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Abstract. The characterization of real, N phase, quasiperiodic solutions of the
sine-Gordon equation has been an open problem. In this paper we achieve this
result, employing techniques of classical algebraic geometry which have not
previously been exploited in the soliton literature. A significant by-product of
this approach is a natural algebraic representation of the full complex
isospectral manifolds, and an understanding of how the real isospectral
manifolds are embedded. By placing the problem in this general context, these
methods apply directly to all soliton equations whose multiphase solutions are
related to hyperelliptic functions.

Introduction

The N phase quasiperiodic solutions of the Korteweg-de Vries (KdV), sine-
Gordon (sG), and sinh-Gordon (sh-G) equations have explicit representations in
terms of theta functions of N variables [7,8]. The exact integration for this class of
solutions is achieved through the spectral theory of an associated linear system:
the nonlinear evolution equation generates one of an infinite family of involutive
isospectral flows for the x-eigenvalue problem. An important distinction, however,
is that the spectral problem for real N phase potentials is selfadjoint for KdV and
sh-G, but non-selfadjoint for sine-Gordon. The methods in [14] for KdV and in
[5] for sh-G are not amenable to non-selfadjoint problems, so the real N phase
sine-Gordon theory remained open.

The point of view taken here is that the formal inverse spectral structure of all
these partial differential equations (p.d.e.'s) is the same at the level of complex
quasiperiodic potentials. We deduce the structure of the real isospectral class as a
subset of the full complex isospectral class. This common structure of N phase
potentials consists of: N dynamical variables, μ = (μί, ...,μN), which are Dirichlet
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eigenvalues for strictly periodic potentials, and the isospectral data {£,-};= i, which
consists of simple periodic eigenvalues for periodic potentials.

The solution of the p.d.e. is determined from this spectral data; for example,

Moreover, the flows of μ(x, t) have provided natural dynamical coordinates for the
real isospectral classes of KdV and sh-G; classical selfadjoint oscillation theorems
constrain the real flows of μ; to oscillate in fixed real bands between E2j-1 and E2j.
In contrast, while the reality constraints on {£,} for sine-Gordon are simple (Sect.
II.B), the μ trajectories are quite complicated and, in fact, do not lie on fixed curves
(for N > 1) in the complex plane.

It is natural (Sects. I.D and E) to regard each μ} as a coordinate on a
hyperelliptic Riemann surface, ^?, of genus AT, with branch points at the invariant
{Ej}. (We assume M is nonsingular; that is, we exclude higher dimensional
"separatrices.")

By studying the geometry of the μ variables in this setting, we determine the
number of connected components of the real isospectral manifold associated to
each {Ej}j=l9 we show each component is a real N dimensional subtorus [Eq. (II.9)]
of the Jacobian of ffl, β{β\ and we describe the physical characteristics of the
waves in a given component (Propositions II.2 and II.3). Furthermore, we show
the μ variables coordinatize the real N phase isospectral manifolds, and we deduce
the μ trajectories under real (sG) flows. For the N = 2 case, we go on to derive
explicit expressions for (μl9 μ2) and then we provide computer plots of these exact μ
flows.

The algebro-geometric setting for our analysis consists of three stages:

a x a x... x a/σN > /(a) • scΨ2N~1

Abel-Jacobi map Theta map

The first level is N unordered copies of 01. The second level, the Jacobian, f(β\
is where the complex phases /(x, t) (linear in x and t) are defined. These two levels
are connected by the Abel-Jacobi map. This much is well-documented in the
literature. Our contribution is the third level, which is the Kummer variety S.

The maps in the above diagram provide a means of translating expressions
involving theta functions on β into rational functions on S. As mentioned earlier,
in the N = 2 case, we explicitly carry out this translation. The result is the inversion
formulae for (μ1,μ2), which are algebraic (linear fractional) functions of the
coordinates xo,xί,x2,x3 on S:

and a similar formula (III. 13) for μ1 + μ2. α, /?, γ, δ are constants which depend only
on the Et. The xi9 coordinates on S, are quadratic theta functions.
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These N = 2 (and analogous N > 2) formulae are valid globally - for any J? and
for all complex flows on β(β\ We then show how the reality constraints on {£,},
and thus on £&, translate into constraints at all three levels of our diagram.

We do not assume the reader is an expert on the geometry used here; our
presentation is self-contained and well referenced.

I. Preliminaries

We begin by summarizing several well-known developments in the study of N
phase, quasiperiodic solutions of the sine-Gordon (sG) equation.

A. Exact Integration

The exact integration of the (sG) equation,

utt — uxx + sinu = 0, — oo<x<oo, (1.1)

is achieved through inverse spectral theory (1ST) of a linear eigenvalue problem in
x, together with a linear system for the time flow of the eigenfunction. Equation
(I.I) arises as the compatibility condition between these systems. This method for
(sG) is due to Lamb [1] and was clarified independently by Ablowitz, Kaup,
Newell, and Segur [2] (AKNS) and Faddeev and Takhtajian [3] (FT). We use the
(FT) linear system; for eigenfunction ψ = 0Pi,ψ>2)

T5

Ayx + -A w£ψ + •= Cw =

' 4 ιβγE
where

(0 - 1 \ (0 1\ /exp(iu) 0 \
A={l 0> M l 0> C = l 0 expCW ( L 2 b )

Remark 1. Observe that the spectral parameter ]/E is multivalued. This occurs
because (1.2) is the reduction of a fourth order system [4, 5] which expresses (sG) in
Lax form, Q = [/c, Q].

One easily checks the compatibility of (I.I), (1.2):

Ψxt = Wtx in w, w satisfy

The boundary conditions in (I.2a) are shared with the potentials u, w. In this
paper we are interested in periodic and quasiperiodic potentials with finite (JV)
degrees of freedom. These are referred to in the 1ST literature as JV phase
quasiperiodic potentials, or as N phase wavetrains in the context of solutions of a
pde.

Definition 1. An N phase quasiperiodic potential u(x, t) satisfies:
(i) The entire x, t dependence can be expressed in terms of N phases, fy(x, t),

linear in x and ί,
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(ii) w(x, i) = u(Q(x, t)) is periodic (mod2π) of finite period in each phase,

If the phases θt are real, K are the spatial wavenumbers and ω are the temporal
frequencies.

Definition 2. Let u(x, t) = u(β(x, t)) be an N phase quasiperiodic potential, with
prescribed x-period L. Then u is an N phase periodic potential iϊϊκu...,κN are each
rational multiples of 2π/L.

Remark 2. In the periodic case, condition (ii) of Definition 1 excludes separatrices,
which do in fact arise in the phase space of all periodic potentials of (I.2a). (In
contrast, this does not occur for periodic Hill potentials.) Already in the N = 1 case
of traveling waves, the phase space of (sG) is the same as the pendulum, (ω2 — κ2)uθθ

+ sinw = 0. The two branches of the separatrix Γ correspond to the infinite period
kink and antikink solitons of (sG) [4] (see Sect. I.G).

Fig. 1. JV = 1 phase portrait

For periodic potentials, as u, w evolve in t according to the (sG) equation, the
simple periodic spectrum, Σ{s\ of (I.2a) remains invariant: (sG) generates an
isospectral flow for (I.2a). (sG) is the first of an infinite hierarchy of commuting
flows which preserves Σ{s). A discussion of the connections between the spectrum of
(I.2a) and the corresponding solutions of (sG) can be found in [4]. One pertinent
fact is:

For real potentials w, w, the simple periodic spectrum Σ(s)

consists of distinct pairs E2pE2j_1 which are either real and
negative, E2j<E2j-i<0, or occur in complex conjugate pairs,

(1.3)

B. Squared Eigenfunctίons

The construction of N phase solutions is remarkably streamlined if one replaces
(1.2) by an equivalent system for quadratic or squared eigenfunctions. Let
ψ = (ψl9ψ2)

τ> φ — iψi, ΨiV denote two independent solutions of (1.2); then define

/=^ h=-ψ2φ2.
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It follows by direct computation that (1.2) is equivalent to the squared eigenfunction
linear system:

[ / ί = ~ 2 ~ n / ί / ~ Γ ^ M v*^~ —- ^ ]J ' ^

hx=
 l-

' 2

Many fundamental results about the (sG) equation at the exact and perturbative
level are easily deduced from this system [4, 6, 17, 18], as indicated below.

