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Abstract. We give sufficient conditions for the nonlinear stability of possibly
nonsmooth stationary solutions of the two-dimensional Euler equation in
symmetric bounded domains. We use, as Lyapunov functions, first integrals
due to the symmetry of the problem. Moreover, we investigate the stability of
smooth solutions under perturbations of the boundary. The last result is based
on a generalization of the well known Arnold approach.

1.

Some years ago Arnold [1] proposed an approach to investigate the nonlinear
stability of stationary Euler flows. According to the theory of finite dimensional
Hamiltonian systems, the basic idea was to look for conditions ensuring the
vanishing of the first variation of the energy functional and the positivity of its
second variation. We briefly review the argument. For a more complete analysis
we address the reader to [2], where other infinite-dimensional situations are also
discussed.

Consider an incompressible ideal fluid contained in a domain D bounded by
two smooth curves (g1 and #0, which are the internal and external boundary
respectively. Then the following functional

E = \ J u2dxdy+ f Φ(ω)dxdy+ Σ a* $<«.u dt (1.1)
D D ί = 0 l

(u is the velocity field, ω= cuήu = dxu
(2} — dyu

(ΐ\ Φ a real valued function, αf real
numbers) is a constant of motion, each of the three terms appearing in the right-
hand side of (1.1) being first integrals.

The condition δH(u) = 0, for ΰ stationary solution, yields (see [2] for details)

0j = — Φ'(ώ\v) (ώ = cuήu) , (1 .2)

ΰ=VLΦ'(ώ) r± = (dy,-dx). (1.3)
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(We notice that ώ is constant on (6i because ΰ is stationary and hence
Equation (1.3) can be solved and we obtain, for the solution Φ,

VΨ ΰ

where Ψ is the stream function (i.e., ΰ= VλΨ) and the above ratios are well defined
by virtue of the collinearity of ΰ and VLώ for stationary solutions.

The second variation is

(δ2H)(u)= I (δύ)2dxdy+ f Φ"(ώ)(δώ)2dxdy, (1.5)
D D

which is definite positive if Φ" > 0. In this case we have a natural norm that is
J (u2 + ω2), by means of which we investigate the stability problem.
D

Actually one can prove ([1, (1969)], [2], and also Sect. 3 of the present paper
where this argument is applied) the nonlinear stability, in such a form, of stationary
solutions for which C2 ̂  Φ" ̂  C1 > 0.

In the presence of symmetry other first integrals are available. For instance in
the case of a plane periodic flow between two parallel plates, the following
functional

J= J yωdxdy (1.6)
D

is a first integral. It is natural to investigate how the above variational argument
works for this functional.

Defining

J = J+ \Φ(ω)dxdy, (1.7)

the condition

δJ(u) = 0 (1.8)

implies

-Φ'(ώ) = y, -ΦΛf(ώ) = (ayώ)-1 (1.9)

for ώ — ώ(x, y) depending only on y.
We assume the condition

C2^-(δ,ώ)-1^C1>0, (1.10)

and extend the function Φ out of the range of ώ to a smooth function, again
denoted by Φ, satisfying the condition C^^Φ'^C^1- Then the second variation

δ2J=-ί(dyώΓ1(δω)2dxdy (1.11)

is positive. For a perturbation ωt of the equilibrium, we have

J(ωt)-J(ώ)= J y(ω-ώ)+ f [Φ(ω)-Φ(ώ)]
D D

= ί [y(ω -ώ) + Φ'(ώ) (ω - ώ)] (1.12)
D

+ ί [φ<» - Φ(ώ) - Φf(ω) (ω - ώ)] .
D
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The first term on the right-hand side of (1. 1 1) is zero (because δ J = 0). Furthermore

||ω1-ώ||i^2C2(J(ωί)-J(ώ)) by (1.11) and Taylor's formula,

J(ω0) — J(ώ)) by time invariance, (1-13)

^1||ω0 — ώ\\2 again by (1.11) and Taylor's formula.

