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Abstract. We prove two bounds on the value of renormalized Euclidean
Feynman graphs. One is a relatively crude but widely applicable bound; the
other a finer bound applicable to ̂ 4-like models.

I. Introduction

In [FMRS 1] we used a phase space expansion to prove an exponential bound on
completely convergent Euclidean Feynman graphs:

|G|^K L ( G ) , (1.1)

where \G\ is the value of the amplitude associated to the graph G and L(G) is the
number of lines in the graph. In this paper K will stand for various numerical
constants whose precise values are largely irrelevant.

In this companion paper we apply the same expansion to the technically more
difficult cases of renormalized graphs.

The bound (1.1) fails for renormalized graphs in strictly renormalizable
theories; explicit families of graphs with factorial growth have been constructed
[GN1, L]. On the other hand in [CR], a general bound on graphs of massive φ\
has been derived, which grows as the factorial of the number of renormalization
subtractions. It extends to renormalized graphs of massless φ\ at non-exceptional
momenta [CPR]. These bounds are not optimal.

For example, if

°1= V / \ \
Fig. 1.1

* Permanent address: Department of Mathematics, University of Britisch Columbia, Van-
couver B.C. V6T1Y4, Canada
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with n mass bubbles, at zero external momenta, the bound of [CR] is
I Gil ̂  (const) (2n)!. We prove two bounds on renormalized graphs. In Sect. II, we
prove a bound which is very widely applicable but quite crude. Applied to the test-
graph Gx it gives \GX\ ^(const)(3n)!. In Sect. Ill, we prove a finer bound which is
applicable only to ^-like models, which gives ^^^(constjnl, the correct
behavior. "^4-like models" means essentially that for m^ 5 the connected m-point
functions are superficially convergent, and for m = 3,4, they are at worst
logarithmically divergent. Fermions are allowed, so the (Gross-Neveu)2 model
[GN1] falls into this class. Therefore we recover in particular all the results of
[CR].

The advantage of the methods used in this paper over the original techniques of
[CR] is that they are directly applicable in the larger context of constructive field
theory [FMRS3].

We now provide an outline of the expansion used in [FMRS1] or [FMRS2].
Consider a Euclidean Feynman graph represented in position space. Bound each
propagator by:

ddk eikix~y)

(2πY (k2

00

Mι\x-y\), (1.3)

where δ = d — 2p, and assume m > 0, M big enough (here one should take M ̂  12,
with some straightforward changes one can take any M > 1). We fix one value ie of i
for each propagator / (a "momentum assignment"). To perform the integral over
position space, let us slightly simplify the recipe of [FMRS 1, FRMS2].1

We make repeated use of: f Λexp(—Ml\x—y\) = KM~ίd.
Any spanning tree Γof G can be used to define a partial order on the vertices of

G (choosing some external vertex of G to be the biggest). Then integrating over the
positions of the vertices in that order, starting from the smallest ones, one gets:

todxv Π exp(-Λf*|x,-jvD
ίeG υ teT

(1.4)

where iv is the scale of the line directly above the vertex:
external biggest vertex

Fig. 12

We must choose T so as to make the iv

9s as large as possible. Let G( be the subgraph
of G made of these lines / with index iύ ̂  i. G{ is the union of connected components
G*. We choose Γso that its restriction to every G* is still a spanning tree in Gf. This

1 We thank G. Felder for this simplification
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is possible since the Gf s form a forest of connected graphs (build inductively,
starting from the smallest Gfs).

We claim that for this choice of T, and for any fixed G" every vertex v, save one,
of G] has iv^j. (This is an easy consequence of the connectedness of TnGj.)

Hence, aside from irrelevant constants, our graph is bounded by the sum over
momentum assignments of

Π Π|Γ Π M W ΊM-« V W-»\ = Π Π M D ^ , (1.4)
JZl k \l*eG? J j JZ1 k

where V(G)) is the number of vertices, and D(G)) the superficial degree of
divergence of G). Assume now that there is an ε > 0 (depending on the model) such
that D(G))<. -εE(G% where E(G)) is the number of external lines of G). Let us
achieve the sum over momentum assignments when the maximum number of lines
that may be hooked to a vertex is bounded (as in ̂ 4-like models for instance). For
the general case we refer to [FMRS1].

We write

(14)^ Π Π M - ^ ^ Π ί Π Λf-£Ίfr-Wl, (1.5)
j ^ l k v (/, ί' hooked to v j

where ε' depends on ε and on the maximal number of lines per vertex.
We have now an exponential decay in momentum space between lines hooked

to a common vertex, dual to the usual exponential decay in position space between
vertices linked by a line. We order the lines of G as Sl9..., (w ..., /L(G), such that ίx is
hooked to an external vertex and each {ίu ...,/„}, n= 1, ...,L(G) is connected.

Then one has
L(G)

) ^ Π A T ^ W W (1.6)

with n'(ή)<n, and, by convention, *Vo = 0. Applying

starting with (1.6) and working backwards completes the proof of (1.1).
Notice that if G contains unrenormalized superficially divergent subgraphs, we

can have D(G£)^0, in (1.4) and the exponential decay in momentum space
disappears, or even becomes exponential growth.

It is that problem which is tackled by renormalization in the next sections.
In the course of completing this work, we received preprints from Gallavoti

and Nicolό [GN2] and Gallavoti [G] in which the factorial bounds of [CR] are
also derived by a phase space analysis, using an original and powerful formalism.
This formalism is not aimed at the study of individual and rather general Feynman
graphs, in contrast with the present paper.

II. Renormalized Graphs: Bounds for General Models

We assume the reader's familiarity with some basic notions of Feynman graph
theory, like trees, forests, superficial degree of divergence, etc We shall be
considering connected graphs G, viewed in position space as usual, whose lines are
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the propagators of massive, power law fields. In other words we will not consider
logarithmic propagators in this paper. We start by describing how we shall
renormalize these graphs. We use two variants of Zimmermann's forest scheme.
Before integrating over the positions of the internal vertices we apply the
renormalization operator

»=ΣΠ(-Λ) (2-1)

Here the g's are forests of divergent subgraphs of G; dg integrates over the
positions of the internal vertices of the subgraph and replaces the resulting function
of {xΌ\v e 93JE(^)} by the distribution supported at coinciding arguments which is, in
momentum space, the Taylor polynomial of degree D(g) for g (a precise formula

will be given shortly); the Taylor operators Π ( ~ ^ ) f°r convenience are ordered
9

so that if 0iC02? ~~^i *s applied before — (£02.
In the variant we use in this section we shall sum over the set %D(G) of all

connected divergent forests of G (including 3f=0) This means that every ge$
must be a connected, superficially divergent subgraph of G. This leads to a bound
which may be applied to very general graphs and whose proof is, relatively
speaking, not clouded by technical detail On the other hand the bound is
relatively crude. It grows as SD(G)\, where the number of subtractions SD(G) in G is
defined by

SD(G)= sup \W. (2.2)
3retP(G)

In the variant we use in Sect. Ill, we shall consider only φl-like models and we
shall sum over the set ̂ C(G) of all closed, proper divergent forests of G (including
5 = 0) Hence in this case every g e g must be a 1PI, closed, divergent subgraph of
G. A divergent subgraph gQG is closed [CR] if and only if there does not exist a
divergent subgraph gf obeying (1) g^g'QG, (2) every external vertex of g' is also an
external vertex of g. In the example below g1 is closed but g2 is not.

Fig. 2.1

Because we tailor everything to φ\ in this case we achieve a growth rate of SC(G)!,
where

SC(G)= sup \m. (2.3)
8fGS?c(G)

For example if there are n mass bubbles in the graph Gx of Fig. 1.1 we have
SC(G) = n, whereas SD(G) = 3n - 1 .

We come to the precise definition of dg. After integration of its internal vertices
g is a function g(xl9...9 XVE) of its VE external vertices. By translation invariance its
Fourier transform is of the form δ(kx+ ... +kvJg(kl9...,kVE-1). The Fourier
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transform of <£gg is then simply δ(k1 + ... +kVE) times the Taylor polynomial

WJ 1 c
(2.4)

Here D[G] is the largest integer less than or equal to D(G). It appears superficially
that kVE plays a distinguished role here. That is of course not the case thanks to
translation invariance. In practice we will want to apply (ίg to the test functions
smearing g rather than to the unsmeared value of g itself, i.e. to use

, . . . , xvj<*(xi, •> i dxvE

= J g(xί,..., xVE) (C*α) (xt,..., xVE)dxx... dxVE. (2.5)

Because Q,g is defined only for translation invariant #'s it does not have a single-
valued adjoint. However (2.5) is nonetheless true for d* defined by:

(2.6)
ί = 0

where xi(t) = xVE + t(xi — xVE) for Ϊ = 1 , ...,VE — 1. Here f£ really does play a
distinguished role. However we could in (2.6) replace υE by any other external
vertex of g, thereby defining a different (£* but one for which (2.5) is still true.

