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Abstract. We study the anisotropic quantum mechanical ferromagnetic
Heisenberg model. By anisotropic we mean that the x and y exchange
constants are equal but smaller than the z exchange constant. We show that for
any amount of anisotropy there is long range order in two or more dimensions
at low enough temperature. We also develop a convergent low temperature
expansion and use it to prove exponential decay of the truncated correlation
functions.

1. Introduction

The Hamiltonian of the quantum mechanical ferromagnetic Heisenberg model is

- Σ (α

The isotropic Heisenberg model is obtained by taking αx = ocy = az. We will study
the anisotropic case ax = ay — α, αz = 1 with α < 1. Our main result, Theorem 2.1, is
that for two or more dimensions and any α < 1, there is long range order (LRO) at
sufficiently low temperature. By LRO we mean that <σf σ^> is bounded away from
zero uniformly in i and). We use free boundary conditions to define the Gibbs state
< >. We will also show that a polymer expansion for the model converges for
sufficiently low temperature. This yields more detailed information than LRO, e.g.,
the truncated correlation functions decay exponentially (see Theorem 2.2).

Ginibre [8] and Robinson [12] proved the existence of LRO at low
temperature for sufficiently small α. Kirk wood [9] and Thomas and Yin [14, 15]
proved LRO at low temperature in similar models. Frόhlich and Lieb [6] showed
that if reflection positivity is true for the model then there is LRO for any α< 1.
However, Speer [18] has shown that reflection positivity is not always true for the
model. For the classical Heisenberg model Malyshev [10] proved the occurrence
of LRO for any α< 1. This result was improved by Bricmont and Fontaine [17].

* Research partially supported by U.S. National Science Foundation under Grant
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Our proof may be thought of as a Peierls argument combined with a
resummation which takes care of much of the contour counting that must be done.
We begin by following [8] and using the Trotter product formula to express our
system in terms of Peierls contours that evolve in time. We can write the
Hamiltonian as

where H{so is the isotropic Heisenberg Hamiltonian and Hz is the Ising model
Hamiltonian (0^ = 0^ = 0, α z=l). So α=l — δ. The weight of a time-dependent
contour Γ is a product of two factors, one from (1 — δ)Hiso and one from δHz. The
latter looks like exp( — βδ\Γ\av), where \Γ\av is the time average of the number of
bonds in Γ. To simplify the explanation we assume that \Γ\aυ is at least half as large
as |Γ(0)|, the initial number of bonds in Γ. So we can bound exp( — j8<5|JΓ|flI,)by
exp(-i/W|Γ(0)|).

We do the sum over all time-dependent contours Γ in two stages. First, we sum
over Γ(0), the initial configuration of Γ. Then we sum over the time evolution of Γ.
Given an initial configuration Γ(0), the sum over the time evolution of Γ of the
weight from the (1— δ)Hίso term may be explicitly evaluated using the Trotter
product formula. This resummation yields tr(Pe~β(1~δ)H*so), where P is a two-
dimensional projection which depends on Γ(0). This trace is easily bounded. This
leaves the sum

Γ(0)

which can be bounded as in the classical Peierls argument. Thus the resummation
reduces the estimate needed for the quantum mechanical model to a classical
estimate.

The anisotropic model is quite different from the isotropic model, even if δ is
small so that α^ and ay are close to αz. By the Mermin-Wagner theorem [11] the
isotropic model, unlike the anisotropic model, does not have LRO in two
dimensions at any temperature. (Our lower bound on the critical temperature goes
to zero as δ goes to zero, so there is no contradiction between our result and the
Mermin-Wagner theorem.) The ground state of the isotropic model is infinitely
degenerate while the anisotropic model has only two ground states - all spins up in
the z-direction and all spins down in the z-direction. A related observation is that
in the anisotropic model it is natural to introduce Peierls contours with respect to
the z-component of the spins. There is no natural way to introduce Peierls
contours in the isotropic model.