Therefore we have simply proved the nonlinear stability under assumption (1.10).
The above result can be inproved (considering H + λJ as Lyapunov function,

[1, 1966]) to obtain the stability under a weaker assumption.
As pointed out in [2], the above method works under smoothness assumptions

on the equilibrium solution ώ and in case of bounded domains. Nevertheless, there
are physically interesting situations (for instance cases in which the vorticity is the
characteristic function of a strip and hence the velocity is piecewise linear) which
cannot be studied by means of such a method. Generalization to nonsmooth cases
do not seem immediate and are not available in the literature, except for the case of
the so-called vortex patch, i.e. when ώ is the characteristic function of a disk [3]
(see also [4-6]). In [3] two different methods to obtain the stability (in the Lr

norm) of a circular vortex patch are presented. One, based on the conservation of
the angular momentum and its minimum properties with respect to isorotational
perturbations, makes use of the symmetry of the problem and is very simple. The
other, based on the energy conservation law, is much more intricate but in some
sense gives much more information, as we shall see later.

In the present paper (Sect. 2) we give sufficient conditions for the nonlinear
stability (in the Lv sense) of any monotone, possibly nonsmooth profile of vorticity
in symmetric domains. This fully exploits the ideas contained in the angular
momentum method in [3].

In Sect. 3 we discuss the stability of smooth solutions in the presence of
perturbations of the boundary, by means of the Arnold method. Moreover, we
obtain the same result for vortex patches as a corollary of the energy method
presented in [3]. In this case the (simpler) angular momentum method is useless
because perturbations of the boundary destroy the symmetry.

We consider an ideal incompressible fluid with unit density in the bounded domain
A rlR2 '

(2.1)

The velocity field u — (u(1\ u(2}\ eR2 can be described in terms of the stream
function Ψ for which u=VLΨ = (dyΨ, - dx Ψ).

Denoting by ω — dxu
(2) — dyu

(1} the vorticity, we have

-AΨ = ω. (2.2)

We assume periodic boundary conditions in x = Q, x = L and impermeability
conditions in y = 0, y = A. Hence, denoting by GΛω the stream function solution of

Eq.(2.2),wehave: (G,ω) (0, ,) = (G,β>)(I> ,) , (2.3)

(GΛώ)(x,0) = Q (GAω)(x,A) = Λ . (2.3)2
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We choose α = 0 adding a suitable potential flow.
The vorticity evolves according to the Euler equation,

u=VLGAω.

It is well known that the initial value problem associated to Eq. (2.4) can be
uniquely solved (in a weak sense) for initial conditions ωQ&L^. Moreover,
denoting by γt(x,y) the solution of the ordinary differential equation γt(x,y)
= ut(γt(x9y))9 yo(x,y) = (x,y)9 we have ωt(x9y) = ω0(γ.t(x9y))9 where ωt solves
Eq. (2.4) with initial datum ω0.

Due to the symmetry of the problem, the following quantity,

L A

J(ωt)= ί dx J dyyωt(x9y)9 (2.5)
o o

is preserved during the motion. This can be verified by a direct computation. More
generally, constant of motion which are momentum maps for the symmetry group
in the Hamiltonian formalism, have been investigated in [7].

Moreover, any stationary solution ώ(x, y) = ξ(y) which is non-increasing is
also an absolute minimum for the functional J in the class of all isorotational
vorticity fields (see the definition below). These two are the basic ingredients for
our stability results that can be formulated as follows.

Theorem 1. Let ώ(x, y) = ζ(y) be nonincreasing, ώ e L^. Then ώ is stable in the L1

sense, with respect to L^ perturbations. This means that, for all £>0 there exists
δ>0 such that if

cOoeLoo and \\ώ — ω0\\1<δ9 (2.6)

then

sup \\ώ — ωt\\1<ε. (2.7)

Remark. As it will follow by the proof, the same result holds for nondecreasing ζ.
Therefore, any monotone profile is stable in the above sense.

The proof of Theorem 1 is a straightforward consequence of the following two
lemmas whose proof will be postponed to the end of the section.

We define the family of the isorotational profiles

/(ώ) - {ω I V λ, meas {(x, y) \ ω(x, y) > λ}

= mQas{(x,y)\ώ(x,y)>λ}}. (2.8)

Lemma 1. Suppose ώ is as in Theorem I and ω e /(ω). Then

•*• ,, _ ιι O

2Lα

where α=||ώ||0 0.

