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Abstract. A class of completely solvable gauge field equations is investigated.
These equations are shown to be closely analogous to the four-dimensional self-
duality equations. A similar geometrical interpretation is exhibited, and a
generalisation of the ADHM construction is shown to provide solutions.

1. Introduction

Recently there has been considerable interest shown in field theories defined on
space times of dimension greater than four. Much of the activity has been in the
area of Kaluza-Klein theories elaborating the ideas of Cremmer and Scherk,
Witten and many others [1]. However, there has also been some investigation of
the possibility of extending the idea of "self-duality" and applying it to pure
Yang-Mills theories in higher dimensions. In other words, equations linear in the
gauge field strengths F μ v , μ, v = 1... D, are sought which will, as a consequence of
the Bianchi identities imply the full second order gauge field equations,

DμFμv = 0. (1)

Linear relations of this type were studied in Ref. [2].
Ward [3] has pointed out that amongst these linear relationships implying the

full field equations there are some, but by no means all, which arise as integrability
conditions for certain sets of first order differential equations. Ward's first order
equations generalise the pair introduced by Belavin and Zahkarov [4], whose
integrability condition is the usual four dimensional self-duality equation,

•» μv -L * μv? x μv 2°μ\λpx \~/

More explicitly, their first order equations may be written

0, (3)
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where e\ has components given by

έ?4 = l, ea = iσa9 a = 1,2,3, (4)

and π is a complex two-vector. Notice that these equations are homogeneous in
the components of π. Recall that the self-dual equation has been successfully tackled
by twistor techniques [5], and in the case of finite action solutions by the algebraic
construction of Atiyah, Drinfeld, Hitchin and Manin (ADHM) [6]. Ward's
generalisation of Eq. (3) will be reviewed briefly in Sect. 2.

It appears that not all the integrability conditions discussed by Ward lead to
linear relations amongst field strengths which actually imply the second order
Yang-Mills equations. We wish to pay particular attention to the class of first
order equations Λk described in Ref. (3), seemingly the one most amenable to a
generalisation of the ADHM construction and also implying the full second order
gauge equations. The relevant dimension of space for this class is D = 4fe. The
generalised ADHM construction and some of its properties are discussed in Sect. 3.

In four dimensions the interesting solutions to the self-dual Eq. (2) are those
with finite action,

S = J d M t r ( F t v F μ v ) = 8π2|fe|, (5)

where k is any integer. Indeed, any gauge potential, Aμ9 yielding a finite action,
though not necessarily satisfying Eq. (2), can be classified to a certain extent by
computing its "topological charge" or "Pontryagin index"

^ * F μ v ) . (6)

This quantity is always integer valued for non-singular fields which tend
asymptotically to pure gauges,

Aμ-^g~1dμg, geG as * 2 ->oo (7)

In Eq. (7), G is the compact gauge group. Clearly, (5) is a consequence of (6) when
the potential is arranged to satisfy Eq. (2). For a given value of P Eq. (2) yields
those fields minimising S.

One consequence of Eq. (7) and the conformal invariance of the four dimension-
al gauge theory is that we may just as well regard space conformally compactified
to the four sphere, S4. Taking that point of view the vector potentials Aμ are to
be regarded as connections in G vector bundles over S4. Such bundles are classified
by the third homotopy group of the gauge group G, π3(G). The homotopy
equivalence classes are labelled by integers which are analytically computed by
the functional P, Eq. (6). In the more general situation, corresponding to the class
Ak, we shall see that it is convenient to compactify the D dimensional space in a
special way, in fact to H P D / 4 , (HP1« S4). Then, we shall need to understand the
classification of G bundles over H P D / 4 and to discover to what extent the ADHM
construction is able to cope with the variety of possibilities. For D = 4, of course,
the ADHM construction is complete, yielding all the instantons. In the more
general case it appears not to be. This investigation is the subject of Sect. 4.
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2. Homogeneous Equations and Integrability Conditions

Ward's generalisation of Eq. (3) may be expressed as follows

Vϊ(π)Dβψ = Q9 (8)

where μ = 1... D, α = 1.../, and the quantities Vμ(π) are homogeneous of degree
q in the components of π. The vector π itself is generalised to an (m + 1) component
vector which, in view of the homogeneity of Eq. (8), we can regard as an element
of CPm. In other words, we may write