Here is a simple example that illustrates how renormalization works in the
context of the phase space expansion.

scale i

-
y 2

scale j

Fig. 2.2

The propagator in scale k9 being the energy Mk part of a d — 4 boson propagator
behaves essentially like M2k exp( — MV|). Once we have done the integration over

position space we will have associated with the subgraph*C^7_Z^) ^ e n e *

momentum factor M2i x M2i x M~Ai = M° [one M2i from each propagator and

M~41 from the "non-fixed" vertex of *CZ__^* s e e (l X̂l This is not surprising

since the subgraph has degree 0. It is nonetheless distrastrous because there is no
decay in i to allow us to sum over the momentum assignment i. Suppose we now

renormalize * d H ^ * ' **e* a PP^ ^~^Θ t o i C ~ ^ ' **e a PP^ (1~~^)* t 0

. Then the gradient applied to exp( — Mj\x — yx\) produces an
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extra factor of Mj, and using

\x±-x2\

(xi— x2) produces an extra M~\ Hence altogether renormalization gives us
M~{i~j): exponential decay between the momentum scale of the subgraph
renormalized and the scale of its external lines. It is also worth noting that the
bubble 0 = * d H ^ occurs as a connected component of a Gj if and only if

ig=min {i,2, i,J > max {iΛ, i,4} = eg

Hence the divergence of — ( ^ ^ ) — arises completely from momentum assign-
ments respecting this inequality and consequently could be successfully cancelled
by a counterterm of the form

\dxdy Σ

where φ{ is the field of scale i. But this is not local because of the restriction ίg > eg,
and consequently is not a legitimate counterterm. Hence to preserve the locality of
the theory we must, in addition to applying (1 — &g) to Σ — d H ^ " ~ ~ ~ > a c ^

ig>eg

the term — <&g Σ C ^ ) * Now ig ̂  eg in effect put an ultraviolet cutoff

ig^eg i2

on the bubble J dy Σ x *C ^ y > rendering it finite. It is bounded by

such that ig^eg

consteg. This eg is easily controlled by the M~2eg in Σ 1 + & , so the extra
term is finite. However, in larger graphs there can be an accumulation of ejs
resulting in the production of factorials through sums of the form

Σ M~ ε ίf-constπn!. (2.7)
t = 0

This is the sole source of the factorials SD(G)\ and SC(G)\. We now state the
hypothesis for our first theorem.

(H 2.1) The lines. Each line { of the connected graph G has a propagator Ce which
can be decomposed into

Q(x,)>)=Σ C,j(x-y) (2.8a)

with all |n|th order partial derivatives (we use the usual multi-index notation)
obeying

\dn

\δxn C/./X) (2.8b)

for some constants M > 1, K', v>0 independent of ί and <5(<f). Propagators are
allowed to be matrix valued.
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Remark, (2.8) is obeyed by the propagator l/(k2 + m2)p with m> 1 (we can always
scale to achieve this), δ = d—2p, and

if ; = 0

if
[Γ(p) M-2J

(H 2.2) TTίβ Vertices. There is a constant L such that at most L lines are hooked to
any one vertex. [This is not essential (see FMRS1) but simplifies.]

(H2.3) The External Vertices. The renormalized graph is integrated against a
"function"/(x) with x = (xVl, ...,XVVE), %E = {ΌU ...,t?FjB}. For example to get the
value of the graph in momentum space with momentum kv entering the external
vertex v /with Σ ^ = 0^ one chooses

(H 2.4) Power Counting. We assume that there exist constants such that for every
connected subgraph gQG

j D when
{9)=\-2εE(g) when _ _ . . .

In effect D and E are the maximal degree of divergence and maximal number of
external lines for divergent subgraphs. For non-integral positive D(g) we also
assume D[g~] +1 ^ D(g) + ε.

(H 2.5) Divergent Forests. There is a constant K" such that the number |$D(G)| of
connected divergent forests of G is bounded by K"L{G).

Theorem 2.1. // hypotheses (H 2.1)-(H 2.5) are satisfied, then for any 0 < ζ < 1
any t;G e 93£(G), t/zere exists a constant K such that

\ί Ax)(9iGKx)dx\SKL^SD(G)\ sup if Π Vj;)f\ ,

sup
{*o|i>6βi(G)} ί

and T(G) gives the sets of differential operators acting on f that can arise during the
renormalization process. It obeys:

(i) For each v e 33£(G), 0 £jv ^ sup Σ φ[β\ +1),
8fe?p(G) vege%

(ϋ) lil=ΣΛ£ sup
» 8fe5D(

(iii);ro=0.
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Remark. If (H2.5) fails, we still get the above bound with SD(G)\ replaced by

Σ

Comment. The Meaning of It All. Renormalization subtractions are effected by
applying 1 —(£* to the test function /that is smearing g. By Taylor's theorem this
results in the application of D(g) + 1 derivatives to the test function. Hence (i), (ii).

Even for a graph without divergent subgraphs G(x) need not be uniformly
bounded thanks to singularities at coinciding arguments. However we may get
something uniformly bounded by fixing any one external vertex vG of G and
smearing all the remaining external vertices. This smearing may be achieved as
follows. For each vή=υG pick a smearing function ηv obeying

$rιυ(xΌ)dxv=l9

For example ηv could be the characteristic function of a ball of volume 1. Then
apply

<G-
χvG) Π *lv«-Xv)f(x),

where

ίO v =

7« (2.10)

(mG) (x) now has each vertex except the fixed vertex vG smeared by ηv at the cost of
having to take local suprema of /. Hence the vG and the local suprema.
Furthermore we can choose vE of (2.6) so that no (£* applies a derivative to vG.
Hence (iii).

By way of an example suppose f(*) = δ(xVVE) Π eikvXv. We should choose
VΦVVE

vG = vE to avoid both applying derivatives to the (5-function and evaluating
sup δ(x'υv )- Each derivative \xv simply brings down a kv. Hence our

bound has a dependence on the external momentum which grows at worst like
Γmax|kjΊ Σ ( 2 W + 1 ) , with the sum running over ge$D(G) such that

3 3 ( ) 0 D

Proof of Theorem 2.1. The first order of business is to reorganize the renormal-
ization operator 91 of (2.1) so as to perform renormalization cancellations when
they are needed. We call this reorganization "classification of forests."

Classification of Forests. Divergent forests enter the problem of bounding G in two
somewhat independent ways. Firstly the definition (2.1) of the renormalization
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operator introduces a sum over all connected divergent forests of G. Secondly
given an assignment μ of momentum scales to the lines of G, the bounding process
of Sect. I naturally generates a forest of "dangerous" subgraphs of G: the
connected divergent subgraphs of

where ie is the momentum scale of the line (.
The situation here is a little different from that of Sect. I since the Taylor

operators — ϋh inhibit vision across the boundary of h. Hence in deciding
whether or not g e g is dangerous, we should consider only those internal lines of
g that are not in

AJg)= U ft,

and those external lines of g that are in B%(g), the smallest subgraph of 5 strictly
containing g. If no such subgraph exists we define B%(g) = G. So given any
assignment μ of momenta and any forest $ e ^D(G) we define the sets of dangerous
subgraphs of g and safe subgraphs of g, denoted Dμ(S) and ®μ(3f) respectively2 by:

g e Dμ(3r) <> Q e S> β/A%(g) is a connected component of
ΪB(g)/A(g))£μ) for some;

β e β ( S ) , (2.H)

where

i,(3r)=min {*V|*f e # - A^(g)},

e,(g) = max {iξ\{ e E(g)nB%(g)},

and

flf e S,(S) o 0 e gf, i,(S) ̂  e,(g). (2.12)

We remind the reader that E(g) is the set of external lines of g. E(g)nB%(g) can
be empty only when g = G; then we define eg = 0. It is obvious that if %l9

(2.13a)

^ ^ (2.13b)

for all flf e gfi From the definition of Φμ(3r) it is also true that:

Lemma 2.2.

