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Abstract. This note proposes a definition for the concept of “attractor,” based
on the probable asymptotic behavior of orbits. The definition is sufficiently
broad so that every smooth compact dynamical system has at least one
attractor. :

Attractors have played an increasingly important role in thinking about
dynamical systems since their introduction some twenty years ago; yet there is no
agreement as to the most useful definition. Section 1 of this note compares several
definitions from the literature, and Sect. 2 proposes an alternative definition based
on asymptotic behavior for almost every choice of initial point. The remaining two
sections illustrate this definition by a number of examples, and discuss the stability
and robustness of these attractors. There are three appendices. The first compares
a closely related purely topological definition, the second studies real quadratic
maps of their interval as a test case, and the third discusses strange attractors.

1. History
The following is quoted from Auslander, Bhatia, and Seibert (1964):

“In the study of topological properties of ordinary differential
equations, the stability theory of compact invariant sets (which
may be regarded as generalizations of critical points and limit
cycles) plays a central role. ... By Liapunov stability (or just
stability) of the compact invariant set M, we mean that every
orbit starting sufficiently close to M will remain in a given
neighborhood of M. The set M is asymptotically stable if it is
stable and is also an ‘attractor’ — that is, all orbits in a
neighborhood ... of M approach M.”

(Compare La Salle and Lefschetz, p. 31.) The word attractor, applied to a single
invariant point for a smooth flow, had been used earlier by Coddington and
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Levinson (1955) and by Mendelson (1960). However, attractors consisting of more
than one point seem to have been first studied in this Auslander-Bhatia-Seibert
paper. They explicitly considered the unstable case, in which an orbit which starts
arbitrarily close to the attractor may wander far away before converging back
towards the attractor. Compare Example 1 in Sect. 4 below. Although their
definition is occasionally used by other authors (see La Salle, Hirsch, and perhaps
Smale 1977), it has not been widely accepted, and most subsequent authors have
required some form of stability as part of the definition. Smale (1967), in a widely
read survey article, defined a more complicated object which might better be called
an axiom A attractor. Smale’s attractors, for a smooth map f from a compact
manifold to itself, were “hyperbolic sets,” containing a dense orbit, with periodic
points everywhere dense, and satisfying the following rather awkward stability
condition: The attractor A must have a neighborhood U so that 4 is equal to the
intersection of the images f™(U) for m>0. Williams (1968) gave a related but
simpler definition:

“A subset 4 of Q(f) is an attractor of f, provided it is in-

decomposable and has a neighborhood U such that f(U)cU

and ,ﬂo fi)=4,
where Q(f) is the non-wandering set of f, and where a closed f-invariant set is
indecomposable if is not the union of two disjoint closed invariant subsets. The
concept of attractor acquired great interest when Ruelle and Takens (1971)
suggested that turbulent behavior in fluids might be caused by the presence of
“strange” attractors. In fact, an explicit example in support of this idea had been
worked out much earlier by Lorenz (1963). The definition of attractor used by
Ruelle and Takens, like that of Smale, used an awkward form of stability:

“A closed subset A of the non-wandering set Q is an attractor
if it has a neighborhood U such that () Dy (U)=4",
t>0

where the notation Dy , stands for the flow on a smooth manifold generated by a
vector field X. (Note that this condition does not imply asymptotic stability. For
example, according to Besicovitch, there is a homeomorphism of the plane, fixing
the origin, such that the intersection of the successive images of the unit disk is the
origin, even though every nonzero orbit is everywhere dense. See also Anosov and
Katok.)

It is my contention that all of these definitions are too restrictive, since they
exclude many interesting examples. Furthermore, in many cases they lead to an
awkward situation in which there is no convenient language to describe where
most points actually go when one follows a flow or iterates a mapping. In order to
illustrate this point, Sect. 3 will describe a quadratic map of the interval which has
no attractor at all according to the above definitions, although almost every orbit
converges to a single uniquely defined compact set. A less restrictive definition has
been given by Guckenheimer (1976), who requires only that an attractor must
have:

“... a fundamental system of neighborhoods, each of which is
forward invariant under the flow generated by X”.
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In the language of Auslander, Bhatia, and Seibert, this is the condition of Liapunov
stability (cf. Sect. 4). Sets having this property are important and useful; however, I
believe that not every Liapunov stable set should be called an attractor. Here is an
example. Consider a diffeomorphism or a flow on the plane which reduces to the
identity map on a collection of concentric circles converging to the origin, but
which pushes points slightly away from the origin otherwise. Then the origin is
Liapunov stable, and hence would be called an attractor by Guckenheimer’s
definition, although it does not attract any other point.

Many other definitions of attractor can be found in the literature. The author’s
favorite reference is Collet and Eckmann (1980), which informally defines the
attractor of a map f as

“the set of points to which most points evolve under iterates
of f”.

This idea forms the basis for the present paper. For further discussion and other
definitions the reader is referred to Conley, Guckenheimer and Holmes (Sect. 5.4),
Kan, Ruelle (1981, 1983), as well as Zeeman.