We only consider the spin 1/2 case in this paper. For higher spin S one can still
define Peierls contours with respect to the spin in the z-direction. In the spin 1/2
case there is only one type of bond in the Peierls contours. For higher spin the
contours consist of different types of bonds since two spins can differ in more than
one way. Our results and proofs extend to these more exotic contours.
Unfortunately, the resulting bound on the critical temperature is very dependent
on the spin. If we normalize the spin operators by dividing by S, then as S->oo the
quantum mechanical model looks like the classical model. One would expect that
the critical temperature of the quantum mechanical model converges to that of the
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classical model. However, our bound on the critical temperature goes to zero like
l/S.

The reason for this poor bound on the critical temperature is that for large S
our Peierls contours separate spins which may only differ by a small amount (l/S).
For large S one should probably introduce Peierls contours as in [6]. However, it
is not clear how to use our resummation technique when Peierls contours are
defined in this way.

This paper is organized as follows. In Sect. 2 we state our main results. Then we
use the Trotter product formula to express our system in terms of time-dependent
Peierls contours. This representation is standard, but our decomposition of these
contours into connected components is not. Section 3 begins with the statement of
the key estimate of this paper, Theorem 3.2. This estimate is used to prove LRO.
Then the estimate itself is proven. A polymer expansion for the model is discussed
in Sect. 4. The convergence of this expansion also follows from Theorem 3.2.

2. Statement of Results and the Contour Expansion

For a finite subset A of Zv with v ̂  2 we let

Hxy=- Σέ(*X+<#j2)

The sum is over nearest neighbor pairs <rs> in A. Each such pair is counted once.
σ*, σy

r, and σz

r are the usual Pauli spin matrices. The Hamiltonian is

with 0 < δ rg 1. Note that H is defined so that the ground state energy is 0. < >^ will
denote the usual Gibbs state.

Our main results are the following two theorems.

Theorem 2.1. For 0<δ^l there exists βc(δ) such that for β>βc(δ) there exists
M2(β,δ)>Q with

M) ViJandΛ.

Moreover,

limM2(jM)=l
β->co

for fixed δ.

Theorem 2.2. For 0 < δ ̂  1 there exists β0(δ) such that for β ̂  β0(δ) there exists m1?

m2, c l 5 c2>0, depending on β and δ, such that if we let

oo = lim (σtφA , α = x,y, z ,
Λ-+TL?

ana

Mi= lim <σfσj> 0 0,
- -
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then

Remarks. 1. In both theorems we implicitly assume that the volume A is large
enough that the distance from the line segment between i and j to dA is at least as
large as the distance from i to j.

2. We have used free boundary conditions in our definition of H. As with the
Peierls argument for the Ising model, our argument can handle other boundary
conditions. Of course, different boundary conditions can yield different infinite
volume Gibbs states.

3. We prove Theorem 2.2 by showing that a polymer expansion for the system
converges. Such an expansion gives results about all the correlation functions, not
just the two-point function. The expansion can also be used to prove the existence
of the infinite volume limit and the \i— j\-*oo limit in Theorem 2.2.

4. Theorem 2.2 says that the correlation length of the system is finite. For small
δ and large β our upper bound on the correlation length is proportional to l/δ and
independent of β. An interesting question is the true behavior of the correlation

length for small δ and large β. In the classical case it is approximately l/]/<5 for
small δ and large β [16].

5. Our proofs are valid for any dimension greater than or equal to two.
However, we will use the terminology of two dimensions. In particular, our Peierls
contours will consist of bonds in the dual lattice. In three dimensions they would
consist of plaquettes. Our bound on the critical β and various constants depend on
the number of dimensions.

We begin by introducing the usual Peierls contours. An orthonormal basis for
the state space is given by the collection of vectors which are eigenvectors of all the
σ*, r e Λ. There is a two-to-one correspondence between these vectors and Peierls
contours. Given such a vector, the corresponding Peierls contour is the set of
bonds b in the dual lattice such that the z-components of the spins on opposite
sides of b are opposite. The correspondence is two-to-one since we can flip all the
spins and still have the same Peierls contour. We will use G to denote a Peierls
contour. Note that in our terminology a contour need not be connected. Figure 1
contains six examples of Peierls contours.

