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Global Aspects of Fixing the Gauge
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Abstract. It is shown that there exists a possible obstruction to a continuous
global gauge choice in the Polyakov string theory and in four dimensional
Einstein gravity. In many circumstances this obstruction results in no global
gauge existing in these two theories.

1. Introduction

The Feyman path integral approach to quantising gauge theories appears to be the
best method available at present. It has been applied with considerable success to
the quantisation of Yang-Mills theories and QCD. In the Euclidean path integral
approach to Yang-Mills theories one considers functional integrals of the form

where 3>A is a measure on the space # of all gauge potentials A. S[A] is the Yang-
Mills action of A and the functional integral is taken over all gauge potentials
which satisfy some suitable boundary condition. However, it is well known that
there is a problem in evaluating this path integral which results from the gauge
invariance of the action S[yΓ|.

Let ̂  denote the group of gauge transformations. The difficulty arises because
the orbits of ^ are expected to have infinite measure. The functional integral
should really be carried out over the gauge orbit space <$/&. However, <g/& is an
intractable space. The idea of fixing the gauge is intended to circumvent this
difficulty. We choose, in a continuous way, one gauge potential on each ^-orbit,
i.e., we choose a continuous map s : %/^-»^ such that p ° s = id, where p : ̂ ->^/^ is
the canonical projection. The functional integral is then evaluated over s(#/0),
weighted by the Jacobian of p:s(<g/&)-+<g/&. This yields the Fadeev-Popov
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determinant. As was shown in [1] the topologically non-trivial nature of the group
^ of gauge transformations results in the non-existence of a continuous global
gauge for theories on the 4-sphere. In this paper we consider the possibility of
choosing a global gauge fixing condition for theories which possess an invariance
under the group of diffeomorphisms of a manifold M. The two theories of this type
which we concentrate on are the Polyakov string and four dimensional Einstein
gravity. It is shown that in both these theories there exists a topological
obstruction to globally fixing the gauge. This obstruction comes from the
topologically non-trivial nature of the group of diffeomorphisms of M. It is
completely analogous to the obstruction to fixing the gauge in Yang-Mills theories
discussed in [1]. It should be noted that similar ideas to those used here have also
been discussed by Isham [2] in connection with the canonical quantisation of
gravity.

The remainder of this paper is organized as follows. In Sect. 2 the formulation
of the Polyakov string theory and four dimensional Euclidean gravity is recalled.
Section 3 introduces the local gauge slices and the geometric structure of the orbit
space of Riemannian metrics modulo diffeomorphisms. The obstruction to
globally fixing the gauge in these two theories is then proved in Sect. 4.

2. Formulation of the Polyakov String and Euclidean Gravity

The dynamics of the Polyakov string is described in terms of the world sheet swept
out by the string as it evolves in D dimensional (Euclidean) space-time. The world
sheet will be assumed to be a closed compact orientable 2 dimensional Riemannian
manifold M2. This 2 dimensional surface can be described by an immersion
x : M2-*RD, for D ̂  3. Local charts on M2 are (l/α, ξα), where C/α is an open subset
of M2 and ξa a homeomorphism of C/α onto an open subset of KA The immersion
x:M2->]RD induces a Riemannian metric h on M2. Now let g by a new
Riemannian metric on M2 independent of h. The local 2-form defined in the chart

j-,1^ (2.1)

where μ(g) is the volume element associated to g, satisfies Ω(α) = Ω(β) in (7αn Uβ9 and
hence defines a global 2-form on M2. The action of the string theory is defined to be
ίsee Γ31)

W[x9 g] = f Ω =H Trfo- ^K)μ(g) . (2.2)
M2 M2

This is the action introduced by Polyakov [4]. The partition function is then given
by the path integral

Z = f % 3κ exp - W[x, g\ . (2.3)

The Polyakov action is invariant under diffeomorphisms of M2. Let
denote the group of (orientation preserving) diffeomorphisms of M2, and let
Jt(M2) denote the space of Riemannian metrics on M2. ̂ (M2) acts naturally on
Jί(M2} by pull-back i.e., for π e 2(M2) and g e Ji(M2} we have gπ = π*g e Jt(M2\
The diffeomorphism group of M2 also acts on the immersion x : M2->1RD to give
xπ = x°π : M2->1RD. The metric induced on M2 by the immersion xπ is hπ = π*h.