2. Attractors, Minimal Attractors, and the Likely Limit Set

Let M be a smooth compact manifold, possibly with boundary, and let f be a
continuous map from M into itself. The notation f"= fo...o f will stand for the n'®
iterate of f. Recall that the omega limit set w(x) of a point x € M is the collection of
all accumulation points for the sequence x, f(x), f2(x), ... of successive images of
x. If we choose some metric for the topological space M, then w(x) can also be
described as the smallest closed set S such that the distance from f"(x) to the
nearest point of S tends to zero as n— co. The definition of omega limit set in the
case of a continuous flow on M is completely analogous. Note that w(x) is always
closed and nonvacuous, with f(w(x))=w(x). Furthermore, w(x) is always
contained in the nonwandering set Q(f).

Choose some measure u on M which is equivalent to Lebesgue measure when
restricted to any coordinate neighborhood. This can be constructed using a
partition of unity, or using the volume form associated with a Riemannian metric.
It doesn’t really matter which particular measure we use, since we will usually only
distinguish between sets of measure zero and sets of positive measure.

Definition. A closed subset ACM will be called an attractor if it satisfies two
conditions:

(1) the realm of attraction g(A), consisting of all points xe M for which
w(x)C A, must have strictly positive measure; and

(2) thereisno strictly smaller closed set A’C A so that g(A4") coincides with g(A)
up to a set of measure zero.

The first condition says that there is some positive possibility that a randomly
chosen point will be attracted to 4, and the second says that every part of A plays
an essential role.
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Note. In the literature, the set g(A4) is usually called the “basin of attraction” if it is
an open set, and the “stable manifold” if it is a lower dimensional smooth manifold.
I have avoided both terminologies since our sets g(A4) are not open in general (cf.
Sect. 3), and are certainly not lower dimensional manifolds. For any closed set 4, it
is not difficult to check that g(A) is necessarily a Borel set (or more precisely a
countable intersection of o-compact sets), and hence is measurable.

Basic properties of attractors are the following. An attractor A4 is necessarily
closed, nonvacuous, and contained in the nonwandering set Q(f), with f(4)= A.
Any finite union of attractors is again an attractor; and more generally the closure
of an arbitrary union of attractors is an attractor. Proofs are easily supplied. In
order to show that attractors always exist, we will first construct one particularly
important attractor.

Definition. The likely limit set A= A(f) is the smallest closed subset of M with the
property that w(x)C A for every point x € M outside of a set of measure zero.

Lemma 1. This likely limit set A is well defined and is an attractor for f. In fact, A is
the unique maximal attractor, which contains all others.

Sketch of Proof. Let {U,} be a countable basis for the open subsets of M, and let U
be the union of those U, such that U;nw(x) =0 for almost every x. Then it follows
that Unw(x)=0 for almost every x. The complement of U is the required likely
limit set A. Further details of the argument are straightforward. [

If f is a measure preserving transformation, that is if u(S) = u(f ~1(S)) for every
measurable set S, then A(f) will be equal to the entire manifold M. Furthermore,
every attractor will coincide with its realm of attraction, up to a set of measure zero.
In this case, these constructions are probably not too interesting. However, when
A is a proper subset of M, it provides a usefull tool for studying asymptotic
behavior for almost all orbits.

Here is a more general construction for attractors. If SCM is any subset of
positive measure, then we define A(f, S) to be the smallest closed subset of M which
contains w(x) for almost every point x of S. It is easy to check that A(f, S) is well
defined, and is an attractor. Note that its realm of attraction necessarily contains S,
up to a set of measure zero. Evidently every attractor can be obtained by this
construction. One special case is of particular interest.

Lemma 2. If S is a compact set of positive measure with the property that f(S)CS,
then S necessarily contains at least one attractor.

For A(f,S) is an attractor, and is clearly contained in S. [J

We will be particularly interested in minimal attractors, that is, attractors for
which no proper subset is an attractor. Evidently a closed set A CM is a minimal
attractor if and only if

(1) its realm of attraction ¢(A4) has positive measure, and

(2") there is no strictly smaller closed set A’C 4 for which g(A’) has positive
measure.
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The number of distinct minimal attractors for f is at most countably infinite. If
A is a minimal attractor, note that w(x) is precisely equal to 4 for almost every x in
0(A). There are many interesting cases in which the union of the minimal attractors
for f is equal to the entire likely limit set A, or at least is everywhere dense in A.

Lemma 3. Suppose that the likely limit set A is a union of finitely many disjoint
minimal attractors A, ..., A,. Then the corresponding realms of attraction g(A;)
form a partition of M into disjoint sets of positive measure, up to a set of measure
zero. Every attractor is a union of minimal attractors, and for almost every point x of
M the limit set w(x) is precisely equal to some A;.

Proof. Choose neighborhoods U; of the 4; so that f(U)) is disjoint from U, for i<},
and let U be the union of the U;. Then almost every orbit x, — x, — ... will satisfy
x, € U for large t; hence x, must belong to just one U for large . The proof is now
straightforward. [J

In cases where this lemma applies, the collection of minimal attractors forms a
very useful tool. However, the minimality condition may be very hard to verify,
and there is no guarantee that a map f has any minimal attractors at all.
Counterexamples are provided by the identity map, the concentric circle example
of Sect. 1, or by more interesting examples such as the polynomial map

(C’ y) — (C, yz_c)

in two variables (see Fig. 1). In such cases where there are not enough minimal
attractors, or in cases where the minimal attractors are not known, it is necessary
to fall back on the more general concept of attractor.