C. The Finite-Band Inverse Spectral Problem

With the simple periodic spectrum Σ{s) of (I.2a) given by

Σ$ = {El9...,E2N9 all distinct}, (1.5)

(i) determine the full class of potentials w, w with this prescribed Σ(s) (the
ίsospectral class);

(ii) characterize the real isospectral class of Σis) constrained by (1.3).
Partial results on this problem for (sG) may be found in [4-9]; u = uN(x, t) is

shown to be an N phase quasiperiodic potential admitting several equivalent
representations, summarized next.

Remark 2. Ej are distinct, by assumption. Separatrices in the periodic phase space
can occur when a pair of Ej collides.

D. Polynomial Squared Eigenfunctions
and the μ-Representation of uN(x, t)

A very concise method, due to Date [10], for the construction of uN shows that for

Σ{s) given by (1.5) the squared eigenfunctions /, g, h are, up to normalization,

polynomial in J/JE,

4 Σ //*,t)E\ g= Σ flf/x,t)E*9 h= Σ hj(x,t)E\ (1.6)
yE J=I j=o j=o

if and only if u(x, t) is an N phase wavetrain, with

The variables μfx.t), 7 = l,...,iV, are the JV zeroes of the squared
eigenfunction g,

ήμ{x,t)), (1.8)
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and they parametrize the N degrees of freedom in the sine-Gordon solution uN.
These variables μ, for periodic potentials, are exactly the auxiliary spectrum
discussed by McKean [5].

The dynamical behaviour of the μ-variables follows from (1.4) (see [4]):

1 +

where
2N

R2(μ)=U(μ-Ek),
k 0

The relations (1.7), (1.9) are referred to as the ^-representation of %(x, t). Of
course, this is an implicit representation; to obtain explicit, closed-form solutions,
the μ-equations (1.9) must be integrated.

E. Riemann Surfaces and the N-Phase Representation of uN(x, t)

From the representation above, it is apparent that each μ/x, t) resides naturally on
the genus JV, hyperelliptic Riemann surface $ defined by (I.9b). In fact, the system
(1.9) of ordinary differential equations can be linearized by the Abel-Jacobi map in
the following way.

Choose a canonical set of cycles, aj9 bjJ=l,...,Non$. (Figure 2 depicts these
cycles for an example.) Then introduce a normalized basis, {ψpj= 1> -. ? N} ? of
holomorphic differentials on ^ ,

N

R(E)'
(1.10a)

where the coefficients cjm are uniquely determined by the normalization

jψj=δkj. (1.10b)

Fig. 2. Canonical a p bj cycles JV = 3
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Denote the columns of Uj periods of \p = (φ 1 ? ...,ψN)τ by

$ψ = β;. (1.10c)

The period matrix B = (J5y) is defined by

B y = | ψ , . (LlOd)

Denote the columns of 5 by

Next, change variables from μ to { via the Abel-Jacobi map:

N uk

where (μ1? ...,μN) represents a fixed JV-tuple of points on 3t. Geometrically, this
situation is depicted by

ψ. „ Abel-Jacobi ^ ^

transform

(T) ΓΠ

A = {eu...,eN,Bu...,BN}.

Ψ is the Abel-Jacobi transform (Sect. III.C), which is a map from the μ space (JV
unordered copies of 01) to the space β{β) of complex phases £, the Jacobian of 01.
It is clear from (1.11 a) that f is only well-defined modulo the periods of ip, which
form the lattice A. (σN is the group of permutations on N symbols.)

It follows from (1.9) that each *f/μ) is linear in x and t [4] (they are phases)
explicitly,

' +ifeSrc'")'] +/? (Ulb)

Thus, the x, t flows of the μ variables linearize on the Jacobian of 01 in terms of
N complex phases i(x, t). By virtue of the μ representation, (1.7), the inverse
problem for Σ$ in (1.5) is solved at the level of complex potentials. The isospectral
class is an JV-dimensional complex torus, consisting of AΓ-phase potentials. This
torus is parametrized by { or μ. (See Birnir [15] for the complex KdV case.)

The remaining questions are:

How are the flows of real potentials embedded in βψtp. (Ql)

What is the behavior of the auxiliary spectra μ restricted to these
real flows; do they coordinatize the real isospectral class? (Q2)

F. Jacobi Inversion and the Theta-Function Representation

To determine μ explicitly as a function of the phases £(x, ί), one must invert (1.11).
This is the classical Jacobi inversion problem. The solution involves the Riemann
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theta function, Θ(z; B) = Θ(z). This is an automorphic function of N complex
variables z e f{β) constructed from the period matrix B of 3k,

Θ(z)= Σ exp{ιπ«βk,k> + 2<z,k»}.
keZN

The representation of meromorphic functions on ${β) by theta quotients [12],
combined with (1.7), yields the theta-function representation of the N phase
wavetraίn:

%(x, i) = 2i

Δ = Riemann's constant,

(1.13)

The reality questions posed above in (I.E) now translate into a function theory
problem.

Characterize all ί(x, t) of the form (I.lib) such that

(Q3)

G. Motivation: N=l, the Pendulum

We will state the answers to the reality questions raised above in the simplest case,
N = 1. These results are taken from [4]. For real w, w there are two choices of 2$L γ:

Case 1. HS) = {EUE2 = E*).

Case 2. Σis) = {E2<E1<0}.

Case 1 corresponds to purely oscillatory solutions (low energy) with phase
curves interior to the separatrix. Case 2 corresponds to periodic mod2π solutions,
and there are two disjoint phase curves for each choice of Σ{s\ This is familiar from
the pendulum, which for large energy winds around and around either way. In
other words, the real N=l isospectral class for Case 1 is one circle, for Case2 is
two disjoint circles.

We now translate these results into our geometric context, with all terms as
defined above.

Case 1. Re(/o) = 0, φ;, ί)eiR, |μ| = |£il, μcycle = ±(a-2b).

Fig. 3a. μ-cycle on 0t

{ί(x, t) \x, t e R} = {ί(x91) + i\x91 e R}
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Note there is one connected component in β{β) and one connected cycle of μ e 01
[the cycles + (a-2b), -(a-2b) intersect at EUE2~\.

Case 2. Re(70) = ± i φ ; , 0 - Λ) e ^ M = VEiE2> μ cycle - + fe.

3A 1

Fig. 3b. Se/(£)=<D/{l,ib} μ-cycles on

Note there are two connected components in β{β) and two disjoint μ cycles on 01,
± b, one on each sheet.

Remark. For future reference (Remark 3 at the end of Sect. II), note that each ί0 in
Cases 7,2 also yields a real connected component if we replace *f0 by / 0 + 2 I*1

Case 2, it is clear from the figure that the two disjoint flows on β{β) are
interchanged under translation by \. In Case 7, notice that the real flow of ί0 =\ on
β hits ^ + ίb, which equals 0 on e/, thus these are identical on β.

From the Θ representation (1.13), it is obvious that / o ~^o + \ corresponds to
w-> — u. In the phase space for the pendulum, Fig. 1, these geometric facts are
merely reproducing the fact that for low energies (Case 1) the flows are invariant
to u^ — u, but for large energy (Case 2) the kink and antikink modes are disjoint
flows but related by w-> — u.

II. Real iV-Phase sine-Gordon Wavetrains

We begin with some historical background. Forest and McLaughlin [4] pointed
out the reality problems for JV-phase (sG) wavetrains, and solved the N = 1 case
completely, indicating the multiple components alluded to above. McKean [5]
proved that for the (sG) Hamiltonian sufficiently small, the real isospectral class is
one real N torus. (As we will show, this is included in the case of Σ{s) containing N
conjugate pairs.) Forest and McLaughlin [6] illustrated for N = 2 how to use
Riemann surface symmetries to construct real Θ representations. Date [9a], using
classical results on symmetric Riemann surfaces [9b], has proved existence of real
Θ representations for general N. Dubrovin and Natanson [13] constructed real
two-phase solutions in the same manner as [6, 9]. EnoΓskii and Belokolos [16]
also constructed real two-phase solutions.