Global Aspects of Fixing the Gauge 269

The action W[x, g\ has the invariance [4]

Wlx*9g*] = W[x,g ]. (2.4)

Therefore, two metrics on the same ̂ (M2)-orbit correspond to the same geometry,
but represented in two different sets of local charts. The space of inequivalent
2-geometries is given by the orbit space Jί(M2}IS$(M2}.

A remarkable feature of the Polyakov string theory is that the partition
function (2.3) can be evaluated explicitly (see [4]). To carry out the path integral
over ί$g it is necessary to fix the gauge by choosing a representative metric of each
orbit of Jί(M2)/S>(M2). Polyakov's choice was the conformal gauge, i.e., to find a
representative of each orbit of the form (in a given local chart)

ft*(0 = **%>, (2.5)

which is always possible for 2-dimensional surfaces. This choice will not uniquely
specify the gauge if M2 admits a non-trivial group C(M2) of conformal
transformations,

C(M2) = {π e $>(M2)\ there is a smooth ρ : M2->R such that

π*g = <?g, for all g e Jί(M2}} ,

(also see [3]). For M2 = S2, C(S2) = SL(2,<C); for M2 = T2, C(Γ2) = O(2)xO(2);
for surfaces of higher genus C(M2) is discrete (see [5]).

Using the conformal gauge the functional integral over 2)g can be evaluated to
obtain the partition function as a functional integral over φ of the Liouville action

μ2

<*]d2ξ. (2.6)
M2

For this path integral over 3)φ to be well defined it would seem to be necessary for
the gauge choice (2.5) to be continuous. It is not clear that the conformal gauge
satisfies this requirement. In fact, it will be shown later that for many surfaces M2

there is no continuous global gauge fixing condition. This is a purely global result
and there always exists a well defined local gauge.

Four dimensional Einstein gravity shares with the Polyakov string theory the
property of being invariant under the diffeomorphism group of a compact
Riemannian manifold. Let the (Euclidean) space-time be represented by a compact
4-dimensional Riemannian manifold M4. The Euclidean action is (see [6])

ί R(dQtgY/2d4x + boundary term, (2.7)
loπCj

where R is the scalar curvature of the metric g on M4. The manifolds with which we
will be concerned will be closed and without boundary. Hence, we will neglect the
boundary term in (2.7). If Jf(M4) represents the space of Riemannian metrics on
M4 and ®(M4) the group of (orientation preserving) diffeomorphisms of M4, then
for π e @(M4) and

(2.8)

Thus, the action is constant on orbits of
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The partition function is then defined to be

Z = $$ig exp - S[#] . (2.9)

There are, of course, many problems in attempting to evaluate this functional
integral (see [6]). In addition to these one might anticipate that the invariance of
the action under the diffeomorphism of M4 would lead to a similar problem in
evaluating the path integral as occurs in gauge theories, i.e., that the orbits of
^(M4) would have infinite measure. The path integral should be carried out over
the orbit space ^(M4)/^(M4), which is, however, intractable. This problem could
be overcome by fixing the gauge [i.e., choosing in a continuous fashion a metric on
each ^(M4)-orbit] and then proceeding to evaluate the Fadeev-Popov determi-
nant. We shall show later that for many 4-manifolds M4 such a continuous global
gauge does not exist. Local gauges, however, always exist and may be used to
define the Fadeev-Popov determinant in a neighbourhood of a ^ given metric
geJί(M4).

3. The Local Gauge Slices

In this section we will consider the action of the group of diffeomorphisms of a
compact manifold on the space of Riemannian metrics defined on the manifold.
This topic has been investigated in detail by Ebin [7], and it has also been studied
in connection with the theory of Wheeler-de Witt superspace [8]. Further details
of the ideas mentioned here can be found in these references.