Fig. 1. Likely limit set (in the finite plane) for (c, y)— (c, y* —c)
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3. The Feigenbaum Attractor

This section will illustrate these ideas by describing a smooth map which has a
unique attractor according to the definitions in Sect. 2, but no attractor at all
according to most of the definitions in Sect. 1. Let ¢=1.401155189... be the
smallest real number for which the real quadratic map x — x> —c has infinitely
many distinct periodic orbits. This map f(x)=x?>—c has been studied by
Feigenbaum, since it represents the point of transition from stable periodic
behavior to chaotic behavior. In order to have a compact domain of definition, let
us choose some interval I containing the origin with f(I)CI, and think of f as a
map from I into itself (Fig. 2).

The orbit of zero under f is an almost periodic sequence which can be
described as follows (cf. Misiurewicz). The numbers 0=a, > a; > a, ... are all
distinct. However, the difference a,, —a, is very small whenever m —n is divisible by
a high power of two. Thus the closure A of this orbit is a Cantor set, homeomorphic
to the ring 1{1_11 (Z/2%Z) of 2-adic integers in such a way that each a,=f"(0)
corresponds to the 2-adic integer n. Note that f restricted to A corresponds to the
homeomorphism which adds one to each 2-adic integer. It follows that there are no
periodic points in 4. However, it can be shown that there are periodic points
arbitrarily close to every point of 4. These periodic points are all unstable, with
period equal to a power of two.

The dynamic structure of f: [ - I is as follows. For almost every initial point x,
in I the successive images x"=f"(x,) converge towards the Cantor set 4. Hence
A=A(f) is the unique attractor for f. But there are a countable infinity of
exceptional points whose successive images do not converge towards 4. Fur-
thermore, these exceptional points are everywhere dense in I. For according to
Guckenheimer (1979), since f has no periodic attractor, any arbitrarily small open
interval U C I has some forward image f"(U) which contains the origin. Choosing a
point x in U which maps to a periodic point in this neighborhood of the origin, we
see that w(x) is a periodic orbit disjoint from A. Thus A is certainly not
asymptotically stable.

il =

i ]

Fig. 2. The unique attractor for the map x — x*—1.4011... on an appropriate interval is the
indicated Cantor set
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However, A is Liapunov stable, and in fact is equal to the intersection of a
nested sequence of asymptotically stable sets. In spite of the dense set of
exceptional points, the tendency to converge towards A is extremely strong. If U is
an arbitrarily small neighborhood of 4, let us choose a smaller neighborhood V so
that f(V)C V. Then if we start at any point x, in I and follow the successive images
X, =f"(x,) there are just two possibilities. Either this orbit eventually hits the open
set V and remains trapped within V' C U forever after, or else it manages to precisely
hit one of the finitely many periodic points which lie outside of ¥V, and remains
trapped in a finite periodic orbit outside of V thereafter. The first possibility occurs
for a dense open set of initial points x,, while the second possibility occurs only for
a countable nowhere dense set of x,,.

Further details of this argument will be given in Appendix 2. For readers who
prefer to work with flows, Kan has described somewhat analogous examples of
smooth flows on the 3-dimensional sphere so that almost every orbit converges
towards a “solenoid,” locally homeomorphic to the product of a Cantor set and a
1-manifold, which contains no periodic orbits, but can be approximated arbitrari-
ly closely by periodic orbits. These examples are also Liapunov stable, but not
asymptotically stable. (See also Grebogi, Ott, Pelikan, and Yorke. Related but less
differentiable examples have been described by Bowen and Franks, and by Franks
and Young.) It seems likely that this lack of asymptotic stability may be shared by
many other fractal attractors.

4. Stability and Robustness

Let f: M—M be a fixed smooth map. As in previous sections, we will say that a
closed subset A C M with f(A) = A is Liapunov stable (also called “orbitally stable™)
if it has arbitrarily small neighborhoods U with f(U)CU; and asymptotically
stable if it is Liapunov stable and also satisfies the Auslander-Bhatia-Seibert
condition that its realm of attraction g(A) is an open set. In the asymptotically
stable case, if we choose U with closure contained in ¢(A4), then it follows easily that
A is equal to the intersection of the sequence of forward images UD f(U)
DIHU)D ...

Note that we have not imposed any stability requirement at all as part of the
definition of attractor. Of course, many interesting attractors are asymptotically
stable, or at least Liapunov stable. However, if we required some form of stability
as part of the definition, then it would be awkward to talk about transitional case,
and it would no longer be true that every smooth map on a compact manifold has
at least one attractor. Here is a simple minded example to illustrate this point.

Example 1. Let M be the circle of real numbers modulo 27, and let
f(@)=0+1—cos(f) (mod2m).

Then the fixed point =0 is the unique attractor. This attractor is not Liapunov
stable, since no nontrivial neighborhood is mapped into itself by f. (Compare
Fig. 3. We will describe such a fixed point as “one-sided stable.”) A completely
analogous example on the real projective line RuUco, is the map f(x)=x+ 1, with
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Fig. 3. Graphs of Examples 14

the point at infinity as unique attractor. There is a well known classical example of
a fractal attractor with similar stability properties, namely the Denjoy
C!-diffeomorphism of the circle, which has a Cantor set as unique attractor (cf.
Schweitzer). Here is a really pathological example. Let f(x)=4x(1—x?)? for
|x| £ 1, with f(x)=0 otherwise. Then surely the only attractor is the origin, which is
a strictly repulsive fixed point.