As in [8, 12] we use the-following variant of the Trotter product formula,

— ftΐί 1 I ~ ~Λ7^Z / Λ P\ / TTXV \ /O O\e ?H= lim I e N | 1 —H x y } | . (2.2)

Letting

we have

-H**= Σ(σ>Γ+σr-σs

+). (2.3)
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α. Γ(0),Γ(1/10),Γ(2/10)

c. Γ(5/10),Γ{6/10)

e. Γ(8/10) /Γ(9/10)
Fig. 1

b. Γ(3/ΊO) fΓ(4/10)

d. Π7/10)

Given a Peierls contour G, (σf σs + σr σs

+) annihilates the two corresponding basis
vectors unless G contains the bond separating r and s. In this case this operator
flips the spin at r and flips the spin at s. The Peierls contour changes accordingly.
We denote the new contour by

Figure 1 provides several examples of how a Peierls contour can change. Label
the contours in α,6, ...,/ by G1? G2, ..., G6. Then

where the bonds (r2,s2), ...?(r6,s6) are ((2, 2), (3, 2)), ((6, 2), (6, 3)), ((2, 3), (2, 4)),
((1,4), (2, 4)), and ((7, 1),(7,2)). We have specified "x-y coordinates."

Definition 2.3. A quantum contour is a function Γ = Γ(t) from

0, — , — , ..., — — — , 1 > into the set of all possible Peierls contours such that

(2.4)

(2.5)

N'N9'"' N

(1) Γ(1) = Γ(0).

(2) For each m = 1,2,..., N either

Kl)-(V/
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or

(b) r(£) =(σ>- + σ-σ;)r(^-) (2.6)

for some <rs>.
Figure 1 provides an example of a Γ(f) with N=10. However, this example

does not satisfy the Γ(0) = Γ(1) condition. Nonetheless, Fig. 1 will still serve to
illustrate our definitions.

For each Γ we let n(Γ} denote the number of flips in Γ, i.e., the number of m such
that condition (b) above holds. The average of the z-component of the Hamil-
tonian is

, the number of bonds in Γ ( — ). The weight of Γ is
Λf >

m
— 1 I is just i'\-

W(n=\^^-\ e~^Γ\ (2.8)

Finally, we define sgn(Γ)= ± 1 by

Graphically, sgn(Γ) is (—1)", where n is the number of times a path from i to j
crosses Γ(0).

The point of these definitions is the following expansion.

tr(e~βH) = lim 2^W(Γ). (2.10)
]V-»αo Γ

The trace in the left-hand side corresponds to the sum over Γ(0) and the condition

Γ(0)-Γ(l). The sum over r ( — j , Γ ί — J , . . . , rf~^~} comes from expanding

out the factors

Similarly,

tr((l-σz

ίσ*)e-βH}= lim 4 Σ W(Γ). (2.11)
7V->oo Γ :sgn(Γ)=-l

Next we define the support S(Γ) of a quantum contour Γ. We think of the dual
lattice as a subset of 1R2. Each site in A is at the center of a square in the dual lattice.
We take these squares to be closed. Λ* is the union of the closed squares
corresponding to the sites in Λ. The support S(Γ) will be a subset oϊΛ* made up of
closed squares and bonds in the dual lattice.
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Si-

Definition 2.4. F(Γ) is the union of the closed squares such that the spin at the
corresponding site flips at least once in Γ. So the square corresponding to site k is in
F(Γ) if for some m E {1,2,..., N} condition (b) of Definition 2.3 holds for some </s>
with k = r or k = s.

The support of Γ is

(2.12)

Γ is said to be connected if S(Γ) is connected. Γl and Γ2 are said to be disjoint if their
supports are disjoint. Figure 2 shows S(Γ) for the Γ(ί) in Fig. 1.