Aside from the N = 1 case, however, the motion of the μ spectrum for real flows
has remained an unsolved problem. As well, the complete real isospectral class has
remained uncharacterized. Multiple components have been exhibited for JV= 1,2
[4, 6, 13], but the proof that the list is exhaustive remains. These problems, for
arbitrary JV, are the focus of this paper.
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A. Distinctions Between (sG) and KdV, (sh-G)

The Hill operator associated to KdV, and the (FT) or (AKNS) operators
associated to the sinh-Gordon equation (sh-G), are self-adjoint for real potentials.
The simple periodic spectrum Σ{s) is entirely real. The auxiliary spectra (the μ
variables) are real and, moreover, are confined to the instability gaps on the real
axis by classical spectral oscillation arguments. Thus the motion of the μ variables
is completely determined by spectral arguments, and they are bona fide
coordinates for the isospectral manifold.

The associated (sG) linear eigenvalue problem, (I.2a), is nonself-adjoint for real
potentials u, w [11]. Thus the spectrum of (I.2a), regardless of boundary
conditions, is not necessarily real. In particular, Ej e Σ{s) occur either in negative
pairs or complex conjugate pairs; the concept of "gaps" in Σ{s) is lost. The situation
with the auxiliary spectra μ(x, t) is much worse; for N> 1, they no longer lie on
fixed curves in ffl. The spectral methods developed for KdV [14] and sinh-Gordon
[5] simply do not apply.

However, the common feature of ΛΓ-phase solutions for all these pde's (sG, shG,
KdV, NLS) and every member of their hierarchy is a μ representation in which the
x, t flows linearize, by the Abel-Jacobi map, on the Jacobian β{β) of a
hyperelliptic curve 01. Moreover, the branch points of 01 are precisely (plus perhaps
0, oo) the elements of Σ{s\

We will now show how the symmetries of Σ(s) for real potentials pick out the real
flows of ί(x, t) on f(0t); then the nature of the Abel-Jacobi map determines the μ
cycle structure restricted to these real flows. The last, but very crucial, step is the
analysis of the integration constants ί0 in (I.lib). This will give real Θ function
representations for the solutions and determine the complete number of real
connected components associated to Σ$.

B. Basis for Real Flows in f(β)-Real Phases, Wavenumbers, Frequencies

We recall the iV-phase simple spectrum Σ{s), (1.3), and the constraints (1.5) for real

potentials, Σ% = {E2j^,E2j,j=l,...,N}, (Π.la)

E2j<E2j^<0 or Eξj^Eu-!. (II. lb)

There are JV+1 distinct classes of Σ§]k9 indexed by the number k of real, negative
pairs, ke{0,...,N}. On the Riemann surface & defined by (I.9b), we fix the
canonical a(, b{ cycles as indicated by Fig. 2. The normalization constants cjm and
period matrix columns Bk, defined in (1.10), then satisfy the following constraints
(use the arguments in [6] or [9]):

In all cases:

Im(cim) = 0, for all jm, (Π.2a)

Re(Bik) = 0, i + fe; (Π.2b)

while

RerB ϊ - ί ° i f £
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Note that an unambiguous ordering of the pairs has been assigned in Fig. 2; the
kίh pair (E2k-u E2k) is linked to ak9 bk cycles and Bk.

These relations now apply to yield the N reality constraints on the complex
phases /(I. l lb), on

Next we construct a useful basis for the real flows of ί on β{β). This, it will turn
out, is fundamental. Clearly, el9...,%,Bl9 ...,BN form a basis of β{β) with
coefficients in R. The reality constraints (II.3) pick out exactly N independent
lattice elements which form a basis over ]R for the real flows of € — ί0.

All lattice elements are of the form

. (II.4)Λn,m

Equation (II.3) introduces

From (Π.2b), this reduces

N

= Σ (njej + mjBj)

N conditions,

/ N

Re Σ njej + mjJ

to

, nj9 mj

BA=O.

Using (II.2c), these reality constraints on the lattice basis become

fnt = O if E2k<E2k.1<0,
j _ 1 Λ f 17* 77 — l , . . . , i \ .

For purposes of deducing periodicity properties of solutions, we choose the
minimal nk, mkeΈ such that these relations hold. We therefore have established

Proposition ILL For any Σ$tk corresponding to real potentials, a basis over IR for
the real x, t flows of £ in β{β) is f1? ...,ϊN, where

\Bk if E
[ek — 2Bk if E^k = E2k -1

These "real" lattice elements are also expressible as

if £ 2 k < £ 2 J k _ 1 < 0 ,
f k = \ b* <f _. _ (Π.5b)

1 f ψ if E%k = E2k_1.ak-2bk

Next, we expand £ — *f0 in this basis over IR:

ί-ίo= Σ 2^fr (Π.6a)

By construction, θj are real, and linear in x and t (since ί is). Thus, Qfx, t) as defined
by (Π.6a) are the N real phases,

, j = l JV; (IL6b)
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Kj are the spatial wavenumbers and ω} are the temporal frequencies of the N phase
(sG) wavetrains. The explicit formula for κ,ω as functions of Σ$tk is easily
computed from (Π.6a) and the formula (1.11b) for /. Denote by F the matrix with
columns fl5 ...,fN, and let c 1 ? c N be column vectors of normalization constants,
(Cj)m = Cmj.

Proposition II.2. The real phases θ, wavenumbers K and frequencies ω of the N phase
potentials for Σ§]k are explicitly given by

(*?-Λ))> (H.6c)

/ (-UN+1 \
= 4πiF~1

 C l + V - 7 7 = ^ K (Π.6d)

ω=4πiF-Ίc1 + ( S^cJ. (Π.6e)
V lόj/E /

Since fj are purely imaginary and cjm are real, θ, K, ω are clearly real.

To deduce the periodicity of these potentials with respect to the real angles or
phases θ, we now recall the Θ quotient representation, (1.13). The automorphic
properties of <9(z) are, for general lattice element Λnm in (II.4),

It follows that the effect of a general period translation in

is to transform the theta quotient in (1.13) into

J = ( " 1 } l W + A) * ( I L 7 )

However, by Proposition I LI the reality constraints on f{M) restrict the
allowable period translations Λnm to those generated by fk, (Π.5a,b). Thus the
periodicity of the potential u(x, t) = u(θ) is determined by (II.7) for each real phase
θk.

Proposition Π.3. For Σ§]k in (II. 1), the periodicity behavior of the N-phase potentials
u(θ) with respect to each real phase is

u(θ θ θ ) if F* F

C":CX if E k Z

C. Homology of the μ Cycles for Real Flows

The characterization of real flows ((x, t) e β(β) given above, together with the
Abel-Jacobi map between μ and €, now enables us to deduce the μ-cycle structure
on ψl x ... x &t)/σN.

For any fixed ί0 in (I.lib) that yields real w(x, t) in (1.13), the component Jtio of
the real isospectral class M is an iV-dimensional real torus (Proposition II. 1).
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(Existence of such / 0 and determination of all connected components of Jί is taken
up in Π.D.)

A parametrization of M€Q is provided by (II.6a):

The coordinate curves of this parametrization

lθι = const,..., θk e [0,2π),..., ΘN = const], 1 <; k ̂  JV (II.9)

are JV independent 1-cycles on ^ 0 . The inverse image of each of these cycles under
the Abel map is a fundamental 1-cycle on the μ-torus. In this section we express
these fundamental 1-cycles in terms of the homology basis, {au ..., %, bu ..., bN},

The μ-torus represents an N dimensional cycle in the homology group

( 8k x xίM \
— , Z I. Using the Kunneth formula one can decompose
<? J

x ... x ^ , Έ) into tensor products of # f ( ^ , Z), i = 0,1,2. For our purposes it
suffices to observe that

where L = H1{$,Έ)® ... ®B.γ{β,Έ) and K involves all tensor products having
H2{β,Έ) as a factor. The action of σN on fflx ... x M lifts to homology and we have

X
1 ,_ _ <

UN consists of antisymmetric tensors in L. (This follows because if an JV-cycle is the
product of AT ordered 1-cycles then interchange of two adjacent 1-cycles changes
the orientation of the iV-cycle.) A basis for UN consists of