Here is a simple variant of Example 1.

Example 2. On the circle of real numbers modulo 27, let £(0) =6 +sin*(6). Then 4
consists of the two points 0 and #. Each is a minimal attractor, but neither is stable
since there are points arbitrarily close to either one whose successive images
converge to the other.

Note that an attractor which has positive measure need not attract anything
outside of itself. For example an irrational rotation of the circle has the entire circle
as minimal attractor.

Example 3. The Ulam von Neumann Attractor. Consider the quadratic map f(x)
=2x2—1 from Ruco to itself. Then for almost every point x in the interval
I=[—1,1] the limit set w(x) is equal to the entire interval I. A proof can be based
on the corresponding property for the squaring map z + z? on the unit circle,
making use of the observation that f restricted to I is equal to the correspondence
Re(z) — Re(z?), where z ranges over the unit circle. On the other hand, for every
point x outside of I the orbit of x diverges to infinity. It follows that A( f) consists of
the interval I, which is an unstable minimal attractor, together with the point at
infinity which is a stable attractor. Every point outside of I is repelled by I.

By a linear change of coordinate, this map can be put into the form x + x? —2.
More generally, for any parameter ¢ we can consider the map x +— x*—c. If ¢
belongs to the interval [ — 1/4, 2], this map has at least one bounded attractor. It
may be true that it has only one bounded attractor, which is either a periodic orbit,
a finite union of intervals, or (in uncountably many exceptional cases) an almost
periodic Cantor set as in Sect. 3 (cf. Lemma 4 in Appendix 2). Presumably, for
almost all parameter values this bounded attractor is asymptotically stable.
However, in the almost periodic case it is only Liapunov stable, and there are at
least a countable infinity of cases which are not even Liapunov stable. These
include the two extreme values c= —1/4 and ¢=2, and the value ¢=7/4 which
corresponds to a one-sided stable orbit of period 3.

Note that two distinct minimal attractors need not be disjoint from each other.
However, the intersection of two minimal attractors must be too small to attract
points from any set of positive measure.



On the Concept of Attractor 185

Example 4. The likely limit set for the cubic map f(x)= 3]/§(x —x2)/2 consists of
two unstable minimal attractors [ —1,0] and [0,1], together with the stable

attractor {co}. Here the coefficient 3V§/2 is chosen so that each of these intervals
will map precisely onto itself. In this case, it is interesting to note that the union
[—1,1] of the two unstable attractors is asymptotically stable. (The proof that
[0, 1] is a minimal attractor can be outlined as follows. One can first check that the
change of variable x = sin?(0) converts f, restricted to this interval, to an expanding
map. It then follows from Li and Yorke that it has an ergodic invariant measure
which is equivalent to Lebesgue measure.)

It is often convenient to describe instability properties of such examples by
constructing an associated graph.

Definition. The stability diagram associated with a map f is the 1-dimensional
complex with one vertex a; for each minimal attractor A; and with edges as
follows. There is a directed edge from vertex g; to the distinct vertex a; whenever
there exist points arbitrarily close to 4; whose limit set w(x) intersects 4;; and also
there is a loop joining a; to itself whenever there exist points arbitrarily close to 4;
whose successive images temporarily wander away, outside of some fixed
neighborhood of 4;, and yet have limit set w(x) which intersects 4;.

If A; is Liapunov stable, note that no edge can lead away from the
corresponding vertex. The stability diagrams corresponding to the four examples
are shown in Fig. 4.

Next let us study the behavior of the set A=A(f) as we perturb the map f.
Recall that the Hausdorff distance between two closed sets is the smallest number 6
such that each closed ball of radius J centered at a point of either set necessarily
contains a point of the other set.

Definition. We will say that the likely limit set A for a given map f is robust if the
Hausdorff distance between A(f) and A(g) tends to zero whenever g tends to f in
the C*-topology (roughly speaking, whenever the k™ derivative of g converges
uniformly to the k™ derivative of f for every k = 0). Similarly, an attractor 4 for f'is
robust if any g which is C*-close to f has an attractor 4" which is Hausdorff-close
to A.

Note that this attractor A’ may be qualitatively quite different from A. The
condition of Hausdorff closeness guarantees only that these two sets will be
rather hard to distinguish by a computer experiment. For example, it follows
from Lemma 2 that any asymptotically stable periodic orbit is necessarily robust.

T [eY) @ «

[0,1]

[-1,1] [-1,0]

Fig. 4. Stability diagrams for Examples 1-4
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However, the attractor A” which Hausdorff approximates this orbit A may have
period equal to some multiple of the period of 4, or may even be infinite. The
most common possibility is bifurcation. For example, each of the maps
x> x—x> and x+ x?—3/4 has a unique stable finite fixed point, which
bifurcates under perturbation. The unique attractor A(f) for the Feigenbaum
map f of Sect. 3 is also robust. Again, for g close to f the likely limit set A(g) may
be qualitatively quite different from A(f). This Cantor set may simplify into a
stable periodic orbit, or complicate into a chaotic attractor.

It is conjectured that any robust attractor must be Liapunov stable. To
illustrate this conjecture, we have noted that Examples 1, 2, 3, and 4 are not stable,
and it is easy to show that they also are not robust.