We will use γ rather than Γ to denote connected quantum contour configur-
ations. We caution the reader that γ may be connected without γ(t) being
connected for any t.

If a bond b is contained in S(Γ) but not in F(Γ), then the two squares on
opposite sides of b are not in F(Γ). So the two spins on opposite sides of b never flip.
Hence b is in Γ(t) for all t So for any t

S(Γ) = ί'(Γ)uΓ(ί). (2.13)

Given disjoint Γ1 and Γ2 we can combine Γ1 and Γ2 by defining (Γ1uΓ2)(ί)
= Γ1(ί)uΓ2(ί). The crucial property to note is that W(ΓlvΓ2)=W(Γ1)W(Γ2). More
importantly, we can go the other way and decompose a given Γ into connected
pieces. Write S(Γ) as a union of disjoint connected components.

s(Γ)= lU

Let γi(t) = Γ(t)nSi. Then the y/s are connected and disjoint. And

In the example in Fig. 1, S(Γ) has two components. They are labelled in Fig. 2.
Thus Γ = γί uy2 7ι and y2 provide examples of two extremes, y^t) is connected for
all ί, while y2(ί) is never connected.

The decomposition F~>y1;..., yn is unique except for the ordering of y 1?..., yn.
We will sum over all orderings and then divide by n\. Note also that

π

sgn(Γ)=
i

So we have the following lemma.
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Lemma 2.5.
oo I n

tr(e~βH)= lim 2 Σ -7 Σ Π
N-+CQ n = 0 n. y ι , . . . ,7n i=1

oo 1 n

trCσfσJe-^H lim 2 Σ ~τ Σ Π
jV +oo n = 0 n\ y l 5 . . . , γ n i = l

tΐ((l-σiσ^e'βH)= lim 4 Σ -7 Σ Π

s g n ( γ ι u . . . u y n ) = - 1

In all three sums the yt must be connected and disjoint.

3. Proof of LRO

We must take the N-+CO limit before we take the infinite volume limit. So
throughout this section we work in a finite volume Λ. So all quantum contours y
have S(γ)cΛ*. The bounds we obtain on quantities like ^σzσz

j')Λ are independent
of A and so carry over to the infinite volume limit.

The following theorem is the heart of our proof of LRO. It is also the estimate
needed to prove the convergence of the polymer expansion of the next section. We
need a definition to state the estimate.

Definition 3.1. |S(y)| is the number of bonds and closed squares in S(y). The bonds
which are part of the closed squares in S(y) are not counted in |S(y)|.

In the example in Figs. 1 and 2, 15 )̂1 = 10 and |S(y2)| = 7.

Theorem 3.2. Given δ, 0 < δ ̂  1, there exists β0(δ) >Qandε = ε(δ) > 0 such that for
β^β0(δ) and any closed square PcA*,

Em Σ FKyK|5(y)l^OM)> (3-1)

where r(jβ, δ)->Q as β-+co with δ fixed. The sum is over connected y whose support
intersects P. r(β, δ) is independent of A.

We use Theorem 3.2 and the usual Peierls argument to prove Theorem 2.1.

Proof of Theorem 2.1. We must show that ^l—σz

iσ
z

jyΛ is small uniformly in i,j,
and Λ. We claim that

<l-σfσj>^ fiϋ 2 Σ W(γ). (3.2)
N-+OO y :sgn(y)= - 1

By Lemma 2.5 this inequality is implied by

oo 1 n

Σ - Σ Π w(yt)
n=l nl y ι , . . . ,y n : i=l

s g n ( y ι u . . . u y n ) = - 1 (3.3)

i^ Σ π
= 0 M! 7ι,.... Jn ί= 1
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To prove inequality (3.3) we note that given y with sgn(y) = -1 and disjoint
y l 5 ...,γn such that sgn^u ... uγn)= +1 and ̂ u ... uyM is disjoint from y, then
y, y 15 . . ., γn are disjoint and sgn(y uy x u . . . uyn) = - 1. In this way every term in the
left-hand side of (3.3) appears at least once in the right-hand side.