{...,0flΛ ... ΛainιΛbhΛ ... ΛbJN_m,...}9 (11.10)

where l ^ / 1 < i 2 < ... </m^AΓand If^j1

The Abel map, Ψ, induces a map

HAjf) ( Π U )

Ψ+ maps UN 1-1 onto HN{f). This is because the map induced by Ψ in
dimension 1,

is an isomorphism given by Ψ^{a^) = eu ΨJJj^) = Bu where ei,Bi represent cycles
which correspond to the periods ebBv The Nth exterior powers of {... ei9Bt...}
freely generate the image Ψ*(LσN) in (11.11). Since dimLσN = dimHN(f\ it follows
that KerίFί(ί = K^. Hence

We now use (11.12) to describe the μ-torus, Ψ~ 1 ( ^ 0 ) , in terms of the homology
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Given Jt€{i with periodic shift basis

B1 + ... + m1NBN

fN = nN1eί+ ... + nNNeN + mN1B1 + ... +mNNBN

the fundamental μ-cycles are simply given by

1 + ... +mkNbN. (11.13)

Thus we easily deduce the fundamental μ-cycles for AΓ-phase sine-Gordon
wavetrains (see II.5):

k if E2k<E2k_ί<0\bk if E2k<E2k_ί<0 / T T 4 / l λ

μk c y c l e s fc

 ? , . f * * (Π.14)
{ak-lbk it tik = t2k_1

To determine the homology of the μ-torus in ##((^2 x ... x 3l)/σN), one simply
expands the exterior product

in the basis (11.10) by using (11.13). By (11.14) we see that in fact the μ-torus is
homologus to a product of cycles yγ x ... xyN, where yf is a cycle on ^ . For
example, an ΛΓ-kink torus has y1 = fcl9..., yN = bN, while a breather torus has γ1=a1

— 2bu ...,yN = aN — 2bN. So although the sine-Gordon μ-trajectories do not lie on
fixed paths as do those of KdV, the μ-cycles do remain in a fixed homology class.
This fact is fundamental for the modulation theory of JV-phase sine-Gordon
wavetrains [17].

D. The Real lsospectral Class M of Σ§\

We now determine the full real isospectral classΛAny choice of ί0 in (I.llb) that
yields real u(x, t) corresponds to a real Λf-torus M€Q C Jί. For such / 0 = /(θ = 0), the
entire real torus Jί^Q is swept out as θ varies over [0,2π) x ... x [0,2π), and each
value of /(θ) yields another / 0 in the same connected component. Therefore we
define an equivalent relation on initial conditions *f0:

i\~£\ if ^ - ^ =

The existence of real components J(^Q is easy to deduce from the theta quotient
representation (1.13). u(x, t) will be real-valued if

Θ{ί + Δ+\) = \_Θ{ί + Δ)Y. (IL15a)

Since A is a half-period, the symmetries of ί — £0 and B in (II.2,3) show ([4,6]) that
(II. 15a) is equivalent to

0 if E

4 if E

Since ί — ίoeiRN, these relations provide the existence of real components

0. In fact, these are exhaustive.
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Proposition II.4. Let Σ$tk be given by (II.la, b), where the index k denotes the number
of real negative pairs, fce{0,...,N}. The real ίsospectral class for I ^ f e has 2k

connected components Jί€ςi. The 2k equivalence classes of «f0 are given by (II. 15b).

To establish this result, we have to prove that the above constructions yield all
possible ί0 for Σ$tk. That is, the only way u in (1.13) is real is if (II. 15a) is satisfied.
This is nontrivial. Our proof requires information about squared eigenfunctions
for real potentials and the Kummer variety. For this reason, we defer the proof to
Appendix B.

Remark 1. We encourage the reader to read this argument, however, for several
reasons. First, it applies to all soliton equations connected to hyperelliptic curves
(e.g., KdV, NLS, sh-G). Second, it shows how the hyperelliptic geometry of the μs

variables on 01, (μj9 + R(βj))9 (μj9 — R(μj))9 is responsible for the possibility of two
connected components in each real degree of freedom.

Remark 2. Already, this is apparent in the N = 1 example of Sect. I.G in terms of the
sheet interchange, μ cycle -> — μ cycle. From Proposition II.3 one also finds that
this involution, for real pairs E2k-i < E2k < 0, interchanges kink components and
antikink components. This is apparent by tracing the involution to the real angle

0k:μfc->-μfc cycle o fk->-fk o θk->-θk.

By (II.8), this effects a switch in the "charge" of u:

u(θk + 2π) = u±2π => u(-

Again by Proposition II.J, for conjugate pairs E%k — E2k-l9 the single component is
invariant under the involution, u(θk±2π) = u( — θk±2π).

Remark 3. There is another context in which the hyperelliptic involution is
gainfully exploited. We have focused on the zeroes, μ, of the squared eigenfunction
g; the zeroes of h, call them v1?..., vN, are equivalent information. This follows from
the invariance of the squared eigenfunction system (1.4) under the replacement
(f,g,h;u,w) by (f9h9g; — M, — w). Thus, interchange of μ and v variables corre-
sponds to the involution (u9 w)-•( — «, — w). (This involution is also equivalent to
conjugation of μ because g* = h for £>0.) From the Θ representation of w, (1.13),
this involution is characterized on f(β) by the half-period translation i^>{+\. Of
course the full complex isospectral manifold is invariant under this involution.
However, it follows from the structure of *f0, (II. 15b), that translation by \ also
leaves invariant the full real isospectral manifold of Σ^]k9 but moreover yields an
involution on the real connected components: Jί€^M-iQ. Each purely oscilla-
tory degree of freedom is unaffected whereas the kink-antikink modes are
interchanged. (Recall Fig. 3a, b and the Remark in Sect. I.G.)

III. The Kummer Surface

In the remainder of this paper we present a method for explicitly parametrizing the
μ-flows in x and t. This amounts to the inversion of the Abel-Jacobi map. Inversion
formulae were known classically (see, for example, [19]) and have been reproduced
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recently in connection with soliton equations [8]. The method we present is
geometric in nature and, to our knowledge, is new. The geometry enters by way of
an algebraic variety, the Kummer variety, which is defined in terms of quadratic
theta functions on ^(β). Our derivation of the inversion formulae is based upon
orthogonality relations for quadratic theta functions (Appendix B). Under the
polynomial ansatz (Sect. LD), squared eigenfunctions are quadratic theta func-
tions. As motivation we mention that orthogonality relations for squared
eigenfunctions [11,20] are related to the orthogonality relations used here (III.C).

The geometry of higher dimensional Kummer varieties has not been as
thoroughly treated as that of the Kummer surface. Therefore, we will restrict
ourselves, in this section, to the case of 2-phases.

Our discussion will concern general Riemann surfaces of genus 2 and so will be
applicable to the study of 2-phase solutions of any of the soliton equations
mentioned earlier.

A. Quadratic Theta Functions

Definition. An rth-order theta function, Θ(z), associated to the period matrix B, is a
holomorphic function on (CN which satisfies the transformation formula

<9(z 4- n + Bm) = [exp {- iπ«£m, m> + 2<z, m»}]Γ Θ(z), (III. 1)

where m,ne ZN.
Observe, from (Π.7a), that the Riemann theta function is a first order theta

function. For future reference we will denote the factor of automorphy by

eλ(z) = exp { — ΐπ«βm, m> -I- 2<z, m»},

where λ = n + Bm.
Since A — {n + J5m|n, m e Έ2}, it follows from the transformation formula (III.l)

that iϊf(z) = Θ1(z)/Θ2(z)9 where Θl9 Θ2 are rth-order theta functions associated to
β, then/(z) is well-defined on / = CN/Λ.

We want to consider second order (quadratic) theta functions. For fixed r, the
set of all rth-order theta functions is a vector space, Vr. Elementary Fourier analysis
enables one to conclude that dim Vr = rN [21]. Thus the space of all quadratic theta
functions is 2iv-dimensional.