(2.9)

Lemma 2. Suppose ώ is as in Theorem 1, ω0e L^. Then there exists ώ(x, y) = ξ(y)
such that ωQ€/(ω) and if ||ώ —ω0 | |1<δ, then ||ώ — ώ||1<δ.

Now we are able to prove Theorem 1.
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Proof of Theorem 1. Putting || ω01| ̂  = || ωr || ̂  = α and taking into account, by virtue
of the Liouville theorem, that ωtE/(ω) if ω0 e/(ώ), we have:

^ ]/2αL( J(ωf) - J(ώ)) + || ω0 - ώ ||

(by Lemmas 1 and 2)

^ ]/2αL(J(ω0) - J(ώ)) + || ω0 - ώ ||

(by the time invariance of J)

(by Lemma 1)

(by Lemma 2)

(2.10)

Proof of Lemma 1. We shall assume, without losing generality, ξ(A) = 0. Let us
define

(2.11)

where, as usual, XB denotes the characteristic function of the set B. Obviously Ak

D Άh and Ak D Ah if fe < h. We have

n N-l

ί ydxdy- ί ydxdy
fc jfc

= ^NΣ ( ί ydxdy- J ydxrf j V (2.13)
N k=l \Ak\Ak Ak\Ak J

Defining yk in such a way that

Άk = {(x,y)\0£x£L,Q£y<yk}, (2.14)

and realizing that, by virtue of the isorotationality,

meas(^k\Λ) = meas(Ik\^k) = βk , (2. 1 5)

we have β.
T „ N-ί /yk + ̂  Vk

^ Σ ( ί - i
^ k=ί \ yk yk~

Σ
fc=ι

(2-16)
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On the other side, by the Cauchy-Schwartz inequality,

N-l α

\\ώN — ωN\\ι= {dxdy Σ -^(XA,—XAM 1 y * = ι N ^ Ak A

N~l α

-Xjjlί, (2.17)

and hence

"Ίli (2.18)

The left-hand side of inequality (2.9) follows by passing to the limit JV-»oo, by the
Dominated Convergence Theorem. The right-hand side of inequality (2.9) is
trivial. D

Proof of Lemma 2. We construct ώ in the following way. Defining

Aλ = {(x,y)\ω0(x,y)>λ},

(2.19)
ξ(y) = sup {λ I y(λ) ^ y , λ e (ess inf ω0, ess sup ω0) ,

we realize that ξ is nonincreasing and ω0eί/(ώ). We define

S(λ,ω) = {(x,y)\ω(x9y)>λ}9

σ(λ) = meas(S(/l, ω)ΔS(λ, ώ)) ,

Σ(λ) = meas(S(/l, ώ)zlS(/l, ω0)) , (2.20)

and observe that, because of the monotonicity of ώ and ώ, S(λ, ω) and S(λ, ω) are
rectangles, one of which subset of the other. Therefore,

(2.21)

Finally

\\ώ-ώ\\1=ίdλσ(λ)^ίdλΣ(λ)=\\ώ-ω0\\i. D (2.22)

We conclude this section by remarking that the above technique can be applied
to the case of circularly symmetric distribution of vorticity in circularly symmetric
domains and, probably, to other cases when symmetries are present.

Let us consider the region

(2.23)
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Denoting by ρ, θ the polar coordinates, consider ώ(ρ,θ) = ξ(ρ) a circularly
symmetric stationary solution. The angular momentum defined as

Jβ(ωt)=fρX(ρ,θ)dρdθ (2.24)

is a constant of motion. Furthermore, given ζ nonincreasing in ρ, the function J,
restricted on J(ώ) takes in ώ its minimum value.

The following theorem generalizes the result in [3]. The proof is a straightfor-
ward copy of the proof of Theorem 1.

Theorem 2. Any stationary ώ(ρ, θ) — £(ρ), essentially bounded and nonincreasing
(nondecr easing), is stable in the L1 sense with respect to L^ perturbations.

Remark. If R= + oo, the same result can be obtained either by considering
perturbations of compact support, or (what is essentially the same) by weighting
suitably the Lί norm [4].

3.