(2.14a)

(2.14b)

This lemma will be proved later. Consequently ©μ(©μ(5)) = ©μ(3f)> s o ®μ a c t s

as a projector, naturally composing ^D(G) into classes:

u {S'egD(Gf)i®M(ar)=s}. (2.15)
g such that ®μ(?5) = Sf

2 Dangerous forests correspond to the skeleton forests of [CR, CPR, R]
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In fact we can characterize {tft'e%D(G)\<5μ(
l&r) = *!f} completely in terms of

ξ>μ(ffl = {gξ-G\g is connected, divergent, compatible with $, geT>μ(%u{g})}.
(2.16)

Lemma 2.3. Let 5=®μ(3r). Then
(a) %uξ>μ(%)e%D(G),and
(b) for any %' e%D(G)

This lemma which will be proven later allows us to rewrite

= Σ Π (-<y Σ GOO
%e%Ώ(G)geG μeWl

= Σ Σ Σ Π(-<
μe9W 3f such that ®μ(5) = 5 8r' such that ©μ(3f') = 8f geft'

= Σ Σ Σ Π( ..
3re2P(G) μ such that <5μ(δ)==3f W such that @μ(8f') = (? 9^W

= Σ Σ Σ Π (-«yc(/O
μ such that <3μG5r) = 3r g " g § μ ( δ ) g e g u g "= Σ Σ Π(-<y Π d-eβ)G(μ). (in)

$e%D(G) μ such that Sμ(3f) = 2f fire?* ^e$μ(8f)

Recall that Taylor operators are implicitly ordered so that (£g always occurs to the
left of (£y when g2g'. In (2.17) we have a "miraculous" reorganization of the
"renormalizationH-momentum space decomposition" process. Thanks to the

Π (1— ϋg) we get a renormalization cancellation which renders finite all
0e£μ(8r)

divergent subgraphs of G that are dangerous from g's point of view. Thanks to the
Π (—&g) [with ®μ(5) = 30 no other divergent subgraphs are ever encountered (as

connected components of the appropriate analogues of the G/s of Sect. I). This
may be seen as follows. We will work inductively, so pick any g e 5 u Sμ(δ) u {G}
and any momentum scale and consider any connected component h/A^^^^Qi) of
(9lA%u%μ®)(Q))y I n order for h to be dangerous in the sense that it will fail to deliver
any M~ε's in the transition from (1.4) to (1.5), it must have D ̂  0. In this case h will
be a connected D ̂  0 subgraph that is compatible with δu£>μ(δ) [simply because it
is a reexpanded version of a subgraph of g/A%uξ>μ(S)(gy] and that obeys

by Lemma 5.2

>max{i,\ίeE(h)ng}. (2.18)

Now this forces h = g because otherwise

max OVI / G E(h)ng} = max {ψ e £(Λ)n B β υ 4 J μ W ) υ W(Λ)}

Lemma 2.2,

and that would place h e §μ(g). In the event that h = ge §μ(g), renormalization will
save the day. In the event that h = ge<$, which by the way makes it the "useless"
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half of a counterterm that we have been forced to introduce to preserve the locality
of the theory, we must still have ih(<S^$>μ(W)^eh(%^i>μ(W)' This places an upper
bound on the possible values of ίh preventing divergence.

By hypothesis (H 2.5) there are at most K"L{G) forests in %D, so it suffices to
consider two arbitrary but fixed mutually compatible disjoint forests 5, § G 5 D ( G )
and bound

Σ Π(-C,)ΠO-<E,)G(μ). (2.19)
μ such that ©μ(3r) = ft ge% geξ,

S(8f) £

The bound will be by induction on the depth of the forest guir)u{G}. The depth of
a forest %' is the size of the largest linear subforest {g1Cg2Cg3... C #„!#; e $'}• This
induction can be implemented because given any fixed geguir)u{G}, the
restrictions of the conditions S^(g) = g> §μ(S) = § to graphs containing g depend
only on momentum assignments to the lines of G/g, while the restrictions to graphs
contained in or equal to g depend only on the momentum assignments to the lines
of gvE(g). We will view g as having:

- regular vertices
- generalized vertices. There is one generalized vertex for each

heW9u$(g) = {he%v$\hCg9 h maximal, i.e. hch'Qg, Λ ' e g u § => h'=g}.

The "value" of a generalized vertex h is a distribution which depends not only on
the positions x of the external vertices but also on parameters eh = {eυ\v e %$E(h)}
with ev being thought of as the largest momentum assignment of any external line
of h hooked to v. The value of the vertex is the obvious analogue of (2.19). It will be
denoted WΛ.

- lines: The set of lines left (i.e. not inside #'s generalized vertices) are simply
those oϊg/A9vj$(g). In the event that g is itself a generalized vertex, i.e. in g u § , the
momentum assignments to these lines must be consistent with the appropriate
inequality ig ̂  eg or ig > eg, with eg being determined by the parameter values e r In
any event the only connected component g'/A%u%(g) of the (g/A^u^(g))Js which
may violate D{gr) < 0 is g/A%u$(g) itself. The momentum assignments to the lines of
g/A9κj$(β) together with the parameter values ê  determine the parameter values eh

for the generalized vertices of g.
We shall prove inductively a bound on 9ΐ#(x, e) smeared against a test function

/(x). The bound is, for g e g u §

If Xg -fdx^K^M^^φ,) .sup

(2.20)

Here

[A gives the accumulated effect of all the ίg's generated by "useless" counterterms
(recall (2.7))]

u(g) = I {gf e %\g' £ g] \. (2.22)

T(g) is the set of possible configurations of derivatives that may be applied to/. It
has the following properties:
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-if \eT(g) with gs& then \}\=ΣJv^D(θ) and j ^ = 0. Hence derivatives
V

generated by εΛ's with hCg cannot get out of g.
- if j G T(g) with g e S>u{G}, then

(i) for each v e ®E{g) 0 £jv ^ Σ ΦίgΊ +1) + Σ

β3ί'Ϊ

(ϋ)lil^ Σ W ] + 0+ Σ

( ) Λ .
t;g is the fixed vertex of gf. Its choice will be described later.

w= 1/2(0+1) (2.23)

The norm || ||̂  is defined as follows. First, for each heft, hQg, set equal all
variables of/which correspond to the positions of external vertices of h. In other
words collapse each h to a point. Call the result (//g) (xr). Then take local suprema
in all variables except that containing υg,

x t ) |^ [^_ ( e 9 + 1 ) ) ^ ' * J . (2.24)

Then multiply by the usual decay factor

ge(x,)= sup Π {β-<1-o**+1l*-ftl}Λί-( +1)(K«<w»-1) (2.25)

(the factors of M in geg are to make it power counting neutral) and integrate

ί ί i f

xΓ) if

Applying the inductive bound (2.20) and the facts that |$uίju{G}| g
λn(-l)SCn

2nl [proven in Lemma(2.4)], Dig^D [by (2.9)] and

(i.e. removing the restriction that some subgraphs be collapsed increases the norm)
gives Theorem 2.1.

The heart of this chapter is the proof that the bound (2.20) is preserved by an
inductive step. So let g e § u § u {G}, and suppose (2.20) is obeyed by all elements of
2ϊffu$(0) [The induction would start with ^ u ^ ( ^ ) = 0.] We will start by writing
explicit formulae only for the case 2I5u^(^) containing a single subgraph h. The
case 3ί5u^(^) = 0 is similar but much easier. The general case simply involves
taking a tensor product of ft's. In fact in the inductive bound (2.20) we really should
have a tensor product of $R#'s smeared against a single test function/. However this
would not introduce any new features to the bound. Let x(y, z) denote the position
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of all vertices common to/, g, and h (/and g only, h and g only) and let (E* denote
(Eg, (1 — (£g) or 1 as appropriate

momentum assignments
to g\h

J dxdyf(x, y)<£*[f dz(g\h) ( , , z)(SRA) ( , z)] (x, y)

= Σ ί dxdz(Xh) (x, z) J dγ(&*f) (z, y) (g\h) (x, y, z)

=Σίdxdz(Wh)(x,z)Mx,z). (2.27)

Now apply (2.20) to %h. The bound on the result is organized into a number of
modules:

Module 1. Counting where derivatives can act.

Module 2. Extracting

Module 3. Extracting Π M
jv

f

f

when # G g.

when

Module 4. Extracting power counting factors from renormalization

Module 5. The choice of fixed vertices and the integral over position space.

Module 6. The sum over momentum assignments.
Here we go.

Module 1. Counting where derivatives can act.
Each &g will have up to D[cβ +1 terms each being a product of up to D{cf\ +1

derivatives each of which can act on any one of E(g) external lines. That's a total of
up to

Π (D[g] + l)E(g)Dί9] + x ^ const(D, E ) 1 8 ^ 1

possibilities, thanks to (H2.4). Every ge'ftvξ) must contain a line that is not
contained in Adκjξ>(g), |gu§|^L(^), and we can absorb the above constant into
KL{G). That's the last counting of this nature that we shall do.