K5(π)=!'V.Λ fπ»1...π» . (9)

The class Ak is special in that / is taken to be even and the dimension D is taken
to be twice /. Thus

/ = 2fc, D = 4L (10)

Further, each of q and m is unity, in which case Eq. (9) becomes:

Vμ

a(π)=Vμ

aPπ
p, P = l , 2 , α=l,. . . ,2/c. (11)

It is also supposed that the matrix Vμ

P, regarded as a mapping from a space of
dimension 2/ to one of dimension D = 2/, is invertible.

Inevitably, Eq. (8) breaks the SO(D) invariance. We can think of the nonsingular
matrix Vμ as reorganising the coordinates

χβ=VtpX*P9 (12)

and so the residual symmetry group will be a subgroup of SO(D) inside
GL(2fc, C) x GL(2, C), which subgroup depending on the precise choice of the
components Vμ

P. For the class Ak the choice of subgroup is Sp(l) x Sp(fc)/Z2

picked out by imposing suitable reality conditions on Vμ and xaP. Notice that only
for D = 4, k = 1 is the set of Eqs. (8) SO(D) invariant. Otherwise,

SO(4fc) p Sp(l) x Sp(*)/Z2. (13)

Setting

we shall require

{έxε-1)aP = xaP (15)

and

( n k = (fi^«"1)pα (16)

as the reality condition. Compatible with these we may also pick Vμ to satisfy

(V*VV + V*V%Q = 2δμvδPQ (17)

For k = 1, Eq. (17) is satisfied by the quantities eμ defined in Eq. (4).
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Now let us turn to the integrability conditions arising from Eq. (8). They are:

(VϊpVlQ+VϊQVlP)Fμv = O (18)

To show that Eqs. (19) imply the Yang-Mills equations we demonstrate the
existence [2] of a totally antisymmetric tensor Tμvpσ so that Eq. (18) implies

\T F =AF (19)

where λ is some eigenvalue. The second order equations follow directly from (19)
and the Bianchi identities.

As a step to defining the tensor Tμvpσ we first define a tensor θμvpσ, not totally
antisymmetric, by

Qμvpσ = χτ (γrtγvy\pγ^ (20)

and note the identities
(21a)

^ (21b)

θμpσvFpσ = 8 F " V , (21c)

which are direct consequences of Eq. (18). Thus, (21a) follows on contracting Eq. (18)
with (E^Evε)QPέab and rearranging, (21b) by contracting with (£μ t)Q«(Ev t)P b, and
(21c) by a rearrangement using the orthogonality relations (17).

Next, we manufacture a totally antisymmetric quantity from θ by setting

j μvpσ _ Λ-ίQμvpσ _j_ βμσvp _^ Qμpσv _ Qμpvσ _ Qμvσp _ βμσpv\ z ^ )

Then using Eqs. (21) we find

±TμvpσFpσ = Fμ\ (23)

The tensor Tμvpσ does have two other eigenspaces, neither of which arises
from the integrability condition. We can, however, construct bases for all the
eigenspaces using the quantities Vμ. In four dimensions there are just two
eigenspaces corresponding to the quantities η,ή defined by

tfμv = 2\eμev ~ e\eμh

^μ. = 2(eμel-evel); (24)

η is anti-dual and ή self-dual, respectively [7]. By analogy we shall define

(25)

μ μ l (26)

and use the completeness relations

\Vμj[® Vμ = 4 F μ ® F μ t = 1 2® l 2 k , (27)
±Vμ® Vμ = ̂ F μ t ® V1* = ε® έ (28)

to compute the action of T on these tensors. We find

2k 4-1
f-ΛΓ*\ (29)



On the ADHM Construction 5

±TμvpσNpσ = Nμ\ (30)

There is a third tensor, orthogonal to JV, N and vanishing for k = 1. An expression
for it is

with

m&Q = VμpVlQ + ^SβKJp - Jεα6έcdK?FFJρ. (31)

Mμv satisfies

l TμvpσMpσ = - ^Mμ v fc ^ 2. (32)

To summarise, from a purely algebraic point of view the eigenvalue λ could take
the values 1, — ^, — 2/c 4-1/3. However, from the point of view of the integrability
conditions for Eq. (8), only λ = l occurs. A basis for the solutions to Eq. (19) with
λ = 1 is given by the quantities Nμv which generalise the self-dual tensor ήμv in
four dimensions. We shall find in the next section that only for this case does the
ADHM construction generalise. This fact lends further support to Ward's idea
that only those equations for the field strength which can be cast into the form
of an integrability condition for a set of linear differential equations will be solvable,
and have a nice geometrical interpretation analogous to that in four dimensions.