From now on fix N = 2. V2 is then 4-dimensional. We choose a basis of
functions for V2 as follows:

x(z) = Θ\ Jj J|l(2z;2£)= Σ exp2πi{<£m,m

X z ) = 6 > [ o o ] ( 2 z ; 2 β )

= Σ
meZ2

Σ
meZ2
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= < 9 [ o ϊ\{2z;
2 B )

meZ2

Using the F2-basis, (III.2), we define a natural map of β into IP3 as follows:

Φ is well-defined on β because if λ e A,

[x(z + λ): y(τ + A): z(z + λ): w(z + λj]

= \_el{τ)x(τ): e2(z)j/(z): e2(z)z(z): e2(z)w(z)]

= [x(z): y(z): z(z): w(z)]

by homogeneity of these coordinates.
This map was classically well known, and we will state here some of its salient

features. Details may be found in [22,23].
1. The image of Φ is an algebraic surface, S, defined by a homogeneous

polynomial, F, of degree 4. (We describe this polynomial below.) S is referred to as
a Kummer surface.

2. Φ is a, generically, 2:1 map of / onto its image. [Because x, y, z, w are all
even functions, Φ(z) = Φ(-z).]

(C2 acts on β by translations. The translations, 7^o:z-»z + zo, induce linear
automorphisms of the space of holomorphic functions on C 2 by

Γzo /(z)=/(z + zo).

For general z0, TZo does not preserve the space of rth-order theta functions.
However, the group of half period translations, (%A)/A, preserves the space of
quadratic theta functions. This is a group of order 16 which is of central importance
in passing from analytic objects on / to algebraic ones on S.

The table below exhibits generators of (%A)/A, the translation each generator
represents, and the induced projective linear transformation on V2 with respect to
the basis x, y, z, w. (By projective we mean that the actual linear transformation
differs possibly by an overall scalar function of z.)

1/2-period
generators translation of t

Ψl

projective
automorphism of S

I 0 0 0"

0 - 1 0 0

0 0 1 0

_0 0 0 - 1 J

"0 1 0 0"

1 0 0 0

0 0 0 1

.0 0 1 0_
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e2

φ4

1 0 0 0

0 1 0 0

0 0 - 1 0

0 0 0 -1J

0 0 1 0

0 0 0 1

1 0 0 0

.0 1 0 0J

(III.3)

Since the half-period translations map β onto itself, it follows that the induced
projective automorphisms must map the Kummer surface S onto itself. Moreover,
it can be shown that the group generated by {φl9 φ2, φ3, φ4} are the only projective
automorphisms of S [22]. Therefore, the polynomial of degree 4 in x, y, z, w which
defines S must be invariant under these automorphisms. The most general degree 4
polynomial satisfying this is of the form

F(x, y, z, w) = x4 + / + z4 + w4 + Λ(x2w2 + y2z2)

+ B(y2w2 + z2x2) + C(z2w2 + x2y2) + IDxyzw

= 0. (III.2)

The coefficients A9 B, C, D are determined by the 5-matrix. We will describe this in
the next part of this section.

B. Nodes and Tropes

We observe that the second order theta functions are all even. Hence Φ( — z) = Φ(z).
In fact, as we mentioned before, Φ is a generically 2:1 map of β onto S such that
the points z and — z get identified. However, when z = — z modyl the map Φ fails to
be 2:1 and therefore the image of such a point is a singularity of S. Elsewhere S is
smooth. These singularities are called nodes.

Definition. A singularity of an algebraic surface in P 3 is called a node if the first non-
vanishing term of the Taylor expansion of F (the defining polynomial) is quadratic.

Observe that z= — zmodΛ iff z is a half-period. Therefore there are 16 nodes
on S and each is the image of a half-period in / . Since the group of half-periods
acts transitively on itself, it follows that the projective automorphisms of S act
transitively on the nodes; i.e., given any two nodes, there is a symmetry of S
carrying one node to the other.

Let us consider the node corresponding to the half-period z = 0.

Definition. A theta null is the value of a theta function at z = 0.
From our basis of quadratic theta functions we get four theta nulls which we

denote as follows:

y=Θ
2B 0 0

(0), "e»\l ί]
( I Π 3 )

(0).
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In this notation, the node corresponding to the half-period z = 0 has projective
coordinates [α: β: y: <5]. Also, the coefficients of the Kummer equation (III.2) are
expressible in terms of theta nulls [22]:

/% —
a2δ2-β2γ2

B=V

β2δ2-γ2a2 '

-γ4-δ4

D =

γ2δ2-a2β2 '

aβγδjδ2 + <x2-β2- y2) (δ2 + β2-γ2- a2)

(a2δ2-β2y2)(β2δ2-y2a2)

•(γ2δ2-a2β2)

The nodes of S are arrayed in a remarkable configuration:

Definition. A trope is a plane in IP3 which contains exactly 6 nodes of the Kummer
surface S.

The importance of tropes lies in their relation to quadratic theta functions. The
intersection of a trope with S is a curve, Θ, contained in S. Θ is the image, under
Φ: «/->£, of the zero locus of a special second order theta function.

It is classically known [22] that there are exactly 16 tropes. We will list all the
tropes below. In an appropriate sense, a trope is dual to a node. To be precise, a
trope is a plane which is tangent to S along a conic (a plane curve of degree 2). This
conic of contact is called a singular conic. We will sometimes abuse notation and
call a singular conic a trope.

Just as each trope contains 6 nodes, each node is contained by exactly 6 tropes.
This array of nodes is called the 16:6-confϊguration.

[μ:β\y\δ~] is a node (defined earlier). Associated to this node is the trope
defined by

= O. (III.5)

We list the six nodes contained in this trope:

[δ:-γ:β: -oc] = φ1

lδ:y:-β: -oc] = (p2

[y:δ: -a: -β1 = φΊ>

[ α :β:γ:δ],

lβ:-a:δ:-y] = φ1o φ2[μ \β\y\δ~\.

The projective automorphisms of S carry tropes to tropes. Hence the other 15
tropes and the nodes which they contain can be determined from the above trope
by letting the group of 16 projective automorphisms of S act on P 3 .
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C. The Orthogonal Matrix of Tropes

We shall now introduce a compact notation for the tropes which will make them
easier to deal with in computations and which will also clarify the structure of our
arguments later on.

The projective automorphisms introduced in III.A can be decomposed into
two types: permutations, generated by φ2 and φ4, and changes of sign, generated
by φ1 and φ3.

We label elements of the subgroup of permutations by

d = identity,

In parallel, we label the elements of the subgroup of sign changes by

d = identity,

b=-φl9

a = φ1oφ3.

This seemingly curious choice of labels is made to keep consistent with classical
notation (see [22]). We can now label each trope by the ordered pair, (permutation,
sign change), corresponding to the projective automorphism of S which transforms
the linear form defining the trope into ax + βy + yz + δw. For example,

(dd) = (α, β, γ, δ) (x, y9 z, w) = ax + βy + yz + δw,

The linear forms of these tropes are connected by a remarkable set of algebraic
identities whose geometric interpretation will be important for us. Observe that if
we assume that α2 + β2 + y2 + δ2 = 1 and x2 + y2 + z2 + w2 = \ then the matrices

α β y δ~

δ -y β - α

y δ - α -β

-β cc δ —y_

and

x w —z y

y z w —x

z —y x w

_w —x —y — z_

are orthogonal and, hence, their product is an orthogonal matrix (i.e., the column
vectors are orthonormal). The normality assumptions we made are of no
consequence since we shall always be working in homogeneous coordinates. The
product of these two matrices yields an orthogonal matrix of tropes:

" (dd) (ac) (ba) (cb)'

-(ab) {da) -(cc) (bd)

-(be) (cd) (db) -(aa)

L-(cα) -(66) (ad) (dc)\
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On substituting x = α, y = β, z = y, w = δ into these linear forms, six of them
vanish and the other ten become quadratic expressions in the theta nulls which we
will refer to as the ten fundamental quadrics. We will denote the fundamental
quadric obtained through this substitution by square brackets "[ ]".

Thus we obtain an orthogonal matrix of fundamental quadrics:

\dd] 0 0 0

0 Ida] -Ice] [bd\

0 \_cd] [_db] -laa]

0 - [66] [ad]
ι + y2 + δ2 0 0 0

0 oc2-β2-y2 + δ2 2ocβ-2yδ

0 2ocβ + 2yδ -oc2 + β2-y2 + δ2

0 2ya-2βδ 2βy + 2aδ -oc2-β2 + y2-
(III.7)

The observation that will be most important for our computations is that the
lower right 3x3 matrix is orthogonal when all entries are divided by [dd] = (x2 + β2

+ y2 + δ2. This implies a variety of quadratic relations between the fundamental
quadrics.