Module 2. Extracting Π
Me

Jv

f when g e

Let's first see what happens to all the derivatives: the old derivatives from
V \

Me /o and the new derivatives from (E*. We choose vE of (2.6) to be the fixed

vertex vg oϊg and apply (E* t o / This produces a sum of terms each a "product" of
y

up to D[cβ differential operators Meg(xv — xVg) —^- applied t o / The reason for the

quotation marks on "product" is that the R '̂s must act directly on / and not on
other (xv — xVgfs. Furthermore all dependence of ((E*/) on all the xjs other than xVg

resides in the (xv — xVgfs. Hence as long as we are careful never to differentiate with
respect to xVg (that's the content of Module 4) every VxJMeh from the || \\h must act
either on Meg{xv — xVg\ yielding Mβ9~eh or on a propagator of g\h. By hypothesis
(H2.1) the effect of applying n such derivatives to a propagator is simply to
multiply the conventional estimate κfMkme~MiΛx£~y^ by en2~\ (Note that i^eh).
The en2'v is beaten by the appropriate M~wj2 from inside || ||Λ.
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Now we apply || ||Λ. If he g this simply means setting all vertices of x and z
equal and integrating. In other words just collapse h to a point and treat it like an
ordinary vertex. The factor MD{h)ehλu(h)(eh) should be associated with the vertex and
viewed as simply a logarithmic correction [if u(h) φ 0] to the ordinary powercount-
ing. If h e § we first have to reduce each subgraph of h that is in g to a point. Then
we have to take some local suprema. Since xVg/% is the only variable which now
appears in / and since either υg is not in h, or in the event that it is in h, vg = vh

(Module 4 again) it is not involved at all in the local suprema. Hence local suprema
are applied only to propagators of g\h that end at vertices of h and to
Mβ9(xv — xVg)'s having v e isE(g)n%$EQι). In the former case we apply

sup <r"<Φ*-»l < ee-^te-yA, (2.28)
|x;-x,|^AΓ-< *+i> ~

since eh ̂  i^ and in the latter case we use

xϋ--xβJ. (2.29)

Hence the only effect of the local suprema is the introduction of additional
constants that we merrily absorb into the KL{G) as in Module 1.

The obvious application of

J dxVg\ρ(xVg)σ(xVg)\ ^ sup \ρ(xVg)\ ί dxVg\σ(xVg)\

now leaves us with (recall j 2 ^ const) times a graph which

consists of g with
(i) each subgraph h in 9ί5u§(^)πe5 collapsed to a point and endowed

with the power counting factor MD^h)ehλu(h)(eh), (2.30i)
(ii) each subgraph h in 9i^ u^(^)n§ replaced by

m(eh)heh(xr), (2.30U)

(iii) each line of g/A%u%(g) endowed with the usual

(iv) the vertex υg held fixed but all others [consistent with (i), (ii)] integrated
over all space, (2.30iv)

(v) at most D[g] additional factors of Meg~~eh, Meήxv — xVg\ with veSBE{g).
(2.30v)

Module 3. Extracting when geξ>v{G}.

Start by applying to f0 in (2.27) the old derivatives VxJMβh from the inductive
bound on 9tft. These derivatives can either act on propagators in g\h or on
(1 — £*)/. In the former case they are treated just as in Module 2. The inequality
(n + m)2 ̂ n 2 + m2 may be used to split M~wjt into two parts: one for transmission
forward to the bound on g, the other to control the n-dependence in our bound on
VnGig. In the latter case we use

v V'
w = 0

(2.31)
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which is true because no \/Meh can differentiate the fixed vertex of g which is
playing the role of vE in (2.6). If there exists at least one pair of external vertices v, vf

oϊg that are separated by at least a distance ̂ M~{eg+υ we need not renormalize g
at all, as we shall shortly see. In this case split the right-hand side of (2.31) into the/

, noting that sincehalf and the £ * / half. Bound the / half by ( ^ j /

ge{ξ>}κj{G}> eh>eg. Treat the G*/half exactly as in Module 2. If, for every pair
v, v'e%$E(g) we have |xv —x,,Ί ̂ M ~ ( β f f + 1 ) apply Taylor's theorem to the function

to rewrite (2.31) as

_V_V.
«0) (2.32)

for some 0 < ί* < 1. Evaluating the d/dt's gives a sum of terms each one of which is
of the form (up to irrelevant numerical coefficients and powers of ί*)

c(ί*)) . (2.33)
Me

with |jΊ + |j"| ̂ D[g] + 1 . These factors of Me9/Meh and Meβ(xΌ-xΌg) are crucial -
they supply the power counting factors that make renormalization work. Note in
addition that the vth argument of/ is evaluated at some unknown point within a
distance (l/3)M~(β«+υ of xv.

We now update the M~wj» in the inductive bound. At the beginning of the
inductive step we had some M~wj2. Part of this was used up bounding propagators
but M ~ w j 2 was saved [the same f as in (2.33)]. Now take |jΊ + |JΊ - Dig'] -1 factors
of Me*/Meh from (2.33), recall that |j| is Σjv>

 n o t (Σ j»)1/2 and argue

Me

since ^ > ^ since ^e§u{G}^const(M,D)M"w ( j '+ j" ) 2 since
w= 1/2(1) +1). The constant is no problem. See Module 1.

Now apply the norm || ||fc to the result of our calculation of (V/Mβfc)J/o. This
involves: collapsing some points together [that transmits well since
xv = χv, => χυ(t*) = xυ'(ί*)] assigning h the power counting factor Mm)ehλu{h)(eh);
possibly replacing h by heh(xr); taking some local suprema (if h e £>) and integrating.
As in Module 2 applying local suprema to propagators and to (xv — xVgYs has no
practical effect. Applying local suprema to/merely takes variables whose location
is already only known to within an accuracy of (l/3)M~(e&+1) and spreads them
out an additional M- ( e»+ 1 )^(l/3)M- ( e*+ 1 ).

The next step is crucial. It involves exploiting the decay of g to convert the
Me9\xΌ — xΌg\% Me9~eh's and, in the case (1 —(£*)/ was split up, the separation
between a pair of external vertices of g into the power counting factors that make
renormalization work. The logically correct time to perform this step is now. But
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to highlight it and to avoid breaking the flow of the current argument we are
extracting it as a separate module which can be read a bit later.

Finally we have to separate the test function (\/Meήy+r'f from everything else.
We will call everything else the graph g\ There are really three separate terms. The
term in which (1 — £*)/ was kept as a unit and the two terms / and — (£*/ when
they were split up. For the two cases (1 — (£*)/and/the procedure is the following:
First apply (2.10) with all ηjs being the characteristic function of a ball of radius

( e*+ 1 ) multiplied by the normalizing constant constMd(e9+ί\ This gives

Now extract from (mg') all the normalizing constants above and enough decay
factors to build ge (xr), noting that g' really does contain all the lines of g/% each
with a decay factor exp(—Mβ9+1\x^~ y€\) or better. Call what's left mg". Finally
apply

If dxrρ(xr)σ{*r)\ ύ sup|ρ(xr)| f dxrσ(xr)

to separate (mg") from geg(V/Me9)ϊ+r'f. The result is the desired

times a graph having essentially the structure (2.30). The only significant difference
is (2.30v) is modified. Roughly speaking there are either exactly D(g) +1 factors of
Mβg~e\ Mβ9\xv — xv I or at least one pair of widely separated external vertices. We
will make this precise in Module 4. There are two other irrelevant differences: the
decay rates of the lines are down by a constant factor; some of the vertices are
integrated only over balls of radius {ίβ)Meg+1.

That leaves us with the "split up term — (£*/" In it, as happened in Module 2,/
depends only on xVg. In fact we can apply

f dxVg\ρ(xVg)\ \σ(xVg)\ ^ sup \ρ(xVg)\ f dxVg\σ(xVg)\
Xvg

•2/ v V
just as in Module 2. This leaves us with the (£-type norm of M w j21 —— I /times a
graph with the structure (2.30). However in fact the (£-type norm in (2.24) is
bounded by a constant times the §u{G} type norm in (2.24).