We note one final point. If we ask how many equations for the field strength
there are implied by Eq. (23), the answer turns out to be 3fc(2fc— l)dim(G), on
simply counting up the contributions to Eq. (18). The number of potentials to be
determined in 4k dimensions is (4k — l)dim(G). Hence, except when k = 1, Eqs. (24)
overdetermine the gauge field.

3. Extended ADHM Construction

In this section we shall capitalise on the structure of Eq. (30) to propose a simple
extension of the ADHM construction which also yields field strengths satisfying
Eq. (23). At first we shall work locally, not worrying about the global properties
of the procedure. We shall return to those in Sect. 4. We shall also restrict analysis
to the gauge groups Sp(r) regarded as the set of unitary matrices whose entries are
quaternions, that is 2 x 2 matrices of the form

a = eμaμ. (33)

This restriction is purely for notational convenience.
Recall that the ADHM prescription for Sp(r) may be described as a set of

instructions for constructing an (r + /) x r quaternion matrix V(x) satisfying

F t F = l r

and in terms of which the vector potential is given by

The matrix V itself must be chosen to be orthogonal to a set of / (quaternion)
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vectors each of which is a linear function of the coordinates x. These we assemble
as a matrix A (x):

Δ(x) = a + bx, (34)

where a is an (r + /) x / constant quaternion matrix and the term bx is to be
interpreted as

biPRXiRQ ; = l , . . . , / c ; P , β , K = l , 2 , (35)

where the label a (in Eq. (12)) has been replaced by the pair (i,#), a natural
substitution in view of the nature of the reality conditions. In fact we are regarding
R4k as Hk, taking the components four at a time and arranging them into
quaternions in the usual way. Each matrix bh i = 1... k is an (r + /) x / quaternion
matrix. Then, the condition on V is

Δ\x)V = 0. (36)

For those values of x for which the columns of Δ are linearly independent we shall
have a completeness relation

l r + / = K K t + 2 l ( 4 t z l ) - M t (37)

which we may use to construct an expression for the field strength:

Fμv = dμAv - dvAμ + lAμ9 Av-\ = V\dμΔ(ΔM)"xdvΔ* - dvΔ{Δ^Δ)'ιdμΔψ.

(38)

Finally, noting that

dμx=Vμ

and requiring that Δ*Δ should commute with Vμ9 we find

Fμv = 2V^bNμv(Δ^ΔyΨV. (39)
Hence, in view of Eq. (30) the field strength is "self-dual" in the extended sense,
satisfying Eq. (23) automatically.

So far the argument is rather formal and we must now check carefully the
statements we have made. Consider the statement that Δ t4 = / must commute
with Vμ. We may think of Vμ as a k x 1 column vector of unit quaternions eμ in
which case the statement that / commutes with Vμ can be cast into the form

(W) =
/

(40)

indicating that / must commute with each component of Vμ. Thus, writing

/ = Δ f4 = αfα + a%xt 4- x] b\ a + x}b]bjXj9 (41)

we see that this is possible only provided a}a, cflbi9 b\b} are all symmetric
matrices as quaternions for each value of ij = 1... k. These constraints are quite
severe as we shall see. Supposing the constraints to be satisfied and Δ t4 to have
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maximal rank, V is determined for a given set of α's, b's up to a gauge
transformation. Different sets of α's and fc's will give the same vector potential
provided they are related by

a = Qa'Rt b^QtyR, βeSp(/ + r), ReGL(l,R). (42)

Taking into account the constraints on a, bt and the equivalences (42) we can
make a naive count of the degrees of freedom of the solution obtained. We find