An attractor may fail to be robust in at least three different ways. It may simply
evaporate, or explode into a much bigger set, or implode into a much smaller set.
(In the case of an asymptotically stable attractor, only the last possibility can
occur, by Lemma 2.) Here are examples to illustrate these three possibilities. The
map x — x+x2, with a one-sided stable attractor at the origin, can be appro-
ximated arbitrarily closely by a map for which the only attractor is the point at
infinity. The translation x — x + 1 of Example 1, with the infinite point as unique
attractor, can be approximated arbitrarily closely by a fractional linear transform-
ation x — (1 + x)/(1 —ex), for which every orbit is dense, so that the only attractor
is the entire set Ruoco. Finally, let f(x)=x?—c, where c=1.543689 ... is the real
root of the equation ¢®—2¢?+2c—2=0, so that f4(0)=/>(0)= —f?%(0). Then f
has a unique finite attractor A =[f(0), f*(0)], which is asymptotically stable. (The
proof is similar to that in Example 4.) Yet f is equal to the limit of a sequence
S35 f4s -.. of quadratic maps, where the unique finite attractor A4, for f, is a
superstable orbit of period n consisting of zero and n—2 negative numbers, but
only one positive number f,%(0). Thus 4, is substantially smaller than A4 for all n.

Note that the likely limit set may fail to be robust even if every attractor is
robust, since new attractors may suddenly appear. As an example, the unique
attractor for the map f(x)=x+x? is the stable fixed point at infinity; yet maps
arbitrarily close to f have an additional stable fixed point at the origin.

Even when an attractor disappears under perturbation of a map, it leaves
behind a “resonance,” that is a region where successive images of a point may get
trapped for many iterations before escaping (cf. Grebogi, Ott, and Yorke). In
practical applications, if the perturbation is very small so that the expected escape
time is very large, it may be difficult to tell the difference between such a resonance
and an actual attractor.

Appendix 1. The Generic Limit Set

The following variation on the likely limit set A of Sect. 2 is sometimes easier to
work with. Let us say that a property of a point x € M is true for generic x if it is true
for almost all x in the sense of Baire category theory, i.e., for all x outside of a
countable union of nowhere dense subsets of M. Define the generic limit set I’ C M
to be the smallest closed subset of M with the property that, for generic x, the limits
set w(x) is contained in I'. There is an analogous concept of “generic-attractor.”
The definition will be left to the reader.
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In many cases the two limit sets I" and A are equal to each other. However, this
is not always true, and I do not know any good criterion for equality. The set I' is
likely to be easier to compute since its definition is purely topological, whereas the
definition of A uses both topology and measure theory. On the other hand, the set
A is more closely related to the probable asymptotic behavior which one would
like to study in applications. Also, the set A is closer to something which one can
actually draw pictures of in numerical experiments.

The only general relation between these two sets which is known to me is the
statement that the intersection I'n A is always non-vacuous. This follows from the
more precise statement that, for generic x, the intersection w(x)n A is non-vacuous.
In fact, for any neighborhood U of A the set of x whose full orbit is disjoint from U
is closed and of measure zero, hence nowhere dense. Therefore, the orbit of a
generic x intersects every such neighborhood, and hence satisfies w(x)NA=+0.

Following are two rather pathological examples.

Example 5. The likely limit set A can be strictly larger than I'. Consider the
gradient flow associated with a smooth real valued function on the 2-dimensional
sphere which takes its minimum along a Cantor set of positive measure, but has
only non-degenerate critical points otherwise, with just one local maximum Xx,,.
Then I'={x,}, yet A contains an entire Cantor set. A similar example involving a
C!'-horseshoe has been given by Bowen (1975).

Example 6. The set A can be strictly smaller than I', at least in the case of a non-
differentiable map f. More precisely, there is a continuous map of the interval for
which a generic orbit is dense, so that I is the entire interval, and for which A is a
Cantor set. In fact, with suitable modification of the example, A will split up into
two or more minimal attractors, which may be disjoint or not according to taste. I
don’t know whether there exists a smooth map with these properties.

Let us start with the continuous measure-preserving map F(x)=2-|x|—1 on
the interval [ — 1, 1]. Then it is not difficult to show that, for generic x, the limit set
w(x) is equal to the entire interval [ —1,1] (cf. Appendix 2). Hence I'=[—1,1].
However, we will construct a Borel probability measure y on M so that, with
u-probability equal to one, the limit set w(x) avoids some fixed open subset of
[—1,1]. Let C be the closed set consisting of all points x whose full orbit is disjoint
from the interval (1/2,17. It is not difficult to check that C is a Cantor set. In fact,
the “kneading sequence” sgn(x,), sgn(x,),... associated with an orbit
Xo > X; ... 1in C can be any sequence of signs which does not have two +1’sina
row. Therefore, we can choose a probability measure u, with support equal to C,
and so that points have measure zero. Now define a sequence of probability
measures inductively by setting

24t +1(8) = p(F(SN[—1,01) + u,(F(SN[0, 11)),

so that the support of y, is equal to the full -fold inverse image F ~"(C). Then the
measure Y u,/2"*! has support equal to the entire interval [ —1,1]. Yet, with
u-probability equal to one, the limit set w(x) is contained in C. [If u, is constructed
with more care, then w(x) will actually be equal to C with probability one.] Note

that the continuous change of coordinate y= | du transform p to the standard
-1
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Lebesgue measure on the unit interval. Therefore, F is topologically conjugate to a
continuous map for which I' is strictly larger than A.