D. Jacobi Inversion

In this part we introduce the Abel-Jacobi map from the Riemann surface 01, where
each of the μ-coordinates lives, into the Jacobian β where the phases ((x, i) reside.
We then develop a connection between the branch points of 01 and the nodes of S.
Finally we discuss the solution of the Jacobi inversion problem.

Let p0, px denote two points on 0t\ in general we will regard p0 as fixed and pγ as
variable. Let ψl9 ψ2 be the normalized holomorphic differentials defined in Sect. I.
We introduce the notation

(IΠ.8)

in terms of which the Abel-Jacobi map Ψ: 01 x &tlσ2->/ is

\Pθ Pθ Pθ Pθ /

We refer the reader to [12,13] for further discussions of this important map. In
succeeding sections, the fundamental fact to bear in mind is that when the
unordered pair (PuP2) = (μi(x,i),μ2(x,t)), then its image in / under the Abel-
Jacobi map is the phase vector /(x, ί):

*f(x, ί) = [μ i(x, 0] + [μ2(x, ί)] -2[p 0 ] (ΠL10)

E. Branch Points and Nodes

From now on we will set p 0 = oo. (This choice in no way affects the reality
constraints on the μ-coordinates; it merely fixes an origin in f)

(III. 11)
(Pi. ooHCpJ + [oo] -2[oo] = [ p j - [oo] .
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Using intersection theory (p. 49 of [23]) one can determine the images in β of the
branch points of 3k. These are all half-periods, and so they map, under the theta
map Φ, to nodes on S. Below, we list these correspondences. For future reference
we also give the projective automorphisms corresponding to these six nodes.

Table 1

V; Φ(v;) (Projective
(half period) (node) automorphism of S)

v1 = [ £ 2 ] - [ o o ]
v2 = [0]-[oo]
v3 = [oo]-[oo]
v4 = [£ 3 ] — [oo]
v5 = [ £ 4 ] - [ o o ]

(e2 + B1)l2
(ei + e2)/2
0
(e2 + B2)/2
B2/2

ίβ
[α
[α

b
[y

:α

:β
:δ
:δ

: — δ: —y]
-β: — y :<5]

: y : <5]

:-«:-«
:α:j8]

<P2O(?3

<Pl°<?3

Id
Ψ3O(PA

φ4

The nodes corresponding to v0,..., v5 lie on a unique trope and are, in fact, the
six nodes of that trope. To see this one simply observes that these nodes satisfy the
linear equation of the trope

-(ab): δx-yy + βz - otw = 0. (III. 12)

This trope is the image of 3k x {oo} under the map Φ ° Ψ. In particular, observe that
Φ © ψ is a 2:1 map of 3k onto the singular conic determined by - (ab) (recall this
terminology from III.B). This map is branched at the six nodes on this conic. In
other words, φoψ represents 3k as a hyperelliptic curve. We will use this fact in part
F of this section to express the branch points in terms of fundamental quadrics.

The preimages iη 3k x 3%/σ2 of the remaining ten nodes are given by the
following table. We define

v.J. = vf + vJ for iJ>0, iή=j.

Table 2

ϊ;-™]++[έ"-2S]

v23 = [oo] + [0]-2[oo]
V2 4 = [£ 3 ] + [0] — 2[oo]
V25 = [ £

4 ] + [0] - 2[θθ]

v45 = [£ 4 ] + [£ 3 ]-2[co]

Half periods

e2β
eJ2

BJ2

(eϊ+BΪ+BJβ
(eί + e2 + Bί+B2)β
(ei + BJ/2

Nodes

[α:/?:-y:-<5]

l-y:δ:.a':-β]

D3:α:<5:y]
lδ:y:-β:-Λ]
Iδ-.y.β:*]
lδ:-y:β:-d]
[δ:-y:-β:d]
[β:-«:δ:-y]

Projective
automorphism

ψ2

φ2oφ4

φιoφ2
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F. Solution of the Jacobi Inversion Problem

We now turn to the formulation of the primary tool in this paper. From (1.11), the
Abel-Jacobi transform relates the μ-coordinates to the phases ί. In Sect. Ill we
characterized the manifolds of isospectral two-phase wavetrains in terms of the
phases /. Our goal is to characterize these manifolds in terms of the μ-coordinates.
We will achieve this goal by inverting the Abel-Jacobi map to express the
μ-coordinates as functions of *f. Precisely, one derives the

Inversion Formulae

7 Z7 Z7 (aC)

2 E 3 E t ,

[_dά] {E2 + EA} (ac) - jcc\EA(bά

(IΠ.13a)

In the appendix we give a geometric derivation of these formulae. In this
section we will present these formulae but concentrate on a derivation (different
from the one given in the appendix) of (III. 13a). This formula relates the
μ-representation (1.7) to the theta quotient representation (1.13).

To begin with, we observe that <92(z), where Θ(z) is the Riemann theta function,
is a quadratic theta function by definition. Hence, it can be expanded in our basis
for V2 (III.2). The result is

Θ2(z) = ax + βy + yz + δw = (dd). (III. 14)

This expansion is most easily derived using standard addition formulae for theta
functions [12, 22].

Next we consider μγμ2 which is a symmetric function of the μ-coordinates and
therefore defines a function on ^ x ^ / σ 2 . According to Siegel [12], any such
function can be represented as a quotient of theta functions; and, in particular,

In (III. 15), K is a multiplicative constant, which we will determine, and Δ e / is
Riemann's constant which we will determine now. We recall [12].

Riemann's Theorem. // Θ denotes the zero locus of Riemann's theta function, <9(z),
in β, then

(111.16)

From (111.14) we deduce that Φ(Θ) = (dd\ and from (III. 12) we deduce that
Φ o ψ(β x {oo}) = - (ab). Since these are both tropes, it follows from (III.B) that Δ
is a half-period which corresponds to the projective automorphism — (ab)
= φιoφ2oφ4. From Table 2, we observe that the half-period corresponding to
Ψi ° Ψi ° ΨA i s (ei + Bι + B2)β Hence,

J = ( β 1 + B 1 + B 2 ) / 2 . (111.17)
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From Table 1, we now note that [0] — [oo] = (e1 + e2)/2. Substituting into
(III. 15) we get

( Π L 1 8 )

When μ$ = μfx, t), we see from (III. 10) that f(x, t) = [μ x ] + [μ 2 ] — 2[oo], and thus
(III. 18) is the theta quotient representation which we discussed in Sect. 1.

(Compare (III. 18) with (1.7) and (1.13); note that 6l *2 = - in our earlier

notation.) Equation (III. 18) represents μ x μ 2 as a ratio of quadratic theta functions

and therefore μ x μ 2 is a ratio of tropes. To determine these tropes we use the fact

that Θ2 z + 1 2 = Φi ° φ3(Θ2(z)) since φ x ° φ3 corresponds to * 2 . Thus

φ^ax + βy + yz + to)
ocx + βy + γz + δw L J v ; J

_ αx — JSJ; — γz + δw
ocx + βy + γz + δw'

where x,y,z,w are functions of £ + Δ. We would like to regard x,y,z,xv as
functions of just £. In this case

_ φ1

Qφ2
1 2 φ o φ

z — αw

where x, 3;, z, w are now functions of ί.
In III.E we indicated that the branch points of M were expressible in terms of

fundamental quadrics. These expressions are derived in Appendix A, but we
record them here for convenience:

lad] ' h2~k lad] '

F frί

(k is any non-zero complex number; bear in mind that the μ-coordinate, and hence
the Ep are uniquely defined only up to a linear fractional transformation.)

We will now determine the multiplicative constant K in (III. 19). To this end set
μ 1 = £ 1 , μ2 = E4r. Then
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From Table 1 we see that

Substituting into (III. 19), we get
$2_y2+β2_(χ:

From (111.20) we have

, lda]ldb] , ldb]ldd]
/V K, z Z — /V

[ad] [aά]

Hence,
^_. 2[dα][d6][dc][dfl_ l /—

Putting this value we have our first formula:

i /r r F c (αc)yEEEEyE1E2E3E4 .