N(K J, r) = Mr + \)kl - r(2r + 1) - £/(/ - l)(2fc - l)(Jfc - 1), (43)

at least for r < kl. Otherwise, not all of the equivalences (42) are effective and a
more careful analysis leads to

JV(fc, /, r) = kl{2lk + 3) - \l{l - l)(2fc - l)(fc - 1) (44)

for r ^ kl Of course, for k = 1, D = 4 and the result is the usual number of instanton
degrees of freedom for an Sp(r) group in four dimensions. For / > 1 the dependence
on k is such that the function JV(fc, /, r) is eventually negative for fixed /, r. For I = 1,
this is not so and Eqs. (43), (44) become, respectively

N{k, 1, r) = Mr + ! ) f c - K2r + 1), (45a)

3). (45b)

Note that Eqs. (45) also describe precisely the number of degrees of freedom of an
Sρ(r) field in four dimensions with k the instanton number!

Before combining our analysis of cases, it is worth seeing what happens if we
try to construct an ADHM procedure to match one of the other eigenspaces of
Tμvpσ, say that corresponding to Eq. (29). Effectively, we would need to replace
Vμ by V\ wherever it occurred. This means that the appropriate generalisation
of Δ (x) is now a collection

Δi=-ai-\-bxi ί=l , . . . , fe (46)

each of the at and b being an (/ + r) x / matrix of quaternions. Then, (Δ M )fj.
would be a 2/fe x 2lk matrix which must commute with Vμ. This is an
impossible stipulation considering the shape of the matrices involved unless

(47)

which are much too strong. Conditions (47) are impossible to satisfy except for
very special values of the coordinates. We cannot even imagine an ADHM
prescription for the other eigenspace, Eq. (32). We are forced to the conclusion
that only the case arising as an integrability condition can support an ADHM
procedure and we shall concentrate on this for the remainder of the article.

4. Global Aspects of the Extended Construction

In Sect. 3 we saw how an extension of the ADHM procedure enabled us to construct
certain field configurations which satisfy Eq. (24) in UD, where D = 4fe. In the
familiar case of k= 1, the self-duality equations in (R4, the solutions to Eq. (24)
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provide critical points of the action defined by Eq. (5), and all finite action solutions
to the equations can be obtained from the ADHM construction. Now it is known
[8] that there are no finite action solutions to the Yang-Mills equations if D > 4,
and hence no such solutions to Eq. (23). Thus this requirement is not a useful way
to impose boundary conditions on the solutions we are considering. On the other
hand, it turns out that all finite action solutions to the Yang-Mills equations on
IR4 have an asymptotic behaviour which ensures that they are conformally
equivalent to solutions defined on S4 = HP1, and we can impose suitable boundary
conditions on the Eq. (48) by requiring that the solutions can be extended from
UD = Hk to HPk in a suitable sense.

Equation (48) is invariant under the transformations,

xι - A = (QtjXj + βίoHGoΛ + QooΓ \ (48)

where QaβeH, O^α,jS^fe, which generalise the conformal transformations on
1R4 = H. (There are implied sums in Eq. (48) over , / = 1 to fe.) It follows that it
makes sense to regard the equation as being defined on HPk, the space of "lines"
in Hk+1 [that is, the space of nonzero points of Hk+1 identifying points of the
form (xaq) for different qeH, q φ 0]. This space is covered by k + 1 open sets θβ

(O^β^ fc), each a copy of Hk, corresponding to the points (xa) with xβ φ 0. If we
take coordinates on the sets θβ so that xβ = 1, the transformations (48) are induced
on θ0 a HPk by

(xα)-+(x;) = ( ρ α Λ ) , (49)

summing over β = 0 to fc. These transformations will also help map the open sets
θy c HPk onto one another. A suitable generalisation of the finite action solutions
on IR4, which correspond to solutions defined in two patches, on S4 = HP1 and
related by a gauge transformation in the overlap, is a solution to Eq. (23) defined
in each of the patches Ua, the solutions being related by gauge transformations
in the overlaps UΛr\Ό β,aφ β.