Similarly, let C be the Cantor set consisting of all points whose orbits are
disjoint from the interval (— 1/2,0), and let /i be an associated measure, so that with
fi-probability equal to one the limit set w(x) must be equal to C. If we combine
these two constructions by using the probability measure (u + fi)/2, then w(x) will
be equal to C with probability 1/2, and to C with probability 1/2. Thus in this case
there are two minimal attractors, which intersect only along the periodic orbit
cnC={-3/5,1/5}. We can modify the example so that the two minimal
attractors will be disjoint, by using the slightly larger interval (—3/4,0) for the
construction of C.

Appendix 2. Maps of the Interval

The following discussion will depend strongly on Guckenheimer [17].

Let x — f(x) be a real quadratic mapping which carries some finite interval I
into itself. If we choose this interval I to be maximal, then f: I —I will belong to the
class of maps studied by Guckenheimer. That is: f is smooth of class C3, with a
single interior critical point, with negative Schwarzian derivative

2(Df)Df)—3(D*f)* <0,

and f maps both endpoints of I to a single endpoint x, at which the derivative
satisfies Df (x,) = 1. (This last condition is essential, but was inadvertently omitted

in [17])

Lemma 4. For f:1—1 satisfying these conditions, the generic limit set I is either a
finite periodic orbit, a Cantor set equal to the closure of the orbit of the critical point,
or a finite union of say n intervals, bounded by the first 2n forward images of the
critical point, and containing the critical point in its interior. Furthermore, for
generic x, the omega limit set w(x) is precisely equal to I'.

In the first two cases, for every x outside of a set of measure zero we have
w(x)=T". Hence the likely limit set A is equal to I', and is a minimal attractor. It is
quite possible that this statement is true in the third case also, but I have not been
able to decide this question (cf. Example 6 above).

Proof. First suppose that f has a periodic attractor, that is either a stable or a one-
sided stable periodic orbit A. Then there exists a neighborhood (or one-sided
neighborhood) U consisting of points whose orbits converge uniformly to A.
According to [17, p. 135 and 2.8, 3.1], for every point x outside of a closed set of
measure zero the orbit of x eventually falls into this neighborhood U, and hence
converges to A. Clearly, it follows that '=A=A.

Henceforth, let us assume that f has no stable or one-sided stable periodic
orbit. In order to handle this case we will need the following.

Definition. We will say that the map f is reducible if there exists a closed interval J
about the origin and an integer n=2 so that the successive images
L f),f2(J),...,f" 1(J) have disjoint interiors, and so that f"(J)CJ.
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The idea is that whenever this is the case we can reduce the study of f to the
study of the n-fold iterate g = f™, considered a map from the subinterval J into itself.
In fact, if f is reducible, [17, 2.6 and 3.1] proves that, for every x outside of a closed
set of measure zero, the orbit of x eventually meets the interior of J. It follows that
the likely limit set A=A(f) is equal to the n-fold union A(g)uf(A(g))
U ...f""1(A(g)); with a similar description for I'(f).

We may always assume that the interval J is chosen so as to be maximal. It then
follows easily that g=f" maps the boundary of J to one boundary point. Since
there are no stable periodic orbits, the derivative of g at this boundary fixed point,
must be at least one. Since the condition of negative Schwarzian derivative is
preserved under composition, we see that this new map g:J—J satisfies all of
Guckenheimer’s conditions.

If this new map g : J—J is also reducible, then we iterate the construction. We
must distinguish between the “finitely reducible case” in which the reduction
process terminates with a non-reducible map after finitely many steps, and the
“infinitely reducible case” in which it continues ad infinitum (Fig. 2). Evidently, in
order to understand the finitely reducible case, we need only understand the case of
a non-reducible map.

Suppose then that f is not reducible. We will prove that f is topologically
conjugate to a piecewise linear map of the form

F(y)=s-ly|=1 for |y=1/(s—1),

where log(s) >0 is the topological entropy [17, 4.5]). Since we have excluded the
trivial case where f has a stable or one-sided stable fixed point, it is not difficult to
check that f must have strictly positive topological entropy. Hence, by Milnor and
Thurston, f is topologically semi-conjugate to F, say hof=F-h, where h is a
monotone map. Thus every inverse image h~*(y) is either a point or an interval J.
If some h~1(y) were an interval, then the orbit of y would have to contain the
critical point 0, say F™(y)=0. For otherwise any two points of J would have the
same kneading sequence, which is impossible by [17, 2.6]. In fact, this orbit would
have to contain 0 more than once, since the interval f™**(J) also maps to a single
point under . Hence F"(0) would be 0 for some n, necessarily greater than one.
Therefore, /™ would map the interval A~ *(0) into itself, and hence f would be
reducible, contradicting our hypothesis. This contradiction proves that h must in
fact be a homeomorphism, so that f is topologically conjugate to F.

Thus we are reduced to studying the piecewise linear map F. We may assume
that the growth number s is greater than [/5, since otherwise it is easy to check that
F is reducible. Then we will prove that the generic limit set of F is equal to the
interval

A=[~1,5—11=[F(0), F*(0)].

In fact, it is easy to check that F(A4)= A, and that the orbit of any y in the open
interval |y| <1/(s—1) eventually gets trapped in this subinterval A.

