of § -0

g
— 021 [dyG'(y) ™', (n)g2(y) = —02nl§f1 x)f2(x)dx, (A.20)

where we have used the change of integration variables y = tF(x) along with (A.6)
and G'(y) ! = tF'(x).

The contribution from y, in the limit of 6 » 0 tends to 0 as t - + co due to the
exponential factor e ~** (due to our choice of the sign ¢’). The contribution from y,
and y; tends to 0 as ¢ —» 0 because the integrand is integrable for § = 0.

Thus we obtain (A.20) if the sign of F'(x) in (a, b) is the same as + ¢ depending on
whether ¢ tends to + oo or — oo and 0 otherwise. This coincides with the right-hand
side of (7.42) and Lemma 7.3 is proved.
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