Thus the proof is reduced to showing that

ϊϊm Σ
]V-> oo y :sgn(y)= — 1

W(γ) (3.4)

is small. We must use the constraint sgn(y) = - 1 to tie down S(y) to a square. If
sgn(y) = — 1, then either S(y) encloses i or j, or S(y) intersects both cM and [i, j], the
line segment from ί toj. In both cases dist({zJ},S(y))^|S(y)|, provided Λ is large
enough that dist([iJ],<M)^:|z — 7]. Hence S(y) intersects a square P in Λ* with

or dist(P,j)^|S(y)|. So

Σ W(y)= Σ Σ
y : s g n ( y ) = - l m = l y : s g n ( y ) = - l

M
v-» - εi

m = 1

M
s Σ e-«

m=l

n j.

γ:sgn(γ)= -1
\S(γ)\=m

n Σ

P : d(P, i)<m y
or d(P, j) i m

Σ

We have taken advantage of the fact that S(y) C Λ* implies |S(y)| ̂  M, where M is
an integer which depends on A. Since the lim sup of a finite sum is less than or equal
to the sum of the lim sup's, we have shown that (3.4) is

^ Σ e~εm
Σ Urn

by Theorem 3.2. The sum over m converges and is independent of β. Since
r(β,δ)-+0 as β->oo this completes the proof. D

We now turn to the proof of Theorem 3.2. We introduce some notation.

>(Γ)

Γ'HH^ (3.5)
N

β= (3-6)

So ρ < 1 and ρ depends on (5,

(3.7)
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So W(Γ) = W0(Γ)P(Γ) Finally,

. (3.8)

Note that W0(Γ) is the weight associated with e~βH°.
We motivate our proof by sketching a simpler proof that does not quite work.

Split up the sum over 7 as

Σ Σ -
G y:y(0) = G

The sum is over all Peierls contours G in Λ, not just over connected G. We can
control the second sum by the resummation

I im2 Σ W0(Γ) = tr(e-βH°PG), (3.9)
N^co Γ:Γ(0) = G

where PG is the projection onto the two dimensional subspace associated with G.
Since //0^0, (3.9) is bounded by 2. We would like to use P(y) to control the sum
over G as in the classical Peierls argument. There are two problems to be
overcome. First, G need not be connected. This is compensated for by the factor of
ρn(Γ) which will provide exponential decay between the components of G. Second,
Hz(y(0)) can be large without Hz(y) being large since the number of bonds in γ(t) can
decrease. We overcome this second problem by replacing y(0) = G by γ(i) = G,
where t is chosen so that Hz(y(t)) is not too large relative to Hz(y).

f 1 2 1
Proof of Theorem 3.2. Define a subset T(y) of < — ,—,..., 1 > by

(3.10)

By the definition of /7Z, Eq. (2.7), and Chebyshev's inequality,

For a closed square P in the dual lattice and a Peierls contour G, we define an
integer DP(G) which measures how spread out the components of G are and how
far G is from P. Let F be a union of closed squares in the dual lattice such that
PuGuF is connected. Then DP(G) is the minimum over such F of the number of
squares in F.

We can now begin bounding the sum in (3.1). This sum over y will have various
constraints added to it. To simplify notation we use the following abbreviations :

P means PnS(y)Φ0,

T means feT(y), (3.12)

G means y(t) = G .

As always, the use of y as opposed to Γ implies y must be connected. The sum in
Theorem 3.2 is

Σ Σ 7^τrWW | sωl (3-13)
t γ:P,T \T(y)\
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Using (3.11) and bounding -- Σby sup, the above is
iV ί ί

^2 sup Σ WW5(y) l.
t γ:P,T

Fix a time t for the remainder of the proof. All estimates will be uniform in ί. If
t e T(y), then

where |y(f)| is the number of bonds in y(ί). We now drop the constraint T. So

l^ Σ W0(y)ρn^e'^s^. (3.15)
y : P, T γ:P

By Eq. (2.13),

S(y) = y(ί)uF(y).