Note that the constant K is consistent with the μ-representation (1.7).

IV. The Real Kummer Surface

In this section we will lay the groundwork for applying the machinery of Sect. I l l to
the study of the global behavior of the μ-variables for real 2 phase (sG) wavetrains.
As earlier, Jt€ςs denotes a connected component of the full real isospectral class M,
Jί=X) JίfQ. The situation can be summarized by the following diagram:

x 3t)lσ2 —
u

μ ( θ ) ^ -

u

0)

-> /(θ) -

Jacobi

Φ

—• [ x ( θ ) :

inversion

We will now show that Φ{Jί€^ is a two-dimensional real algebraic subvariety
of P^. In fact, Φ(Jί) coincides with the real points of the Kummer surface S. These
results will be used in the next section to explicitly determine the real μ-locus.
Part A below gives the topological description of Φ(Jt€^\ in Part B we discuss the
real algebraic geometry of (^

A. Topology of

We exploit the fact that Φ(MS^ is the 2:1 image of the real two-torus Jίlo\
precisely, Φ(z) = Φ(-z) . Before proceeding, we remark that it suffices to determine
the topology of Φ(Jί^0+A), where Jί^Q+A is the translate by A of JίiQ in / . This is
because translation by Δ, a half period, jist induces a rigid motion of Φ ( ^ o ) in IP3,
which cannot alter the topology.

We recall from (Π.D) the three cases of real Σψj and the associated list of all
connected components Jΐ€o, indexed by / 0 , (Π.12b).
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Kink-Kink Trains.

Kink-Radiation Trains.

Breather Trains.

Since the Kummer map Φ identifies / + A with —(β + A\ and J is a half-period, the
corresponding components MeoΛ.Δ^M-€^A (or M€#Jl-e^ are identified in S:

0). (iv.2a)

(IV.2b)

Now, with the / 0 equivalence relation " ~ " of Sect. Π.D, it follows

^ if ^o-0,

if Λ)~0.

From these properties (IV.2a, b), and the fact (Proposition II. 1) that each JI€Q

is a real 2-torus, we have

Prooposition IV.l. The topological structure of the Kummer image, Φ{J(\ of the
real ίsospectral class Jί for Σ^j, (IV.l), is

Kink-Kink Trains. Σ{^2 '• Φ(^0 ™ the union of two disjoint real 2-tori

Φ{Jί) = Φ ( ^ ( 1 / 4 , 1 / 4 ) ) u Φ ( J ( _ 1 / 4 ) 1 / 4 ) ) . (IV.3a)

Kink-Radiation Trains. Σ^i'. Φ(M) is one real two-torus,

Φ{Ji) = Φ{Jt{0,1/4)) = ΦMf (0, - 1 / 4 ) ) (IV.3b)

Breather Trains. Σψt0: Φ{M) is a "folded torus", i.e.

is homeomorphic to the quotient of the 2-torus, (0 1 ? 0 2 )e[O,2π) x [0,2π), by the
involution θ->— θ. A fundamental domain of this quotient in [0,2π) x [0,2π) is
depicted in Fig. 4.

Fig. 4. Fundamental domain, breather Kummer surface
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?o) is therefore homeomorphic to this fundamental domain with the edges
identified by

PQ-PQ', QR~Q'R'9 SR-SR'.

The points P,S,Q = Q\ R = R' correspond to four nodes of the Kummer surface. A
qualitative picture of Φ(Jί0) is given by Fig. 5.

S = (o ta

P= (o.o)

Fig. 5. Kummer surface image of the real breather torus

Q = [πs o )

B. The Real Kummer Surface Equations

We now show that the image Φ{Jίe^ has the structure of a real algebraic variety.
That is, the Kummer surface equation (III.2), when restricted to a real component
Jt€o, is a real-valued equation on P^.

For each Jίeo associated to Σψj in (IV. 1), we must analyze the elements of
(III.2): the quadratic theta function coordinates [x: y: z: w], (III.l); the theta nulls
α, β, 7, δ, (III.3); and the Kummer equation coefficients A, B, C, D, (III.4). To do so,
we recall relevant information from Sect. II.B. Specifically: from (II.3), for all Σψtj9

from (II.2), the period matrix B for Σ^j is given by

y(s) . D _ 2-r
ic id)'

ic

locus

(IV.5)

Σ-°:B=\ic

6 , c , i e R .

is parametrized by the projective coordinates [x:y\z:w] restricted to the



28 N. M. Ercolani and M. G. Forest

Relations (IV. 1), (IV.4) explicitly give the structure of (IV.6) for each real
component.

We now have all the information necessary to analyze the elements of the
Kummer equation restricted to real components. To begin with, the theta nulls
(α, β, y, δ) — (x(0), y(0), z(0), w(0)) are functions only of the period matrix B for Σψtj.
Using (IV.5), it is easy to calculate the properties of these parameters. For example,
take Σ(2*2, B given by (IV.5a), and compute

α = χ(0)= Σ exp[2πΐ{<£m,m>}]= Σ exp[-2π{bmf + 2cmίm2 + dml}],
meZ2 meZ2

which is clearly real and positive. Proceeding this way for each case we determine:

Σ<$]2: α,jS,y,<5e

Σ%t: α,j8eR;

Σft0: α e R ; β,yeeiπ/4ΈL; δeΈL+.

The Kummer coefficients, by (III.4), are then easily analyzed from these
conditions on the theta nulls. Let A,B, C,DeIR, then

Σ$χ. A = iA, B = ίB, C = C, D = ίD,

Σ%]0: A = Ά, B = iB, C = iC, D = D.

The coordinates x,y,z,w are analyzed in the same manner using the
information summarized above. For example, for Σψ^* by (IV.6),

and the elements of B and ff are purely imaginary, so

• exp |2πi UBm, m> + 2 (m, ±- (ΘJ, + θ2ΐ2)\ 11

= ±i Σ (- l) m ' + m 2 expΓ4 ί^p 4 < , > ^(ί1 2

eϊR.

The result is: with X, Y,Z, We JR.,

Σfy. x = X, y=iY, z = iZ, w=W,

ΣfΛ: x = eίπ/4X, y = eiπlAY, z = iZ, w = W, (IV.9)

Σft0: x = iX, y = eiπ/4-Y, z = eiπμZ, w = W.

We can now evaluate the Kummer surface equation for each real isospectral
class Σψyj. With real coordinates X,Y,Z,W and real coefficients A, B, C, D, we have
the following
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Proposition IV.2. The Kummer surface equation, (III.2), restricted to the image
Φ(Jl) of the real isospectral class Jί for each Z%]p becomes:

Σ%]2: Kink-Kink Trains,

-C2(Z2W2 + X2Y2)-2DXYZW=0. (IV. 10)

The zero locus consists entirely of the two disjoint topological tori in (IV.3a).

Σ^Λ\ Kink-Radiation Trains

-C(Z2W2-X2Y2)-DXYZW=0. (IV.ll)

The zero locus consists of just the topological torus in (IV.3b).

Σ{2]0: Breather Trains,

-C(Z2W2-X2Y2)-2DXYZW=Q. (IV.12)

The zero locus is a two-sheeted surface branched at the four nodes it contains,
as explicitly shown in Fig. 5. In this case, Φ(M) is one of the sheets of this surface.

We close this section with an observation about the branch point representa-
tion, in terms of fundamental quadrics, as given by (IIL20). Using the values of the
theta nulls in (IV.7), we can determine the value of k in (111.20) which makes the
branch points Eu E2, E3, E4 coincide with Σ2

s)j as described in Sect. Π.B. The result
is

V. Parametrization of the μ Trajectories

In this section we explicitly compute the μ-loci for real flows by restricting the
Jacobi inversion formulae (III. 13a, b) to the real Kummer surface. We illustrate
this for specific choices of Σψj,j = 0,1,2, which correspond to special Kummer
surfaces called tetrahedroids. The name derives from classical geometry because
the nodes, in addition to the usual 16:6 configuration (ΠI.E), are also partitioned
into four sets of coplanar nodes. The four planes so distinguished form a
tetrahedron.