Let M be a compact orientable n-dimensional manifold without boundary.
TM will be its tangent bundle, Γ*M its cotangent bundle and S2Γ*M the bundle
of symmetric covariant 2-tensors. The space of Riemannian metrics Jί(M) on M is
defined to be the space of all smooth sections of S2T*M which induce a positive
definite inner product on each tangent space ΓXM, x e M. Then Jί(M) is a positive
open cone in Γ(S2Γ*M), i.e., JK(M) is open in Γ(S2Γ*M) and if λ,μ>0,
g,heJί(M\ then λg-\-μhεJί(M). Let 3f(M) be the group of orientation
preserving diffeomorphisms of M. Then 3>(M) acts on Γ(S2T*M) as follows: if
π e 0(M), g e Γ(S2T*M), and X, YE TXM, x e M, then

This action can be written as a map A: S(M) x Γ(S2Γ*M)-»Γ(S2Γ*M). It is clear
that Jί(M) is invariant under the action, so we can write A\3)^Ji^Jl. Note that
when the manifold M is not in question we will simplify Jί(M) and 3f(M) to Jί and
2, respectively.

The space of metrics has a (weak) Riemannian structure defined on it as follows.
Each h e Jί is a Riemannian structure on TM. It therefore induces a Riemannian
structure on T*M and S2Γ*M. Let (, )* be this structure on S2T*M. Also h e Jί
induces a volume element μ on M. For ω,θeΓ(S2T*M) we define <ω,θ>h by

<ω,θ>Λ=f(ω,θ)V (3.1)
M

<,>Λ is a positive definite bilinear form on Γ(S2Γ*M). Since Jί is open in
Γ(S2T*M), Jί is a manifold whose tangent space at each point is canonically
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identified with Γ(S2T*M). Thus for each heJ(9 < ? > Λ on Γ(S2T*M) defines a
Riemannian structure on M.

The most important property of < , >h is that it is invariant under the natural
action of 2 on M> i.e., 3t acts by isometry. To see this first note that [7], for π e ̂ ,

The diffeomorphism π e ̂  also acts on the set of volume elements of M by pull-
back. If μ is the volume element of g then π*μ is the volume element of π*g. Hence

f(π%π*^π*μ=f(f,£)'μ
M M

or

<π^π*O** = <£,£>,. (3.2)

Therefore, π e ̂  is an isometry.
It is now possible to define the local gauge slice through a metric g E Jί as the

orthogonal complement of the tangent space to the ^-orbit through g, relative to
the inner product < , >r The orbit of 2 through g e M is defined by the map

λg\®-»Jt (3.3)

given by λg(π) = π*g. The derivative of this map at the identity in 2 is

Recalling the identifications Tid^~Γ(TM) and TgJΐ~Γ(S2T*M\ we have that

Tidλg : Γ(TM)-+Γ(S2T*M) . (3.4)

To compute Tidλg9 let X eF(ΓM) be a smooth vector field on M. X generates a
1-parameter group of diffeomorphisms {πj. The smooth curve C : R-»S in 2
given by C(t) = πt9 with π0 = idM? has tangent vector at £ = 0, given by
X = (d/dt)C(t)\t=0. Tidλg maps X to the tangent vector to the curve (λg ° C) (t) in ̂ .
Thus

ί=0

where Jδfygf is the Lie derivative of ̂  with respect to the vector field X. Therefore the
map Tidλg:Γ(TM)-*Γ(S2T*M) is given by the first order differential operator
<^:Γ(TM)-+Γ(S2T*M), where

for XeΓ(TM) and geJί. Note that ker<S^ space of Killing vectors on the
Riemannian manifold ( M , .
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It follows from standard properties of differential operators [9] that the image
imδg is closed and has closed complement in F(S2T*M). Thus the tangent space to
the orbit through g e Jt is given by imδg and the local slice to this orbit at g is the
orthogonal complement of imδg relative to the inner product <?>5. Hence, the
local slice at geJΐ is given by those g + seJί, seF(S2T*M), for which