In this section we investigate the stability of a stationary Euler flow with respect to
perturbations including small deformations of the domain containing the fluid. To
do this, we modify suitably the Arnold method and make use of continuity
properties of the Green function for the Dirichlet problem. In this way we find
sufficient conditions which ensure the stability of smooth stationary flows also
under perturbations of the boundary. The non-smooth symmetric cases discussed
in the previous section cannot be treated simply, because perturbations of the
boundary destroy the symmetry. This makes difficult the use of linear or angular
momentum as Lyapunov functions, since they are no longer conserved quantities.
Nevertheless, the only case in which the energy method is available for a non-
smooth situation, that is the circular vortex patch [3], can be treated also allowing
perturbations of the boundary. This remark shows how the energy method is more
powerful although, technically speaking, more difficult to deal with.

We begin by discussing the smooth case.
Let u, ω = curlw, be a smooth solution of the planar Euler equation in a

bounded, open domain D with external boundary ^0 encircling holes Dt with
smooth boundaries %. The boundary conditions are, as usual, u n|#. = 0 (n is the
inner normal). The stream function Ψ, such that u = VL Ψ, is a well defined, single
valued function, satisfying ΔΨ= — ω, 5/|^0 = 0, Ψ\^τ = βι, i>0, where βt are given
by the circulations /]=J u dί (see [8, Theorem 6.1]). We consider now a

stationary solution ΰ,ώ = curlw, in a domain D and a time-dependent solution ut,
ωt living in a slightly different domain D (with the same topological structure as D).
The following functional, for Φ and at to be specified later,

D D D D i = 0

where

Γt = I u dί, Γ~ { ύ dt, z = 0...n (3.2)
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is constant in time. We denote by the same symbols u, ΰ, ω, ώ the fields extending u,
ΰ, ω, ώ as zero outside their domains of definition D and D. Making use of the
identity u2 — ΰ2 — (u — u)2 -f 2ΰ - (u — ύ), and defining ώ = ωX& we write

(3.3)
i = l

where

F1 = J ύ.(u-u)+ J Φ'(ώ)(ώ-ώ) + Σ flitf-ίD, (3-4)
D D i = 0

F2=[ύ (u-u), (3.5)

r
??>= J

= f {Φ(ω)-Φ(ώ)-Φ/(ώ)(ωX^-ώ)}? (3.7)
DnD

F5= f Φ(ω)- j Φ(ώ)- j Φ'(ώ)(ω-ώ). (3.8)
D\5 δ\D D\D

Here ίϊ denotes a vector field defined in D, tangent on dD, having vorticity ώ and
circulations f}= j u d/= j w d/ = Γt. The conditions for Φ and at are chosen so

(f> (f.
that F!=O. One lias:

[ Φx(ώ)(ώ —ώ)= j ε\xή[Φf(ω)(ύ — u)]
D D

- [ Φ"(ω)VLώ'(ύ-u),

k _

where we have chosen Φ (up to some constant value) in such a way that

φx/(cό)= —-j— (at the equilibrium ΰ and VLώ are collinear and such a choice is
V ώ

possible) and we have used the fact that ώ is constant on each 35^ because of the
stationarity. Therefore, F1 =0 by an appropriate choice of the α^'s, being Γ^Γ^

Suppose the following condition holds:

<+<». (3.10)

We extend Φ, outside the range of ώ, to a smooth function still denoted by Φ and
satisfying (3.10). Under such hypothesis, our stability result follows by combining
known arguments with uniform in time estimates on all the F/s, which are formally
vanishing when D^>D.

We define

d(D,D)= max max min |z-zx|, (3.11)
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and denote by ηb i= 1,2, ... any positive constant (independent of f) depending
only on ω0, ω, d(D,D), the geometry and such that ηt-^0 as d(D,ί))-*0. Then:

\FS\ ^ || Φ || ,, (meas(DVD) +

(3.12)

Let Q cDnD be a domain with C2 boundary, such that meas(ϊ)\0 ̂  2 meas(D\D)
and the length of dQ^2 length of 3D. Then

|g cons meas(D\/)) + ΰt'(ut-ut)

(having used the inequality ||u\\^^ const | |curlu\\^} therefore:

ί ut(G^t-G^t)

fω,( (3.13)