So 15(7)1^17(01 + 1 (̂7)1- And |F(7)|^2w(7) since each flip changes two sites. Thus

if β is sufficiently small, depending on δ. So (3.15) is

^ ^ IT// - -
^ Σ ^o(

We rewrite this as

v^ \π TT// \ Ίn(γ) ~β~R\G\ (~> ι^\Σ Σ W0(y)ρ2 e 8 , (3.16)
G y:P, G

where the sum over G is over all Peierls contours, not just connected ones. Note
that 7(ί) φ 0. This is a consequence of the fact that (σ,+ σs~ + σ~ σs

+ )G φ 0 if G φ 0. So
the sum over G in (3.16) does not include the G = 0 term. The definition of DP(G),
the connectedness of F(y)uy(ί), and the constraint Pn[jF(y)uy(ί)]Φ0 imply

DP(G)£\F(γ)\£2n(γ). (3.17)

So (3.16) is

^Dp(G^GlΣW0(y). (3.18)
G y : G

We have dropped the constraint P on 7.
Consider the sum Σ W0(γ). Recall that the constraint G means that 7(0 = G.

y : G

Because 7(0)^7(1), this sum is independent of ί. So take ί = 0. Our bound (3.18) is
thus independent of ί. The only quantity in (3.18) which depends on JV is W0(y). So
taking the limsup as N-^co we have

N->oo γ:P JV-^oo G y : G

ΣW.(y).
y.G
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We have used the fact that the sum over G is finite since we are in a finite volume. As
in the introduction to our proof, see Eq. (3.9),

m Σ W0(y)^ m Σ W0(Γ)=fr(e-βHoPG)£l, (3.19)
ΛT->oo y:G W-»oo Γ:G

since H0^0 and PG is two-dimensional. The change from y to Γ indicates that we
drop the constraint that y be connected.

We have thus reduced the proof to bounding

'*|G|. (3.20)
G

The idea behind bounding this sum is the following. The sum over G can be done
by first summing over the choice of the shapes of the connected components of G,
and then summing over the locations of those components. The first sum is

controlled by the factor of e 8 in the usual way. The second sum is controlled

by the factor ρ4 , since this factor decays exponentially as we move the
components of G apart.

We implement the above idea by thinking of G as being generated by a random
walk on the set of bonds in the dual lattice. We will show that (3.20) is

|ω|
< Σ e~βδ°\ω\ FT //*(«(' -1)'ω(θ) β 21)

ω i = l

The sum is over walks on the set of bonds in the dual lattice, i.e., ω is a sequence
ω(0),ω(l), ...,ω(n) of bonds for some n^l. \ω\ denotes n. The distance
d(ω(i — 1), ω(z)) is the minimal number of closed squares needed to connect ω(i — 1)
and ω(i). In particular, d(ω(i — 1), ω(i)) = 0 if ω(i — 1) and ω(ΐ) share an endpoint.
δ0 > 0 and ρ0 < 1. These two constants depend on the number of dimensions and on
δ. Also, we require ω(0) to be one of the bonds contained in P. We will show that for
each G there is an ω with G = (J ω(ί) and

i

n fr\ — a ir i l ω l

Let F be a collection of closed squares in the dual lattice with FuGuP
connected and DP(G) = \F\. The number of squares or bonds that are connected to
a given square or bond is bounded by a constant which depends on the number of
dimensions. By the Konigsberg bridge problem there is a walk on the bonds in G
and squares in FuP which visits each bond or square at least once but no more
than c0 times, where c0 depends on the number of dimensions. Furthermore, this
walk only jumps between connected squares and bonds, and we can start this walk
at P. We take ω to be this walk with the visits to squares deleted. Note that when ω
jumps between two bonds that are not connected, the original walk must visit at
least d(ω(i — 1), ω(z)) squares in between the two bonds. The left-hand side of (3.22)
contains a factor of ρ1/4 for each square in F and a factor ofe~βδ/8 for each bond in
G. So we have factors of ρ1/(4Co) and e~