0 = <s,δ,X>, = <δ*s,X>, (3.5)

for all X e Γ(T*M). £* is the < , ̂ -adjoint of δg. The local slice through g e Jt is
written as

*M) and <5*s = 0} . (3.6)

In a sufficiently small neighbourhood of a given metric g G Jί the slice ίfg intersects
each orbit once and only once [7]. Therefore this slice defines a good local gauge
around g. We also have as a consequence of (3.5) the direct sum decomposition

Γ(S2T*M) ~ima,Θker<J* . (3.7)

The geometrical structure of the orbit space Jt/2 will now be considered. The
space Ml 3) is not a manifold because the action of 2 on M is not free. If we define
the isometry group of g e Jί to be

then 2 has g as a fixed point if Ig φ {0}. There are, however, two ways to obtain a
free action. If we restrict our attention to the space of metrics JίcJt which have
trivial isometry group, i.e.,

then the action of 2 on M is free. The space M is open and dense in Jί [7]. The
globally effective local slices ίfg and the free ^-action on Jί results in a principal
^-bundle

9 — > Jί

1 (3.8)

over Mj2 which is now a smooth manifold.
Alternatively, we can restrict to the group 3)% of diffeomorphisms which leave a

point x0 e M fixed and also leave the frame at x0 fixed, i.e.

2+ = {π e 3|τφc0) = *0 and TXoπ = idTχoM}.

Now if π e 3)^ is an isometry for some g e Jί, i.e., if π*g = g, then π = idM (see [10]).
Therefore, 3)^ acts freely on Jί. Again the orbit space Jί]3)^ is a manifold and we
have a principal ^-bundle over

(3.9)

To conclude this section we make some statements of a geometrical and
topological nature.
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Proposition 3.1. The manifolds Jίffi and Jt/Sΰ* have a natural Riemannian
structure.

Proof. It follows from the invariance of < , >g under the action of Q on M [Eq. (3.2)]
that < , >0 projects to give a well defined metric on Jί/2 and

Proposition 3.2. The space

|s e (S2 Γ*M) and δ%s = 0}

is the horizontal space atgeJίorgeJίofa connection on the bundle (3.8) or (3.9),
respectively.

Proof. According to (3.7) the space Sfg is complementary to the tangent space to the
fibre atgeJP. Since the Riemannian structure of M is preserved by the action of Q),
we have that ker δ%*g = π*(ker(5*), for all π e 2. Therefore, Sf^g = π* ,̂ and the slice
£fg is the horizontal space of a connection.

Proposition 3.3. There are homotopy equivalences

ana

Proof. These results follow from the contractibility of the total spaces of the
bundles (3.8) and (3.9). The space of metrics Jt is convex and hence contractible.
The space ̂  is also contractible. This can be proved in analogy with Singer's proof
(see [1]) that the space of irreducible connections on a principal SU(n)-bundle
over a compact manifold is contractible.

Proposition 3.4. The groups Q) ana Q)^ are related by the fϊbration

0 , (3.10)

where F+(TM) is the principal GL+(n,1R)-bundle of frames on M with a given
orientation.

Proof. The projection π is given by evaluation at the base-point. It is clear that the
fibre of π is 3)^ and that (3.10) has the homotopy lifting property.

4. The Obstruction to Globally Fixing the Gauge

We will now use the principal fibre bundles introduced in Sect. 3 to discuss the
possibility of globally fixing the gauge in the Polyakov string theory and in four
dimensional Euclidean gravity. Suppose that we are considering a theory defined
on a compact orientable n-manifold Mn, with an action which is a ̂ (MΠ)-invariant
functional on Jί(Mn}. Then a global gauge is a continuous map s: MI^ ^Jl such
that p ° s = id^/0, where p: Jί-^MI3) is the canonical projection. If such a gauge
were to exist, then the restriction

4
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would give a global section of the principal ^-bundle (3.8). Such a global section
exists if and only if (3.8) is trivial, i.e.,

Applying πq( - ) to this expression and recalling that ̂ is contractible (see proof of
Proposition 3.3), i.e. πq(J{} = Q, for all g^O, gives

for all g^O. Thus, the obstruction to the existence of a global gauge is the non-
vanishing of any of the homotopy groups of 2.