Here G^ denotes the operator whose kernel is the fundamental solution of the
Poisson equation with Dirichlet boundary conditions in D. Putting GO^GJRI,
JD — GD ~ GQI we have, for z e dβ,

^ - Gβ)ωt (z)\ = \(γD - yD)ωt (z)\ = \yDωt(z) - γDωt(ζ)\

+ \G0(ωtXD)(ζ)-G0(ωtXD)(z')\

(3.14)-z'\ + \z'-

(where ζedD and z'edD, and the above constant depends only on
Minimizing on ζ and z\ we bound the right-hand side of (3.14) in terms of η4. By the
maximum principle

const^4||ω0|| (length of 5)

(3.15)

Now we are in position to prove the following Theorem.

Theorem 3. Suppose that condition (3.10) holds. Then, for any ε>0, there exists a
δ > 0 such that

ί (utXD-uXD)2+ f (ωtXD-ώX-D)2} <ε,
^O \ R 2 R2

(3.16)

provided that

max(d(D,D), J (u0XD-ΰXD)
K.2

(3.17)
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Proof.

i J (utXD-ΰXji)2 + ί (ωtXD-ώXD)2

IR2 K.2

1F4+ ί (ωtXD-ώX;>)2

DAD

ί C3{F2(0) + F3(0) + F4(0) + F5(0)} + η6

:gC4ΓF3(0) + J (ω0-ώ~)2]+ηΊ. D (3.18)
L DAD J

We discuss now the stability of the circular vortex patch,

ώ(z) = MXc(z), M>0, (3.19)

where C is a disk of radius y, in the domain

Λ = {zeΈί2\\z\^R}. (3.20)

Let ωt be a solution of the Euler equation with initial value ω0, where ω0 is a vortex

patch of the form ω^) = MXA(z), (3.21)

and ,4 is a measurable set contained in R2. Such evolution takes place in the
domain Λ9 where A is a slight perturbation of Λ. dA is assumed to be C2 and

min |z| >/?-<$!, max \z\<R + δ1 . (3.22)
zedA zedΛ

We consider also

^{zeR2!!^!*}, (3.23)

the minimal disk encircling dΛvdΛ. Then, as ^!-^0, R-».R.

Theorem 4. For «wy ε > 0, there exists δ>0 such that

sup \\ωt — ώ| |1<ε, (3.24)
ί ^ O

provided that

max(||ω0-ώ||1,<51)<ί. (3.25)

Proof. The proof is based on the (static) inequality (see [3]):

(3.26)

for || ω — ώ \\ ί < α, a sufficiently small. Here D is any circular domain containing the
support of ω and ώ, ώ is a circular vortex patch, ω = MXB is a vortex patch, B C D,
meas#=measC, ED is the energy functional, defined as ED(ω)
= Jf ω(z)(GDω)(z)dz. Let ώ be a circular vortex patch such that H ώ H ^ = l lωJI^
and l l c S H i = HωJl! . Since ώ and ώ are both disks, it is:

Hώ-ώll^Uωo-ώ l l ! . (3.27)
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Then, we have, supposing t and δ sufficiently small such that \\ωt — ώ^ <α,

I
—= ]/EΛ(ω) — EΛ.(ωt) + ||ω0 — ώ l l j [by (3.26), (3.27)]
]fcv

{y\EΛl(ώ}-EΛ(ώ)\+y\EΛ(ώ)-EΛ(ωt)\
Vc

^o-ωϋi. (3.28)

By the same arguments leading to (3.14) and (3.15) and by the use of the
conservation in time of the L^ norm, we can get a function α depending only on ω0,
δl9 and R such that

ω^EΛl(ω^Λ9 (3.29)

lim α = 0. (3.30)

Moreover, by the time in variance of EΛ :

ϊ\ίdzdz'ώ(z)gA(z9z')ω(z')

- J dzdz'ω0(z)gΛ(z,

+ l l ω o D U ω o - ώ l U (3.31)

for some C^O, where (GΛω)(z) = \gΛ(z,z/)ω(z/)dz/. Therefore, by (3.30) and
(3.31)

Vc

But

thus by (3.32) \\ωt — ώ\\1^a for all times and this achieves the proof. D
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