A gauge field configuration (not necessarily a solution) defined in patches, but
related by gauge transformations in the overlaps, in the way just described,
constitutes a G-bundle over HPk, G being the Yang-Mills gauge group. Such a
bundle will have various topological invariants, that is quantities which do not
change under continuous deformation of the field configurations.

For fc=l, i.e. S4, there is essentially just one such quantity, the instanton
number, the integral of the first Pontryagin class, given by

h F)) (50)

with F Ξ Faβdxa A dxβ. I must be an integer, and for each integral value of / there
are possible field configurations. If / ̂  0 there are solutions to the self-duality
Eq. (24); further the ADHM construction yields all the solutions to these equations
for each value of /, and for any gauge group.

In general, for k> 1, the situation is more complicated. In this case we can
define k nonzero Pontryagin classes, Pj(ξ), for a given G-bundle ξ over HPk.
Then Pj(ξ) is an invariant polynomial in F = FaβdxΛ A dxβ of order 2j. Pj(ξ) is
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closed, so that by Stokes' theorem integrating it over any 4/-dimensional closed
surfaces in HPk will give the same result, if the surfaces can be deformed into one
another continuously. Moreover, as Pj{ξ) is a topological invariant, such integrals
are left unchanged by continuous variation of the potential. For a discussion of
these and other characteristic classes see for example, Ref. (9). Thus integrating Pl-
over the obvious HPj a HPk (obtained, e.g. by setting k-j of the coordinates to
zero) yields k Pontryagin indices

ι=(-y j
HPJ

Explicitly, for example,

h = 4 ! ^ ( ί T r < f Λ F) Λ T r < F Λ F) - 2 1 Ύΐ(F Λ ^ F Λ f ) J . (52)

It is no longer the case that there exist field configurations (G-bundles) over
HPk realising all possible values of the fc-tuples of integers (lu Z2,..., lk). Moreover
the values of these integers do not always determine the configurations up to
continuous deformation.

For definiteness let us consider the case where the gauge group G — Sp(r), as
in Sect. 3. Then if r ^ k the topological classification of the field configuration is
stable, that is unchanged if we enlarge G, by regarding Sp(r) c= Sp(r') with r' > r.
Further the integers /; completely determine it up to continuous deformation, even
though not all combinations are realised. For example [10] if k = 2 and r ^ 2, the
condition that the Pontryagin indices lul2

 a r i s e f°Γ some Sp(r)-bundle is that

li^ihih + l) (mod 12), (53)

and such pairs (li9 l2) of integers label the classes of topologically equivalent
Sp(r)-bundles. However if we consider Sp(l)-bundles a stable classification is not
sufficient. Here Z2 vanishes identically so that (since every Sp(l)-bundle defines an
Sp(2) bundle) {lγ(lx + l) = 0, mod 12, implying

lx Ξ 0, 8, 15, or 23, (mod 24). (54)

Indeed it is the case that such values of Zt do arise for Sp(l)-bundles over HP2,
but for each such Zx there are two topological classes of bundles.

Of course it is a separate question as to whether field configurations corres-
ponding to these bundles can satisfy the field equations, or, more particularly, the
first order Eq. (23).

What we can see is that the bundles constructed by the generalised ADHM
procedure of Sect. 3 only produces a subset of the possible topological quantum
numbers. In fact it is rather difficult to see how the ADHM procedure could lead
to Eq. (54) being satisfied other than by means of a straightforward equality. We
can show that this is indeed the case by using the sum formula for Pontryagin
classes: if we take the direct sum of two bundles ξ, η over HPk,

Pr(ξ®η)= Σ JMflΛPjfo), (55)
i+j = r

with P0(ξ) = 1 and Pj(ξ) = 0 for j > k (in the sense that the forms on each side
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will give the same result when integrated over any closed 4fc-dimensional surface,
i.e. each side is the same integer times τr, where τ is the generator of the cohomology
ring of HPk. This integer corresponds to the lr defined in Eq. (52) as τ r yields 1
when integrated over a standard HPr.) Now in the ADHM construction for
solutions to Eq. (23) for Sp(r) with lx = /, the solution is constructed as a bundle
ξ orthogonal to a bundle η, defined by the image of Δ(x\ in the trivial bundle
HPk x Hι+r. The bundle η is a direct sum of / bundles corresponding to the /
columns of Δ(x), one dimensional over H and having /0 = 1, 11 = + 1, Pj = 0,
j>l. Thus