It should be noted that the bundle (3.8) has been used here purely as an
auxiliary device and has little direct physical significance. This is for the following
reason. To obtain (3.8) it was necessary to restrict attention to those metrics with
trivial isometry groups. However, it is known that many classical solutions of both
the Polyakov string theory and four dimensional Euclidean gravity have non-
trivial isometry groups. Therefore, to restrict attention to only those metrics in M
eliminates many classical solutions which may be important in understanding the
full theory. For example, such solutions may be required in order to undertake a
semiclassical analysis of the theory.

In contradistinction to the unphysical nature of (3.8) the bundle (3.9) does have
physical significance. The restriction to those diffeomorphisms of M" which leave
both a point x0 e M" fixed and the frame at x0 fixed appears quite acceptable. For
example, consider M" to be the one point compactification of a non-compact
manifold Mn, with x0 e M n corresponding to the point at infinity in M". Then the
diffeomorphisms in ̂ (M π) correspond to the diffeomorphisms of Mn which are
the identity at infinity and also have their derivative equal to the identity at infinity.
This type of restriction on the diffeomorphisms of Mn is physically acceptable.

If we now consider fixing the gauge in a theory with a ^^(M")-invariant action
defined on Jί(Mn), then the bundle (3.9) may be used directly. In this case a global
gauge choice is a global section of (3.9), which exists if and only if the bundle
Jt-*J#/3}^ is trivial. By the same reasoning as used earlier, the obstruction to such
a global section is the non- vanishing of any of the homotopy groups of ̂ (M71).

Taking the theory under consideration to be the Polyakov string, with M2 a
compact Riemann surface of genus p, invariant under either 2(M2) or S>^(M2)
yields the following results.

Theorem 4.1. There exists no global gauge s : Jiffi -*Jf for M2 of genus p = 0 or 1 .
For p>\ there is no topological obstruction to the existence of such a gauge.

Proof. This follows directly from the homotopy type of 3>(M2} [11], namely

^(S2)~SO(3) for p = 0

^(T2)~SO(2)xSO(2) for p=l

~{0) for p>l.

Theorem 4.2. There is no global section of Jί-ϊJί/3)^ for M2 of genus p>0. For
p = 0 there is no obstruction to such a section.
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Proof. The homotopy groups of ^(M2) and ^(M2) are related by the exact
homotopy sequence of the fibration (3.10)

Recall that F+(ΓM2)~R3 xO(TM2), where O(ΓM2) is the principal SO(2)-
bundle of orthonormal frames of M. Hence, F+(ΓM2) has the same homotopy
type as O(TM2). For p = 0, ®(S2)~SO(3) and F+(TS2)~SO(3) are isomorphic,
hence

for all q^O. This gives the last sentence of Theorem 4.2. For p>0, assume that

for all <j^0. It follows that

) (4.1)

for all q^ 1. Hence, for p= 1 and g = 1, (4.1) implies that

πι(SO(2) x S0(2)) ca πι(SO(2) x SO(2) x SO(2))

i.e., Έ®Έ^Έ@ΈQιΈ, which is a contradiction. For p> 1, (4.1) implies that

πg(F+(ΓM2))^0 (4.2)

for all q^ 1. But from the defining fibration of F+(TM2)

GL+(2,R) - >F+(TM2)

M2

and (4.2) it follows that πx(M2) ~ 0, which is a contradiction. Thus, 2^(M2) is non-
contractable for M2 of genus p>0.