βδl(8c°} for each visit to a square and bond,
respectively. Inequality (3.22) follows.
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Finally, to bound (3.21) note that

b' b

is finite and depends only on δ. Call this supremum K. Then (3.21) is bounded by

oo

c Σ Kne-βδ°\
n= 1

which converges for sufficiently large β, and -»0 as j8->oo. D

4. The Polymer Expansion

We have expressed our system as a gas of time dependent Peierls contours with a
hard core condition, specifically, the supports of the contours are disjoint. In this
section we give the polymer expansion for this system and discuss how this
expansion yields results like Theorem 2.2. These are standard techniques so we will
provide references to the literature in lieu of detailed proofs. A relatively simple
proof of the convergence of the polymer expansion, based on arguments in [4] and
[1, 2], may be found in Sect. 3 of [3] (see also [7] and [13]).

Definition 4.1. For a connected set ScΛ* which is made up of bonds and squares,
let

K(S)= lim Σ W(y)9 (4.1)
]V->oo γ : S ( γ ) = S

K(S)= lim Σ sgn(y)W(y). (4-2)
ΛΓ->oo γ : S ( γ ) = S

We discuss the existence of these limits below.
We write each sum over connected quantum contours y as the following double

sum
Σ= Σ Σ

y SCΛ* y : S ( γ ) = S

The sum over S is only over connected S. Then Lemma 2.5 yields the following
expansions :

oo 1 n
H) = 2 Σ -r Σ ΠK(Sύ, (4.3)

n = 0 n\ Sι,...,Sn ί=ί
CΛ.*, disjoint

~^H2 Σ ^ Σ Π R(Sd (4.4)
n = 0 n\ Sι,...,S» i = l

CΛ*, disjoint

In both sums the S l9 ...,Sn must be connected, disjoint subsets of Λ*.
Definition 4.1 assumes that the limits as JV-> oo in (4.1) and (4.2) exist. If we had

been using the formalism of stochastic processes, then K(S) would be given by the
integral of a characteristic function. Even without this formalism we can give an
easy proof of the existence of these limits. Fix an S and consider

2 Σ - \ Σ Π^ω (4.5)
n = 0 nl γι,...,γn: i=l
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Using Eq. (2.2), the limit as N-+CO of the above expression exists and equals
tr(Pse~βHs)9 where Ps and Hs are operators depending on S. Assume by induction
that K(St) exists for Sf £ S. Since every yt that appears in Eq. (4.5) either has S(yf) ξ 5
or S(yf) = S, the existence of the limit as N-+CO of (4.5) implies the existence oϊK(S\

We now use the polymer expansion to take the logarithm of the sums in (4.3)
and (4.4). We use the notation and convergence criteria of the review article by
Brydges [3],

oo 1 n

log(itr(e-«H))= Σ -7 Σ UK(S^c(S,,...,Sn). (4.6)
« = ι n\ sίt...,sn ί=ι

CΛ*

ψc(Sί9..., Sn) is the usual connected part of the hard core interaction. See Theorem
3.1 of [3] or Eq. (1.17) and Theorem 2 of [4] for its definition. (In [4] ιpc is denoted
by φτ.) In the above sum the S1?..., Sn need not be disjoint. In fact, ψc(Sl9..., Sn) will
be 0 unless (J Sk is connected. The same expansion holds for log(^tr(σfσZje~βH))

k _

with K(Sj) replaced by K(St).
Expansion (4.6) converges if

sup Σ K(SK | fiΊ<ε (4.7)
P S S n P Φ φ

for some ε>0. The sup is over closed squares P in A*. This criterion for
convergence is a slight modification of Theorem 3.4 of [3]. Inequality (4.7) holds
with ε = β(<5) and β sufficiently large by Theorem 3.2. Since \K(S)\^K(S), the
expansion for log(^tr(σfσ^~/?H)) also converges. Thus we have the following
expansion for the two point function.