Module 4. Extracting power counting factors from renormalization. Suppose
g e $. At the time this module is invoked [just before (2.10) is used to separate the
test function from the graph in Module 3] we have either

- exactly D\_g] +1 factors of Me*"e\ M*9\xv - xVg\ in the case that (1 - £*)/ was
not split up or

- a pair external vertices at least a distance of

in the case that (1 — (£*)/ was split up.
Now any pair Ό9Ό' of external vertices are connected by a sequence of

propagators in g/%. At this point in time each of these propagators is endowed with
a decay factor exp(—Ml\x^—yj\) with i^^(gu§). By extracting a very small
fraction of each of these factors we can build up

exp { - {ζ/ίOE2)Mi9{^^\xv - xv.\]
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ί / ζ\ - )
while still leaving the original propagators with exp < — ( 1 — — I Mι\x^—yJ\ >. In
the event that \xv-xv>\^6M~{€9+1\ w e

In the other case (and also in Module 2) we have

i
? ^υgl e x P I 10F 2 *V( =

this also true, both in Module 2 and Module 3, that eh7> ig($uξ>) simply because h
must have an external line that is internal to #/3ru£>- So we are now in a position to
replace (v) of (2.30) by

(vθ for g e 5 at most D\_g] additional factors of M*"'*'®"® ^ 36)

for g e § exactly £>[#] +1 additional factors of Me9~ί9®uίb).

Module 5. The choice of fixed vertices and the integral over position space. Let
vG be any external vertex of G and %' any forest of connected subgraphs of G that
contains G. We show how to select from each g' e $' an external vertex vg. in such a
way that

(i) υg is the external vertex of G selected.
(ii) for each gf e gr' either υg, $ Λ^g") or for all h' e $' with υg, eh'Cg' we have

h g

Work by induction from large subgraphs to small ones using the partial
ordering of gf' by inclusion. We pick vG for G to start. Then:

if vBv{hΊeh' then set vh. = υBwihΊ

if υBv{W) φ h! then choose vh at random from amongst 33£(/O.

Applying this rule to S'=S^£> builds the vjs which appear in (2.20), and they
satisfy (i) and (ii).

Now the current situation as far as x dependence is concerned is the following.
[See (2.30)]

- Each subgraph <&%u%(g)n'% has been collapsed to a point. This point is
integrated over all space.

- Each subgraph h in 2ί$U£(<7)πί) has been replaced by heh(xr). By (2.25), this
means that h has been replaced by h/% (i.e. subgraphs of h that are in 5 have been
collapsed), that internal vertices of ft/gr are not integrated over, that external
vertices of h/% are integrated and that propagators in h/% have decay rate
const Meh+ί;

- Lines in g/ftuξ) have decay rates const Mie as usual.
- One vertex υg is held fixed but all others not in A%u%(g) are integrated over all

space.
The only impediment to our immediately applying the procedure of Sect. I is

the fact that vertices internal to subgraphs of 2lδuS(^f)π§ are not integrated over.
This problem is avoided by simply getting rid of them: deleting internal vertices
and some internal lines, using triangular inequality, we bound each such h by a tree
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connecting the external vertices of h. The lines of this tree have decay constMeh+ *.
We now have a conventional graph h [namely g/% but with each subgraph in
2lδ u^(^)n§ replaced by a tree connecting its external vertices] each of whose
vertices, with the exception of one fixed vertex vφ are to be integrated over all space.
Now integrate over position space as in Sect. I (or [FMRS1,2]). This gives, for
each vertex v in g\ a factor const M~div

9 where iv is the momentum scale in which v
was integrated. The constants just go to updating the K\{g) of the inductive bound
(2.20). Hence our bound on |J 9?g -fdx\ now consists of

sup

times the sum over all possible momenta assignments of a bunch of momentum
factors:

- M~~div for each υή=vg of g'
- Mι'm for each line of g/A9u^(g) from (2.30) (iii)
- MD^λuφ)(eh) for each he%^(g) from (2.30) (i), (ii)
_ Md<β*+i)<V*w»>-i> f o r e a c h hsSΆ^^g)^ from (2.30)(ii), (2.25)
_ M[e9-i9mvξ>)]DR w i t h DΛ = D[flf] + l if geξ> and 0^DR^Dlg~] if ge% from

(2.36) (vθ.
Before moving onto the final module we simply organize these factors a little

better. This organization will involve the assignment of factors to the connected
components (flf/gug)J of

Start by writing

i = 0

and similar decompositions for [M w ]* ' , [Mm)J» and [Md( | r j ϊ<*/a f )"1)]βf c+1. Now
the factors left over in front of the product signs combine to give M to the power

Σ D(h) +

D(h) (2.37)

D(h)
heWfsuz(g)

= D(g). (2.38)

Since D(g)^D this MD(&) can be absorbed into the KLiβ) as in Module 1. Next
consider any connected component g" of

g'j={ίegY had decay rate ^ const Mj}.

Each vertex but one of this component has a factor of M~d. In particular if a tree
replacing some h e 9ίgu^(^)π§ appears in g" (and it will appear either in whole or
not at all) the vertices of the tree thus have M~dVE{m). This combines with an

Md[vE(him-u f r o m t h e decomposition of (Md[VEm)-ί])e»+ί to give just plain old
M~d. Hence, since the lines of the tree do not have an Mδ^ )9s we may as well collapse
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the tree and view it as being a single vertex. After this collapsing the lines of g] are
exactly the lines of (g/<S^J^)j and each has an M w and the vertices consist of the
vertices of (g/ftuSftj plus possibly some isolated vertices. These isolated vertices
arise when some h e ty$Uξ>(g)nξ> has ie<] but every line in E(h)ng has ie<j. This
vertex has the factor one so we just throw it away. Hence the M~dkv, Mι^\
Md(eh+l)(VE(h/m-l) h a y e r e s u l t e d i n

Π M D ( ( ^ U ^ . (2.39)

Now we look after the factors resulting from the decomposition of the [MD(h)]eh's.
Since

eΛ=max{zVK e E(h)ng},

h is a vertex of (^f/Su§); for exactly eh + 1 values of j and it is natural to put MD{h)eh

into (2.39).

Module 6. The sum over momentum assignments.
We are left with the problem of controlling the sum over allowed momentum

assignments of

λu{h)(eh) Π MD{mκjξ>^, (2.40)
heW^ig) j,k

where

Σ D(h)

such that ft is a vertex

Here g) denotes the subgraph of g consisting of (g/ftuξjiή with all the collapsed
subgraphs reexpanded. Now by (2.18), (2.19) D(g*j) can be non-negative only for
g) = g. For all other #fs,

D(g))^ -2εE(g))= -2εE((g/%vξ>))).

Hence we are almost in the position of (1.5). The only problem is that we can't
harvest any decay for j^ i g (gu§) :

Γ [ MD((9/ΰuξ>)ϊ) < j^D(fif)Pβ(8fυ|» +1] π M-2*E({gMκj&%) ^ (2.41)

jk ~ jh

So we rewrite the sum over all allowed momentum assignments as an iterated sum
Σ Σ with Λe inside sum being over all allowed momentum assignments having
ig P\ig

the given value of ig. The Π λu{h)(eh) may be moved outside the Σ a s follows:
Λe3I 5 u 5(sr) μ\ig

- L e t ehrn = max{e^\he<ίίίSuξ>(g)}. Fixing hm costs a combinatoric factor
&(0)\ that may be absorbed in the KL{9) as in Module 1.
Apply

Π λm{eh) S Π λm(ehm) (Lemma 2.4(c))
h h

n) (Lemma 2.4(f))
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- Extract part of the decay in momentum space that exists between the line of
scale ig and the line of E(hm)ng that has scale ehm (again the combinatoric factors
involved are no problem) to get M~+ε(ehm~i9) and apply

(/o(*s)* ( L e m m a 2 4(e))

That leaves Π M " 2εE^i^^>ψ inside the sum Σ This sum may now be done
j,k μ\ig

exactly as in Sect. I and is bounded by K ^mκj^} which may be used to update the
jζUg) j n faς jn(juctive bound (2.20). Our sole remaining task is to sum

ΣM^-^^M^1^1 3. (2.42)

If g e 5 we have

igύeg

^MΰMD^ Σ λΣu(h)(ig) since DR^D{g)
ig^eg

^MDMD^(eg+l)λΣu{h)(eg) by Lemma (2.4c)

^ c o n s t M ^ ^ ^ + i ^ ) by Lemma (2.4d)

and this is what we want since Σ M(Ό +1 = u{g) for g e %. If g e $$ we have

ig>eg

^ MD{9)MDig)e° Σ M ε ( e *" ia)λτm{ig) since D[_g~\ + 1 ^ D(g) + ε
ig>eg

<.comtMDi9)esλΣu{h)(eg) by Lemma (2.4e).