(56)
V/

From these remarks and Eq. (55) it follows that

h = P2(ξ) = I2 ~ W ~ 1) = W + 1). (57)

Although it is not clear from the above whether all solutions to Eq. (23) are
given by the ADHM construction, it is clear that there is an equivalence between
solutions to these equations and certain holomorphic vector bundles, which
generalises the Atiyah-Ward correspondence. We describe this equivalence below.
The mathematical details do not differ essentially from those of the Atiyah-Ward
correspondence, and we refer the interested reader to Ref. (5).

The idea is to introduce complex coordinates on the patches of HPk, in other
words to parametrize each fe-quaternion vector in Hk by 2fc complex numbers. To
do this while respecting the invariance of Eq. (23) requires choosing the same
parametrization by 2 complex numbers of each quaternionic component in Hk,
so that the set of complex coordinates is defined by those of the first component.
The possible choices of such coordinates are parametrized by CP 1. Were the
choices in different patches to fit together trivially, the space of such complex
structures on (the tangent space of) HPk would be parametrized by HPk x CP 1.
However, they do not, and the relevant space turns out to be CP 2 k + 1.

The picture is that C P 2 k + 1 contains the set of points p in HPk together with
complex coordinates at p. So there is a natural projection map:

{pt. + coords.} -> {pt.},

Any bundle E on HPk can then be lifted to a bundle π*£ on C P 2 k + 1 : if E is
thought of as attaching vector spaces to each point in HPk then π*E attaches the
same vector space to a point q in C P 2 k + 1 as E does to π(q) in HPk. Clearly π*£
is trivial on the CP 1 "lines" in C P 2 k + 1 which project to the same point in HPk.

The point of this procedure is that, from any bundle E corresponding to a
gauge configuration on HPk, we can construct a bundle π*E on the complex
manifold C P 2 k + 1 . On a complex manifold, the notion of a homomorphic bundle
makes sense, and one finds that π*E is a holomorphic bundle precisely when the
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gauge configuration satisfies Eq. (23). This leads us to hope that a full classification
of the possible sets of topological invariants for solutions to Eq. (23) and indeed
an explicit construction of all such solutions, may be feasible, in the same way as
the Atiyah-Ward correspondence leads to the proof of the completeness of the
ADHM construction for instantons [5].

Appendix A: Failure of the 't Hooft Ansatz

By analogy with the self-duality equations, one might look for a simple class of
solutions to Eq. (23) described by an ansatz extending that of 't Hooft [11]. This
would be a natural attack on the problem even if no analogues of the ADHM
equations were available, but can best be investigated within the ADHM
framework, given that it exists.

The 't Hooft ansatz for Sp(l) solutions of Eq. (23) would be described by our
ADHM ansatz of Eqs. (34), (35) [6,12] by taking the matrices

bjλ0

0

(b'j, λiθH for 0 S i ύ I, 0 ύj ύ k). Thus
-χ°λ,

,.R
0

.. b)λo

.. x°xr

.. 0
X Λ o _j

(Al)

where

X =
j=o

(A2)

(A3)

In fact, the solution given by Ward [3] is an example of such an ansatz, solving
Eq. (23) over IR8. This example cannot be extended to HP2, and indeed no ADHM
solution defined by (A2), (A3) can be valid on HPk. The reason for this is that (for
fc^2) the first column (say) of Δ(x) in (A2) will vanish on the (non-zero) inter-
section of the hyperplanes x° = x1 = 0 in HPk, violating the requirement that the
columns of Δ(x) be everywhere linearly independent.

Appendix B: An Explicit Solution

The simplest solution to Eq. (23), analogous to the basic instanton solution [13], is
an Sp(2) gauge field configuration over HP2 given in homogeneous coordinates by

Δ(x9y,z) =-El (Bl)
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On the patch (z = 1), Eqs. (36) imply

2r (B2)
y- - - 0

^ r r

where r2 = xx -f yy. Thus

>c,3;) = ι;t(x,};)dι;(x,y)

2r 2

- xdy + (xy - yx)dr - dyy — dxx
(B3)
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