Lemma 4.2. For β sufficiently large, depending on δ but not on A,

oo 1 Γ n _ n ~|

log<σ?σ?>κ = Σ ~. Σ Π K(Sj- Π K(SJ ψc(Sl9..., SJ . (4.8)
» = ι n\ sΊ,...,sπ |_i=ι ί = ι J

CΛ*

n _ n

In expansion (4.8) we need only sum over S1?..., Sn with Π X(Sf)φ Π

From the definition of K(S) we see that K(S) φ K(S) implies there are y with
S(γ) = S and sgn(y)= — 1. This implies that [ίj], the line from i to7, intersects y(0)
and thus intersects S. So the terms Si9...9Sn that contribute to the sum in (4.8) must
have ((J Sk\ π[ij] Φ0 and must fall in at least one of the following classes:

V * /
(1) U Sk intersects dA*.

k

(2) U Sk encloses i or j but not both.
k

(3) U Sk encloses both i and j.
k

A set S encloses i if every path from i to outside A* intersects S.
The proof of Theorem 2.2 is now routine. See [13] for similar proofs. We

sketch the key points.
The existence of the infinite volume limit of (σ\σz^)A follows from the proof of

the convergence of the polymer expansion and the observation that
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U Sλ n[z J] Φ0. For terms in (1), Σ \Sk\ ^dist([j,j], dΛ*)9 so these terms do not

contribute to the infinite volume limit.
For terms in (3), Σ|S fc |^|i— Ί So only terms in (2) contribute to the limit

k

M^ — lim {tfftfj^oo

To prove the exponential decay,

We note that only terms in (3) contribute to (σfσj)^ —M^. We split up eε|5' as

eε\s\/2eε\s\/2 an(j rep]ace g by - in condition (4.7). (We may have to increase β to do

this.) The proof of convergence of the polymer expansion is then easily modified to
show

oo i __
Σ -r Σ ΪΠK(Si)-Ύiκ(Si)\\pc(sl9...9ι

n=l nl Sls...,Sn:(3)[ i i J

m inf Σlί
Sι,...,SM:(3) k

where m<ε/2 and c depends on m. The sum over Sl9...9Sn and the inf over
S1?..., Sn are only over terms in (3). So the above is :gce~m|/~J\ where \i—j\ is the
minimal number of squares in a connected set which contains i and j.

Finally, we briefly describe how to prove the exponential decay of <σf σ*> and
<σ?σj>. It is not necessary to use the polymer expansion for this. By symmetry
these two correlation functions are equal, and so <σfσ*> = <σί

+σj" + σf~σ/ >. As in
Sect. 2 we can expand tr[(σ*σ]~ + σ^ σ^)e~ βH~\ in terms of time dependent
contours. There is one important difference. The condition Γ(1) = Γ(0) is replaced
by Γ(l) = (σί

+σJ~ +σ^σ^)Γ(0). This implies that the support of Γ has a connected
component which contains the squares in Λ* corresponding to the sites i and j.

As before we decompose Γ into connected quantum contours y1 ?..., γn. Letting
yk be the quantum contour whose support contains i and j, we have y fc(l)
= (σ*σ]~ +σί~σ/)yk(0) and yw(l) = ym(0) for mΦfe. Thus the Peierls argument
reduces bounding (σfσj) to bounding

Σ'W(γ)9 (4.8)
y

where the ' indicates that the sum is over connected γ with y(ΐ) = (σ^σj -\-σ^σ^)
•7(0).

The proof of Theorem 3.2 can be applied to the sum (4.8) with one modification.
The proof used the condition y(l) —y(0) in the resummation in Eq. (3.19). The
resummation now becomes

JV-»oo Γ:Γ(ί) = G J l J ~

since σ^σj" +σί~σ/ has norm equal to 1. In the sum (4.8), S(y) is connected and
contains / and j. Thus the proof of Theorem 3.2 shows that (4.8) is bounded by
ce-m\i-J\f
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