This is again exactly what we want since again

Σ u(h) = u(g) for

It remains only to prove some by-passed lemmas:

Lemma 2.2. For any 5 e SD(G), assignment of momenta μ and any connected g,
compatible with g

(a) min {ψ e g\Aeμ{mu{g](g)} = min {i€\{ e g\A^{g}(g)},

(b) max {i,\{ e E(g)nB9μ(mu{g)(g)} = max {iξ\{ e gnB$u{g](g)} .

. (a) Suppose i4βμ(ff)υto}(flf)ξA8(flf) and let *f0 be any line in A%(g)\Aeμmu{g}(g).
Let

toSdoQdiC.. CdnCg

be the set of all dangerous elements of g containing *f 0 and contained in g. Then for
each k = 0,..., n there must exist a line / f c + 1 which is an external line of dk and is
contained in dk+ x (# if fc = «). Since dfc is dangerous and there aren't any safe sets
between *f0 and g, i,k > yk+1. Hence i,0 > i^n+x with / Λ + 1 e g\A%u{gY Hence ̂ 0 cannot
provide the minimum in g\A9μXmκjW (β)>
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(b) Suppose E(g)nB?μ{mu{g}(g)^E(g)nB^{g}(g) and let ί0 be any line in the
difference. Let iγ be any line in E(g)nB%u{g](g). Let d be the largest set of 3r obeying

:E(d) (2.43)

9

d

1

For example B$(g) obeys (2.43). Now d must be dangerous for g so using the result
of (a) part

Hence / 0 cannot provide the minimum in E(g)nBSμ(S)κj(g)(g). Π

Lemma 2.3. Let δ = 6μ(g). Γ/icn
(a) δu§,(S)

Proof, (a) We need only show that no two g, g' e §μ(5) can overlap. If they did g\g'
and g\g would have to

g'\g g

I I I

I' I

g' g\g J

be nonempty and g and gf would have to have at least a vertex in common. But
since g is connected g\g' would then have to contain a line i which was an internal
line for g and an external line for g\ Furthermore ί cannot be in A9u{g)(g) by the
compatibility of gf with % and must be in B%u{g,](gr) by the compatibility of g with
g. Similarly g\g would have to contain a line f with £'e g\A%u{gΊ(g'),
t' eE{g)nB^{g){g). But this now forces

and
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That's a contradiction.
(b) Firstly note that if g 1 ; g 2 e g D(G) and %t £ %2 then by (2.13):

Hence if ge%'-%=Wnξ>μ(W, then getoJSυiβc^m So S^gOSg. In
order to have ®μ(3f)g g, there must be a g e g with

since $ = Sμ(3r) But then / 0 must be in some h e ξ>μ($) with hCg and must not be in
A%(g) and so:

i / o=min {itf e /ι\^s(g) = h - A^{h)(h)} > max {ie\l e £(Λ)nBS υ W(Λ)}.

This is impossible because E(h) must contain a line that is internal to
BSu(h)(h)Qg [or else BSu{h}(h) is not connected] and this line cannot be in As(g)
[since h is compatible with g and is not contained in 4 8(#)].

=> Assume S ^ ί δ ^ δ It i s obvious that S S δ ' Furthermore

by (2.44).

Lemma 2.4. TTiere exist constants cf(ε) s«c/ι that for all n>0
(a) c ΐ n ! ^ π ( - l ) ^ c " 2 n !
(b) cϊni + ί m + l f ^ ^ H ^ c ^ π ' . + ίm+l)11)^?- m^ - 1 ,
(c) λa(m)^λπ(mr) for m'^m,
(d) (m + l)"AB(m)=An+n,(m),
(e) Σ Af ~*£(m' "mUB(m0 ̂  An(m) ι/ M is large enough,

m'>m

k

(f) Π Λ , P ( " 0 ^ Σ « P ( W ) tf M is large enough.

Proo/. Recall that λn(m)= Σ ( ι + l ) f I M ~ 2 ( ί " m )

= £
i i l

(a) Σ fM 2

ί=l

oo _£_f n l oo 1 _ i _ f n \ oo

i=i cc i = i nl α i = i α

for α small enough.

(b) £ " ^ £ / ' " ^£ Σ ^ ( y
fe=o i = i /c !(n — /c)!

By (a) part this is bounded above and below (for different c's) by

The lower bound follows by taking the fc = O and k = n terms. The upper bound
follows by (« — k)l(m+l)k. (c) and (d) are obvious.
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(e) * ( ' U ~ ϊ < ί ~ M ) * ( ' )

m'>m

g Σ.
i>m;m' >m

if M is large enough.

k ( oo

(f) Π I Σ (iP + m+ \)n*M 2*P I ̂  Σ f W 1 +maxzΛΣn*M

Sk Σ Σ (h " 1 ^

__Λk-i

provided M is large enough. D

III. Renormalized Graphs: Bounds for ^J-like Models

There are two sources of slackness in the S(G) dependence of the bound of
Theorem 2.1 at least as far as it applies to models like φ\. They arise because %D(G)
is unnecessarily large.

(51) We have introduced counterterms for 1PR subgraphs even though it is well-
known that these will in fact be finite.
(52) We have introduced counterterms for non-closed subgraphs. Hence if, for

example, G = «CΓ 3*> w e introduce counterterms for bothq } and

. This is silly.x *C^__J2* y is a function of only one variable x — y. Any

non-integrable singularity in x — y can clearly be removed with a single Taylor
operation.

These two sources of slackness are removed simply by cutting down %D(G) to
), the set of closed, proper, divergent forests of G:

*CG= Σ Π ( - < y G . (3.1)

By ^4-like graphs we mean graphs obeying

(H3.1) = (H2.1) Roughly speaking we consider graphs built with any power
(H 3.2) = (H2.2) law propagators and having at most L lines hooked to
(H3.3) = (H2.3) any one vertex. The external vertices are smeared against a

general test function.

(H 3.4) Power Counting: We assume that if g is a connected subgraph of G then

\E(g)\^5 =

\E{g)\ = 4 =
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\E(g)\ = 3 =

\E(g)\ = 2 =

Remark. The effect of the last inequality is as follows. Take any connected biped
and add to it any line oϊE(g)nG. The result is at worst of degree 0: D ( O — )^0.

We also assume that D(g) ̂  4ε for any biped g which is the closure of a proper
divergent quadruped and that for non-integral positive D(g) we have

where as in Sect. II D[#] denotes the integer part of D(g).

(H3.5) Closed Forests. There is a constant K" such that the number |3ίc(G)| of
closed, proper divergent forests of G is bounded by K"L(G\

We remark that, for example, φ\ (even with lower order vertices) and Gross-
Neveu2 obey these hypotheses. With these hypotheses we have (using the same
notation as in Theorem 2.1).

Theorem 3.1. // hypotheses (H 3.1)-(H 3.5) are satisfied then for any 0 < ζ < 1 and
any vg e 93£(G) there exists a constant K such that

iT(G)\\\ J \J \\GivG

SC(G) being defined by (2.3).

Remark. Combining Theorem 3.1 with the combinatoric lemma of [CR]
Appendix C, gives a global Knn\ bound on the nth order of perturbation theory for
^4-like models, hence the "local existence of their Borel transform" as in [CR].

Proof It suffices to consider graphs G that have no one-point subgraphs; all
divergent monopeds are renormalized to zero and all others are just constants.
Our principal task here is to produce a replacement for (2.7) which ensures that we
still get renormalization cancellations when we need them even though SC(G) is a
lot smaller than %D(G). We need to redefine S μ and ΐ)μ, the operators which decide
when subgraphs in a forest are safe or dangerous. Suppose we are trying to bound
(£*#. So pick any assignment of momentum scales to lines of g and pick any
connected subgraph hQgΛsh dangerous? Of course before we get to h we will have
applied a (Ej, for every ga/i'Cg. So we really need to consider g/A%(g).

In Sect. II, h is dangerous if h has D(h)^0 and if h/A$(g) is a connected
component of (g/A$(g))j for some j , i.e.

ίh = min {i€\ί e h\A9(g)} > max {i£\€ e E(h)ng} = eh.

The problem is that there are two situations in which we will be unable, by law, to
renormalize h even if it satisfies this criterion. We consider them in turn.