The map F from A to itself has a strong transitivity property as follows. For any
subinterval J C A there exists a positive integer n so that F*(J) is equal to the entire
interval A. For if J is small enough so that the two sets J and F(J) do not both
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contain zero, then F2(J) is longer than J by a factor of at least s*/2> 1. Thus the
successive images of J expand exponentially until say F™~!(J) and F™(J) both
contain zero; and hence F"*!(J)= A.

It follows from this property that, for a generic point y, the limit set w(y) is
equal to the entire set A. For if {U,} is a basis for the open subsets of 4, then the set
of y whose orbit intersects U; is dense and open. Thus the orbit of a generic y
intersects every U, and hence is dense in A. Therefore, the generic limit set I'(F)
equals 4, and it follows that the generic limit set I'( f) for the smooth map f is the
corresponding interval h~!(A4). More explicitly, if ¢ is the critical point of the non-
reducible map f, then I'(f) is equal to the closed interval bounded by f(c) and
f*(c). Similarly, the generic limit set for a finitely reducible map f is a finite union
of intervals, bounded by appropriate forward images of the critical point.

The likely limit set 4 seems much harder to determine. It follows easily from
this discussion that A is a subset of I', but I have not been able to prove that A=T"
in the non-reducible or finitely reducible case.

Finally, we must consider the case where the reduction process does not
terminate after finitely many steps, but rather continues ad infinitum. In this
infinitely reducible case it is not difficult to check that there is a unique attractor
A=A=T which is a Cantor set, homeomorphic to an inverse limit of finite cyclic
groups Z/nZ. Furthermore, the map f is almost periodic on A4, and corresponds to
the adding machine map a+ o+ 1 from this limit group to itself. Any such inverse
limit of finite cyclic groups can occur, so there are uncountably many distinct
examples. Details will be omitted. [

It follows easily from this discussion that f has sensitive dependence on initial
conditions (as defined in [17]) if and only if I' is a finite union of intervals. For the
class of maps studied by Guckenheimer, there are just two qualitatively different
forms of behavior. If f has a periodic or almost periodic attractor 4, then 4= A(f)
=TI(f) is a set of measure zero, f does not have sensitive dependence on initial
conditions, and the topological entropy of f|A is zero. In all other cases, the generic
limit set is an interval or union of intervals, with positive measure, with sensitive
dependence on initial conditions, and the entropy of f|I'(f) is strictly positive. In
the latter case, the dynamics of f must be described as chaotic.

Concluding Remarks. There are many unsolved problems, even for real quadratic
maps of the interval. For example, in the chaotic case, I don’t know how to decide
whether A=1TI", or to decide whether there can be more than one attractor.
Equivalently, is it true that almost every orbit in the union of intervals I is
everywhere dense in I'? More generally, I don’t know how to answer the following
basic question for maps of Ruoo to itself. Suppose either that f(x) is a rational
function of degree at least two, or that f has negative Schwarzian derivative. Does
it follow that the likely limit set A(f) is equal to I'(f), and can be expressed as the
union of finitely many minimal attractors? Similarly, I have no idea how to decide
when the set I'(f) [much less A(f)] is robust. Here is an explicit guess for the class
of maps considered by Guckenheimer: The interval [ (0), f2(0)] is conjectured to
be a robust necessarily minimal attractor if and only if the orbit of the critical point
is everywhere dense in this interval. (Compare the discussion of
x - x2—1.543689 ... in Sect. 4.)
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Appendix 3. Strange Attractors

The concept of a strange attractor, as described by Ruelle and Takens, is perhaps
intentionally not precisely defined. The original discussion emphasized wild
topology. An excellent introduction to this subject can be found in Ruelle’s survey
article (1979-80), which rather emphasizes chaotic dynamical behavior. Gucken-
heimer and Holmes define a strange attractor as one which has a transversal
homoclinic point, and hence has chaotic behavior.

It is important to note that there is no necessary connection between wild
topology or fractal geometry and strange dynamical behavior. For example, the
fractal attractor of Sect. 3 is topologically wild, but has very sedate almost periodic
dynamics, with topological entropy equal to zero. On the other hand, the map
(0,t) — (20,t/2) from the cylinder S* x [—1, 1] to itself has a smooth manifold
S' x 0 as unique attractor; yet the dynamical behavior is completely chaotic. In
fact, this map is ergodic and mixing with respect to the standard invariant measure
on the circle, and has positive entropy. The behavior of this example under
perturbation will be studied below. For an analogous example using a dif-
feomorphism or flow in place of an iterated map, we could substitute an Anosov
diffeomorphism of the torus, or the geodesic flow on the unit tangent bundle of a
manifold of negative curvature, in place of the squaring map on the circle.

Here is an example of an attractor which is chaotic and topologically wild, yet
simple enough to analyze almost completely (cf. Kaplan and Yorke). Let us start
with the map f,(e", x) =(e?", cx) from the cylinder S* x R to itself, where c is a
constant in the range 0<c<1/2. Clearly, f, has a unique attractor which is
asymptotically stable, since all orbits tend towards the circle S* x 0, and since
almost very orbit on the circle is everywhere dense. This attractor S! x0 is a
smooth manifold, but is dynamically chaotic. Now make a small perturbation of f,
to the map

(€, x)=(e*", cx +ecosb).