For four-dimensional Euclidean gravity, invariant under either ®(M4) or
^(M4), the obstruction to globally fixing the gauge is the non-contractability of
^(M4) or ̂ (M4), respectively. It is probable that for any compact 4-manifold M4

the groups ^(M4) and £^(M4) will be homotopically non-trivial. For certain
classes of compact 4-manifolds it is possible to show that π0(^(M4)) φ {0} and
πo(^*C^4))^ {0} Note that it follows from the exact homotopy sequence of the
fibration (3.10) that if π0(^(M4)) φ {0} then πQ(Q +(M*))* {ϋ} .

The first class of compact 4-manifolds M 4 for which π0(^(M4)) φ {0} are
product manifolds.

Theorem 4.3. Let M4 = NixN2 (where dimΛΓ

1=dimAΓ2 = 2j be an oriented
product manifold. Then

Proof. Let π1 and π2 be orientation reversing diffeomorphisms of ]V1 and N2

respectively. Let \^Ni]eH2(N1) and [N1]e/ί2(ΛΓ2) be the 2 dimensional coho-
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mology classes of N1 and N29 respectively. Then π^[_N1]= — [JVJ and πf[]V2]
= -[ΛΓ2]. Thus

(πι x π2)*[Ni x ΛΓ2] = πί[ΛΓ1]

and πx x π2 is an orientation preserving diffeomorphism of N1 x N2> However,

and therefore π^ x π2 is not homotopic to the identity.
The second class of compact 4-manifolds which have a disconnected

diffeomorphism group are smooth submanifolds of the complex projective space
P3.

Theorem 4.4. Let M4cP3 be a smooth compact 4-dimensional submanifold of P3.

Proof. Let FcP3 be a smooth 4-dimensional submanifold of P3 defined by the zero
set of a polynomial / with real coefficients

Let c : P3-»P3 given by x-+x be complex conjugation. Then c sends Fto itself. If
a e #2(P3) is the positive generator of #2(P3), then c* : #2(P3H#2(P3) is given
by α-> — a. Therefore, if ί: Fc»P3 is the inclusion of Fin P3, (φ)* sends i*α to
— i*a. Since 2i*a φ 0, it follows that c\v is not homotopic to the identity. Since any
M4cP3 is diffeomorphic to a surface FcP3, it follows that

In the Euclidean approach to quantum gravity the compact 4-manifolds
S2 x S2, P2 and the K3 surface are important as compact gravitational instan-
tons. It follows from Theorems 4.3 and 4.4 that the group of diffeomorphisms of
these three manifolds is disconnected. Hence we have the following.

Theorem 4.5. Let M4 be any one of the compact 4-manίfolds S2 x S2, P2 or a K3
surface. Then

Proof. For M4 = S2 x S2 the result follows directly from Theorem 4.3. For M4 = P2

the proof of Theorem 4.4 implies that c:P-*P2 (complex conjugation) is not
homotopic to the identity. The model of a K3 surface is the quartic surface in P3

defined by

As M is defined by a polynomial with real coefficients, Theorem 4.4 implies that
π0(^(M4))φ{0}. As any K3 surface M4 is diffeomorphic to the sμrface M, it
follows that π0(^(M4)) φ {0}.

Furthermore, it follows from Theorem 4.5 that for M4 = S2x S2 P2 or a K3
surface
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Therefore, it is impossible to globally fix the gauge in Euclidean gravity, with either
a @(M4) or ̂ (M4) invariance, defined on S2 x S2, P2 or a K3 surface.

Although, as we have seen, in general it is not possible to define a global gauge
in four dimensional Euclidean gravity, there always exist local gauges given by the
gauge slices Sfg. These local gauges can be used to define the path integral in some
sufficiently small neighbourhood °tt of g e M in which 5^ is a good gauge. We wish
to evaluate

If fr\M-*J(IQ)^ is the canonical projection with the restriction
we can write

= f
Cf
^ 9

= J
^9

The Jacobian determinant det(/|^) of fi\#g is the Fadeev-Popov determinant
associated with the local gauge yg.
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