Firstly, h might be 1PR. We know that this shouldn't be a problem if we have
renormalized its 1PI components properly. Consider the "end" 1PI components of
h, i.e. the components for which precisely one external line is internal of h. Each end

can be either a single vertex ( e.g. ^ J ), a biped, a triped or a quadruped. Since
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h is divergent (H3.4) ensures that at least one end is a proper, D>0 biped hp.
addition, if you sum over all such hps associated with h

In

(3.2)

Hence as long as we can choose vE of (2.6) to be the one external vertex of hp that is
not external to h too, all derivatives arising from the renormalization of hp act on
external lines of h and have the same effect as renormalizing h itself. In fact this
choice of vE does not pose a problem. In Sect. II, for reasons which remain valid
here, we always applied (2.6) to h' with vE being the fixed vertex υh, oϊW. These fixed
vertices were chosen in Module 5. But there was a lot of freedom in their choice.
The only time there was a restriction was when v^{hy i.e. υg in our case, appeared in
h'. But bipeds never have external vertices in common with larger 1PI graphs.
Hence it suffices to supplement Module 5 with the rule

"if vBW(h') Φ h', then set vw to be the vertex of h' which carry the line
obeying v = max{y*f e£(/0} "

However we must be careful to ensure that hp is indeed renormalized. If we keep the
same criterion as in Sect. II this need not happen. eh will be the scale of the external
line of hp that is internal to h. It may very well be higher than ih . Hence for bipeds
we should replace ew by

Fig. 3.1

The second situation in which we will not be able to renormalize an h when we
want to, occurs when h is proper but is not closed (see Fig. 2.1). As long its closure,
the biped h*, is renormalized this is again not a problem. Call the external vertices
of h* x and y. Recall how renormalization works. We get £>[/**] +1 ̂ D(/z)+1,
(x — y). F's from the application of (1 — (ίh*). Each V when applied to a propagator
of scale j produces an Mj. The decay exp{ — constM1*1*'*"*1} coming from
propagators joining x to y in h* can be used to turn the (x—y) into an M "ίh*. Hence
we have the decay M~(lh*~j) between ih* and j . But x and y are also external vertices
of h so it produces the decay jvf-constι'fcl*-:H between x and y. Using it instead gives
M~(ih~j\ just what we want for the renormalization of h\
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Fig. 3.2

Again we must modify the definition of dangerous to ensure that h* is
renormalized whenever h is dangerous.

Here are the new definitions of i, e, Sμ, and Dμ. Fix any forest % e ffiiG) and any
assignment of momenta μ. First define for all g e S

=max min {i€\{ e h\A%(g)} . (3.3a)

Here max runs over all h obeying

- h*"=g,
-his compatible with g,
- h/A%(g) is a proper component of (g/A%(g))j for some;. We will denote the h

giving the maximum Ic
g(ffl. Then define inductively from large to small in the

ordering by containment of $

J m a x iW e E(β) C Be%m)(g)}
\2»Λm&x{i^eΈ(g)}

if of is a triped or quadruped
if^ is a biped, ( '

and

(3.4a)

(3.4b)

Remark. We do not demand in (3.3a) that h be divergent or even a quadruped. In
general a proper subgraph h is closed if h contains the closure of each proper
quadruped contained in h. In general the closure h* of a proper subgraph is the
smallest closed subgraph containing h. If we were to demand that h be divergent
8* would not have the desired properties. In particular (3.5a) (to follow) would fail.
Similarly if we are to replace B^^g) by B%(g) in (3.3b), (3.5b) would fail.

These are essentially the same as the corresponding definitions in [CR]. [In
[CR] iffi) is x(g,%), ec

g(%) is y{gΉ) and ®c

μ(g) = ®(g)]. As there we have, for

(3.5a)

(3.5b)

(3.5c)
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we also have the analogue of Lemma 2.3. Define

ξ>c

μ{ffl={g£G\g is closed, proper, divergent, compatible

with

Lemma 3.2. Let S = ®J,(S). Then
(a) %v&,ffl(Gd

The proof is in [CR].
As a consequence of this lemma we have the analogue of (2.17) for 91CG:

Σ Σ Π ( - < y Π (i-e,)G(μ). (3.7)
%e%c(G) μ such that ge% ge%μ{%)

®μ(δf)=δ

Each term in this sum will be bounded inductively with each inductive step
involving an application of the procedure of Sect. II. The basis for understanding
the bound is understanding which divergent diagrams are encountered and how
they are dealt with. So pick any g e 5u§μ(δ)> and suppose we are attempting to
bound Π (~~^) Π ( l-K^(jU), having already dealt with smaller sub-

s'2 »'j 5 020'e££(5)
graphs in tfΞΞgu <%($). The "momentum exponential decay" of Sect. I breaks
down only when we encounter a connected component h/A%(g) of (g/A%(g))j for
which h is divergent. In order for this to happen we must have either h — g or

where we recall that

In the event that h = gwe have the situation of Sect. II either hs^in which case we
have the inequalities

8 S 8 (3-8)
putting a cutoff on the allowed values of ih($) orhs ξ>J$), in which case we have
renormalization giving exponential decay between ih(%) and the highest external
leg differentiated. But unlike the case of Sect. II we may also have hCg. Because of
the difference between eh($) and ec

h($) this may happen even if h is divergent closed
and 1PI, i.e. a legitimate candidate for renormalization. Since g is 1PE EQήng
must contain at least two lines. Hence to allow eh(%) < 4(5)> h must be a triped or
quadruped; to keep h out of §μ(S) we must have

so there is again an ultraviolet cutoff on ih(%). We will call the set of tripeds and
quadrupeds for which (3.9) is satisfied ft^g). h could also be 1PR of course. We
already know that such an h must have an "end" proper component hp which is a
biped whose fixed vertex vhp is hooked to the line of E(hp)ng carrying the highest
momentum [ = the one line in E(hp)c\K] and which has D(hp) ^ D(h). For hp not to
be in 5 [i e. not to be contracted to a point in h/A%(g)~] it would have to obey

^ «8) > ehm, (3.10)
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which is impossible. Hence hp will provide the exponential decay between ίh($) and
eh($) that h needs.

The last way to get a divergent connected component h/A%(g) of (g/A%(g))j is
for h to be a proper, divergent quadruped which is not closed. Then its closure, the
biped h*, will have

©. (3.11)

h* must then be g [or else E(h*)cE(h)ng forcing h* into δ^(S)] If V
renormalization will save the day; if g s % we have an ultraviolet cutoff on ίh.

Now that we understand where the dangers lie and how to control them we are
ready to proceed with the inductive bound. As usual we may fix an arbitrary family
of mutually compatible disjoint forests g, §, R and consider only

* % = Σ C Π ( " < y Π (l-<E,)0Gι) (3.12)

with g e Sfui?) and the sum Σ c running over momentum assignments for which
μ

The inductive bound is then

sur (3.14)

where

and T(g) is as described in Sect. II. || ||£ is the same as || \\g except that the local
suprema are taken over balls of radius M~{e°9+1) and the decay factor ge is replaced

sup Π

• Π {exp(-(l - ζ)\Xί-yt\)}Md{eC9+ WxW®-« (3.15)
^e(0~Λ)/3r

with the sup being over subgraphs of g that are proper, consistent with g and
h

generate g:h* = g.
We can now follow the procedure of Theorem 2.1 essentially verbatim until we

are well into Module 5. It suffices to replace eg by ec

g and ig by fg. We merely point
out that the following essential requirements of our old proof are still satisfied:

V
- Whenever a ——c- (or a local supremum on scale Me*) acts on a propagator \e

we have 4 ^ ^ ,
- Whenever a V/Mefι (or a local supremum of scale Me*) acts on an external line

of g, g is dangerous and consequently ec

h>ec

r (This is not quite so obvious as the
analogue in Sect. II was. It is proven in Lemma 3.3.) In particular we can still
update the factors e~wjt that are used to avoid factorials arising from the
accumulation of many derivatives acting on a single propagator.
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- There is a decay of exp{ — constMiCg\xv — xv\} between any pair of external
vertices oϊgffi. This is also not so obvious as in Sect. II, where every line in g/% had
a decay rate at least Mig. In the present situation we observe that there is a path
joining xv, xv> in the generator J^(gu§) of gffivξ) and that each propagator in this
path has decay rate at least const M1^ by the definition of ic

g. Furthermore this path
crosses a number of generalized vertices h e yt%u%(g)n%>. We can construct, using
the inductive hypothesis, a path across (a generator for each) such h with decay rate
constMe*+1. Since each such h necessarily has an external line in IgCftvξ))
Lemma 3.3 ensures that ec

h^ic

g, and consequently that we have the desired decay
between xv and xv>. As a result the extra power counting factors due to
renormalization [replacing (2.36)] are

for g e % at most Dig'] additional factors of M^~^ ( 8 f u^,

for g e ξ> exactly Dig] +1 additional factors of Me*" '*«"*>. ( * '