Then the smooth attractor S* x 0 will be replaced by a fractal attractor (Fig. 5).
To see this, first note that a scale change in the x-coordinate will replace f, by

the map
f1(€?, x) = (e**, cx +cosb).

Fig. 5. The unique attractor for the map (6, x) — (26, 0.4x +cos6)
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We can further simplify by introducing a third coordinate y, and extending f; to
the smooth map
2i6

(€%, x,y) — (€%, cx +cos 0, cy +sin )

from S* x R x R to itself. Setting w=¢" and z=x+iy, we can write this map as
F(w,z)=W?* cz+w)
from the 3-dimensional manifold S* x C to itself.

Lemma 5. There is a unique attractor ACS* x C, homeomorphic to the dyadic
solenoid, which is asymptotically stable, and in fact, attracts every orbit. More
precisely, for any compact neighborhood K of A the successive images F"(K)
converge towards A, and for almost every point (w, z) of S* x C the omega limit set
w(x) is equal to A. This set A supports a measure so that F restricted to A is measure
theoretically equivalent to the full Bernoulli shift of entropy log2.

Here by the dyadic solenoid § we mean the inverse limit of the sequence of
squaring homomorphisms
St St St ...

Thus, by definition, a point of § is a sequence W = (wy, w;, W, ...) of points on the

unit circle so that
wy= il/\ATo, W, = i]/w_l, et

Define A=g(S) to be the image of § under the continuous map
gW)=(Wg, Wy +cwy + 2wy + ...).

Since we have assumed that |c| < 1/2, it is quite easy to check that g is a topological
embedding. (With more work, one could check this for somewhat larger c.) Note
that F maps A homeomorphically onto itself. In fact,

F(wg, Wy 4 cw, 4+ c?w3) = (Wi, wo +cwy + 2w, ...),
so F restricted to A corresponds to the “shift automorphism”
(Wo, Wy, W, ...) > (W3, Wo, Wi, ..)

from the topological group § to itself.

Next we will see that, for any starting point (w,z) in S* x C, the distance
between F"(w,z) and the set 4 converges geometrically (and uniformly on any
compact set) to zero. In fact, choose any point w = (wg, wy, ...) in S with wy =w, and
let g(w)=(wy,zo) € A. Then by inspecting the definition of F we see that the
distance between F™(w, z) and the point F"(w,, zo) € 4 is exactly c"|z—z,|, which
converges to zero as n— oo.

More geometrically, let k be some constant in the open interval from 1/(1 —c) to
1/c, and let T be the solid torus consisting of all (w, z) with |z] < k. Then it is not hard
to see that F maps T homeomorphically into its own interior, with degree two, and
that A is equal to the intersection of the forward images F"(T). In this form, the
example has been studied by Smale (1967), by Ruelle and Takens, and by Ruelle
(1979-80).
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To study the ergodic behavior for F restricted to A, or equivalently for the shift
automorphism of $, write each point of S as (wy, wy, ...), with w,=exp(mix,).
Expressing the number x, in binary notation as a,+a,;/2+a,/4+ ..., it follows
that x, hastheforma_, +a,/2+a,/4 ..., with similar expressions for the higher x,,
Thus the shift automorphism of S corresponds to the Bernoulli shift on a doubly
infinite sequence ... a_, aq, d;,d,, ... of zeros and ones.

The Hausdorff dimension of 4CS* x C can be computed as 1—log(2)/log(c).
This lies strictly between 1 and 2, so A4 is a fractal set, as defined by Mandelbrodt.

Now let A’ be the image of 4 under the projection map from S* x C to S* x R.
Then it follows easily from the discussion above that A’ is an attractor for the map
f. In fact, for any compact neighborhood N of 4’, the successive images f*(N)
converge to A". Furthermore, A’ supports an invariant measure, with entropy log2,
so that almost every orbit in A" is dense. This attractor A”is nowhere dense, since it
is a compact set of Hausdorff dimension d < 1 —log(2)/log(c) <2. In fact, A" can be
described as the closure of the union of the graphs of the smooth almost periodic
functions

g.(0) =cos((6 + 2mn)/2) + c cos((0 + 2nn)/4) + c* cos((0 + 2nn)/8) + ...,

where n ranges over all integers. Since g,, is uniformly close to g,, whenever n is close
to min the 2-adic topology, the function gy is also defined and real analytic for any
2-adicinteger N. With this convention, we can say simply that 4’ is the union of the
graphs of the uncountably many distinct functions g,. Thus A is certainly not a
manifold. It seems likely that its Hausdorff dimension is equal to
1—1log(2)/log(c)> 1. (Compare Farmer, Ott, and Yorke.) On the other hand, if we
modify this example by choosing ¢ sufficiently close to 1, then it can be shown that
the corresponding attractor A’ contains an entire open subset of the cylinder. (See
Frederickson, Kaplan, Yorke, and Yorke.)

If we carry out an analogous construction starting out with the Anosov
diffeomorphism (¢, ) — (24 + v, ¢ + ) of the torus in place of the squaring map
on the circle, then we obtain an attractor which is topologically a torus S* x S*. Let

A= ([ﬁ— 1)/2 be the smaller eigenvalue of the associated integer matrix. Then this
torus is embedded in a nowhere differentiable manner into the manifold
S'x 8§'x R if A<c<1, but is n times continuously differentiable if 0 <c<A" (see
Kaplan, Mallet-Paret, and Yorke).
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