To perform the integral over position space we again construct a graph gf

consisting of g with each subgraph in Ϊ I δ u ^ ) π 5 5 collapsed to a point and each
subgraph h e 2l$u$(0)n£> replaced by a tree joining the external vertices in E(h/%).
Each line in this tree has decay rate const M e*+ 1, since the external vertices of h are
spanned by any generator of h. Each remaining line { in g/%vξ> has decay rate
const M\ As in Module 5 we perform the integral over position space. At this point
the bound on |J 9lg fdx\ consists of

su
f

Π
Me"

times the sum over all allowed momenta assignments of the momentum factors:

- M~dkv for each vή^υg of g'

- MhW) for each i j n e of g/A^^g)

- MDih)e%cih)(eh) for each h ε%uίb(g) (3.17)
- 1 ) for each /ίG2ί5u^(^)n§

with DR = Dlg] + l iigeξ)

Our first task is to work these factors more or less into the standard form of

(1.4HL5). Using M α j = Π M α we can organize all the M~dkv, MUδ{e\ and

Π ί Π M d i n * 1 ) + <M*Λy»uί(0 Π M*™™-"} , (3.18)
J ^ l I * heABu9n& [

^ suchthate^+l^j J

where gf is a connected component of

gj = {S'eg\ί has a decay rate ^ constMj}

and n) is the number of vertices in gf. As in Module 5 for each h e A9u^nξ^9j9 k,
either h C gf or h and gf are disjoint. In the former case we can collapse h to a point
with the resulting change in rή exactly cancelling the corresponding Md(VEih/ίS)~1}.
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After all this collapsing is done g) has either become a connected component of
(gf/gu$)j or a single point (if g) was exactly one h e ^ u ^ n § ) . Since the latter has a
factor 1 we can throw it away. Hence

(3.18) = Π Π MD«9®^. (3.19)
j ^ l k

In order to get something calculable we would like to use the MD(ft)e* of (3.17) to
convert D((g/$u$$j) into D(g1j), where g) is the subgraph of g consisting of
(#/Su*O)j with all the collapsed vertices reexpanded. Now

D(1j) D((/^m Σ W
such that h is a collapsed

vertex of (gffiυίό)*

SO

γi Mm)eh Π Π M

where we recall that for h e 2I^u 5(^),

=max{/|Λ is a collapsed vertex of some

But we have Mm)e\ not Mm)e\ For tripeds and quadrupeds D(h) = Q, so the
difference between ec

h and eh doesn't matter. For bipeds it matters a great deal. We
are now basically watching "end" quadrupeds coming to the rescue of 1PR
divergent subgraphs. We write, for bipeds

where the external legs of h have momentum scales i^ί9 i^2. Hence

™ * = Π

where EB(g1j) is the set of "end bipeds" of g), i.e. the set of bipeds h such that h is a
collapsed vertex of (g/%v$ή for which E(h)nE((g/%u$$*φ.

So (3.17) has now become

Π MDiφ^EΣ

B{9ί)

D{h)) Π λuC{h)(eh)M^-iC^^D-. (3.20)
j,k /*6«β u»to)

We next work on the last factor, starting with the extraction of the Me°Di9) that we
will need for the inductive bound (3.14). If g e $

(MD{9)e°M ~ {i°9 ~ ̂ ) 4 ε M ~ i g D { 9 )" ( ί*" e^)4ε if i > ec

^ (3.21a)

considering the cases DR = 0, DRφ0 separately gives

Mitt - ic

g)DR < MDi9)e°gM ~(ia ~ i θ > m i n ( 1 ) ^ ) ' 1>Af " ' ^ ^ . (3.21b)

= - l so

D ( ) Π l . (3.21c)
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In all of (3.21a-c) the first factor goes to the inductive bound, the second goes to
divergent proper open subgraphs and the third goes to the sum over the possible
values of ig, the lowest momentum appearing in 0/Su£. Note that for any; at most
one g) can be an open proper divergent subgraph (since for kή^k\ g), and g)' are
disjoint) and if there is such a g) we must have D(^) = 0 (g) is a quadruped),
ig<j^icg (by the definition of fg) and D(g)^5ε [by (H3.4) and the definition of
open). Hence, setting

if D(g)^0Jg<j^fg

[ otherwise (5'2Z)

we have for any j , k

either g) is convergent

=> D(g))-ΣDQΪ)-4εχgmD(g1j)S sE((g/%uξ>))) by (H3.4),

or g) is divergent, 1PR

=> D(9))-ΣD(h)-4εχ9mD(g))-ΣD(h)S ~^ύ -εE((g/%uξ>))) by (3.2),

or g) is divergent, 1PI, open

=* D(g1})-ΣD(h)-4εχg(j)=-4s= -

or g)eS<

or g)e%.

In the last case g)=g and D(g1})-ΣD(h)-4εχg(j)=D(g). This happens for
precisely 1^/^L, and so the resulting γiMD{g^~ΣD{h)'4ε^U) = MD(9)ί9 exactly
cancels the M~D*9)i° of (3.21).

So (3.17) has now become

\ Π λuCih)(eh)]U Π M
[heS&s^ig) j j ^ l fesuchthat

Ί if ge% or D(g)<0 orgeξ), ec

g>i}

As in Sect. II the next step is to move the λuC{h)(βhys outside the sum over momenta
assignments so we can perform that sum. For each h, eh = ί^h for some ίh. If this ίh is
an external line of g we can simply apply λucih)(ί^h)^λucih)(eg). Otherwise there is a
unique smallest

in which ίh appears. There is Exponential decay /in Π M ~εE^/^ξ>)^\ between the
V j.k )

scale i^ of any t' e g/$χ and the base momentum
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of g. Using three quarters of this decay we can bound all of the /lwC(/j)'s associated
with any one g e 5Λ by

by Lemma 2.4(c)(f)

S kuc{h)(bv) by Lemma 2.4(e).

Now bg is in fact exactly ig.9 the lowest momentum scale of lines in g'1%^9), where g'
is the element of ft u {g} associated with g. If g' e ft (2.9) ensures that ig. ̂  βJ'(S) a n < i
furthermore that the line of E{gr) for which if=ec

g>(%) is in E(g)nB%(g) too. So
5 and

( 1 2 3 )

Iϊ g'=g and # e g , bg = ig^iCg^eg^eg, and we again have (3.23). Iϊ g'=g and
06§u{G}, we either have ig^eg^eg; we take three quarters of the decay

M- ( l -β*>*of(2.23)/orif0 = G w i ^

apply Lemma 2.4(f):

exp( - f ε ^ - g ^ { ) j

We have by now worked (3.17) into the form

^ π
jfk such that

if 0 e g o r 0 = G,D(G)<Oor06S,eS>i,
if ge%<?ύi { '

and the last remaining problem is to perform the sum over allowed momentum
assignments.

We first sum over all allowed momentum assignments with the base momenta
bg of all the gs%R held fixed. As we have already observed every /eg/guί)
appears in exactly one #/3ίΛ. Furthermore our

π π M-ϊ E ( ( 9 / 8 u δ ) ί )

j^ig k such that g*φRu%

provides the usual momentum decay to all the g/%#s: for every vertex v of any
§1 g Λ and each line entering that vertex, there is the decay factor M ~ε{ίv ~ i(\ where iv

is the scale of the highest line of gf$R entering v. The only catch is that, unless g = G
with D(G)<0, there is no corresponding factors for lines t which are in E(g/^Λ).
Still as long as bg- is held fixed, to break the translation invariance, we can perform
the sum over momentum assignments at the cost of a constantjper line of g/ft. That
leaves the sum over all possible values of the bg-'s. For g^g'/ft with g'eftugί the
sum is bounded by the number of values bg- can take. As we have already noticed
bξ= ig> ̂ e φ so each such sum produces a factor of eg + 1 . For g'=geξ>we use up
the remaining M~(i9~e°)ε:
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Hence the sum of (3.17) over all allowed momentum assignments is bounded (aside
from irrelevant constants) by

M D i g ) e C ° λ Σ u c { h ) ( e g ) (eg

S MD^λuC(g)(eg) by Lemma (2.4d).

That verifies the inductive bound. D

Lemma 3.3. Let h,ge%'e %C(G) with h e Aw(g).

(a) J/£(/ι)n{£(0)uJ<(g')}*0, then
(b) // in addition geT)μ(%% then

Proof, (a) h has at least a vertex in common with Ic

g(%% but cannot contain all of
ΓgCS% since h* = hCg. Since /£((50 is compatible with 5' we must then have
hcrg(W). But JJGJO is proper so

which in turn implies

S 2nd max {i,K e E(h)ng} ^

(b) lϊge 35μ(S0 we also have ζ(gθ > βj(δθ •
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