For a tetrahedroid, one can always perform a linear change of coordinates so
that D = 0 [22]. We do this in each case below. The resulting Kummer equation,
(III.4), then involves only the squares of x, y, z, w. This equation arises in optics as
the dispersion relation for double refraction of electromagnetic waves in a biaxial
crystal [24, 25] (w is the frequency and x, y, z are wave numbers). In this context,
the tetrahedroid is referred to as a wave surface.

The additional structure of tetrahedroids is due to special properties of the
curve 01 and the Jacobian f{β). Specifically: the branch points of 3k are invariant
under holomorphic involution iff the hyperelliptic (genus 2) Jacobian factors into
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the product of elliptic (genus 1) Jacobians. This is the geometric framework of
"separable solutions" [4, 22] in the soliton literature. These are two-phase
(genus 2) solutions expressible in terms of elliptic functions on two genus 1 curves.
In [4], Forest and McLaughlin explicitly showed that, when Σ^j is invariant
under the involution E-+1/162E, the Jacobian factors into the product of elliptic
Jacobians. Moreover, they show that such involutions characterize boundary
conditions of the potentials.

We now present explicit examples of how the developments of this paper yield
an explicit computation of the μ trajectories for the flows of real potentials. The
surfaces we choose are in fact double tetrahedroids [22] (tetrahedroids in two
distinct ways), corresponding to highly symmetric Σ%]j with one real degree of
freedom. We list the necessary data for each case, and then the plots of the μ-loci
generated by the parametrization on the real wave surfaces. The reader should
refer to the real Kummer data in Sect. IV. (Details of these calculations and others
like them are available upon request.)

Kink-Kink Trains.

Σfy.E^-l, E2=-(l+2/ά2) E3=-ά2/(&2-2), E4=-(ά2 + 2)/(ά2-2).

Coordinates.

x = χ + w = )(, y = y + z = iΫ, z = y — z = iZ, w = x — w=W,

where ί,7,Z,feR.

Theta Nulls.

ά = a + δ, β = β + y, f = jS-y, δ = oc-δ.

Tetrahedroid Constraints.

α>j/2, β = δ = U 7 = 0.

Coefficients.

A=-ά2, B = &4-2, C = - ά 2 , D = 0.

Real Kummer Equation.

+ (2 - ά4) (X2Z2 + Ϋ2 W2) = 0.

Inversion Formulae of μ Constrained to F = 0.

2^{(«2 - 1)[_&W-X + iZ] + &IW- i(Ϋ+ &Z)~] - (1 - 2/ά2)[l + i(Z - όtt)]}
( ά 2 - 2 ) '

(άW-X)-iZ
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Fig. 6a. Kummer image: real kink-kink isospectral manifold (in afϊine space

Fig. 6b /Γ- loci

outer torus inner torus

Kink-Radiation Trains.

Coordinates.

Tetrahedroid Constraints.

αeR-{0}5

Coefficients.

= ίZ, w=

C = - ( α 4
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Real Kummer Equation.

Inversion Formulae of μ Constrained to F = 0.

(<£ Λ\(aW-X)-iY

μί+μ2 =

• (Jf-i(y+αZ))-2iαίy + Jr) (aY+ W-iZ)

•(ocW-X + ίY)

Z l

Fig. 7a. Kummer image: real kink-radiation manifold

(V.2)

Fig. 7b. /i-loci for two independent cycles on m

Breather Trains.

4i(l-α 2 ) 4/(1
hh2=
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Coordinates.

L, X>0.

Theta Nulls.

Tetrahedroίd Constraints.

α = ]/_e ί π / 4ά, β = 2eiπ/4r, y = 0, δ = ]/2e~iπ/4ά.

Coefficients.

/ 2 \ 2
—j I , i ί = ~^y , _ = —_» , U = K) .

α / α

Kβα/ Kummer Equation.

+ v "^
16

α2

Inversion Formulae of μ Constrained to F = 0.

16(1-α 4 )
α4 lα(__-»O-i(y-Z)j'

a(X — W)

Y+Z-i(Y- Z)} - 2eίπ/4(iX - W)~\__

4(α ~ x + α) [ - 2βίπ/4(iX + W) - |/2α[(Ύ- Z) - ί(Y+Z)]]
+ α ( X - ^ ) - i ( 7 - Z ) '

The breather wave surface is one sheet (X>0) of the folded torus, Fig. 5.
We choose this model case to provide several computer plots which illustrate the

range of real μ-loci for breather trains. The following plots represent selected cycles
from the fundamental domain, Fig. 4. Branch cuts are not drawn in, but follow the
convention of Fig. 2. Plot 1 is the μ^locus for a cycle Θ2 = constant. Plot 2 is the
μ2-locus for θί = const. (The other μ,- locus, in each case, is contractible to a point.)
These first two plots are therefore a basis for the real μ homology, a1 — 2b1 and
a2 — 2b2. Plots 5, 4 show the μί and μ2 paths for a choice # 2 =

 c o n s t 5 θi = const,
respectively, where one can observe the contractible cycle. Plot 5 corresponds to a
flow along one diagonal of the fundamental domain. Plot 6 consists of μx and μ2

loci for six distinct, but homologically equivalent, flows, Θ2 = ci9 i= 1,..., 6, Plot 7
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consists of the "μ^blob", the projection of all μx values on C for a uniform
sampling of points from the full fundamental domain. Plot 8 is the "/ι-blob", a
portrait of all values assumed by μγ and μ2 over the same grid as in Plot 7.

VI. Concluding Remarks

The real isospectral manifolds of N phase quasiperiodic sine-Gordon potentials
are characterized for N < oo. Global coordinates for these manifolds are provided
by the spectral μ variables, defined via quadratic eigenfunctions, and the μ
dynamics is deduced.

The algebro-geometric methods presented here are shown as a natural setting
to answer the questions addressed in Sect. I. It is hoped that these methods, in
particular the role of the Kummer variety, will find a more familiar place in the
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study of integrable systems and their perturbations. We close with a few remarks
on the context of this paper in related research efforts.

Our interest in the global dynamical behavior of the sine-Gordon μ variables
originated in attempts to study modulations and perturbations of N phase sine-
Gordon wavetrains. In our previous work on KdV [27] and sinh-Gordon [6]
modulation theory, the complete control of the μ's under real flows was crucial.
With the results of this paper, the sine-Gordon modulation theory is now
complete [17].

In the context of perturbation theory, the μ variables together with the periodic
spectrum {£,.} provide canonical variables on a space ^ of potentials (functions in
x) which are periodic with fixed period [11]. These in turn provide a natural basis
of & with which to investigate the linearized stability of the perturbed equations.
Once again, to carry out this perturbation scheme, one needs to understand how
reality constrains the μ-trajectories. Here one discovers a striking feature of sine-
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Gordon, not seen in KdV, which is a direct consequence of the μ-geometry: it is
possible to find solutions of linearized sine-Gordon, near an N phase potential,
which grow exponentially in time. This instability is a generalization of the
classical Benjamin-Feir instability [18].

Of course, a complete treatment of perturbation theory for periodic sine-
Gordon requires one to deal with infinite genus Riemann surfaces. Here, the reality
question is more complicated. The Abel map is now given by an infinite sum whose
convergence depends on controlling the size of the μ's. Granted a well-defined Abel
map, the analysis of reality presented here extends to N = oo. We feel that the
infinite genus Kummer variety, defined through squared eigenfunctions along the
lines of Appendix B, can play a role in resolving these convergence problems.

There are other results which relate to the structure presented here. Previato
[28] has characterized the real N phase isospectral manifold for the focusing
nonlinear Schrόdinger (NLS) theory. Her method, following the work of Deift,
Lund, and Trubowitz [29], associates a complex ΛΓ-dimensional Neumann system
to a given N phase solution. The Neumann model is built out of the simple
eigenfunctions of the AKNS system. A level set of the Neumann integrals is the
Jacobian of the NLS curve 0t. The real isospectral class then consists of the fixed
points of an antiholomorphic involution induced by the real symmetries of 01.

Appendix A. Kummer Coefficients, Theta Nulls, and Branch Points

In this appendix we derive the coefficients A, B, C, D of the Kummer surface
equation as functions of the simple periodic spectra El9 E2, E3, E4. The derivation
is for general genus 2 hyperelliptic curves.

We emphasize one point first. Coordinates have been fixed on / , and therefore
on S, in Sect. III. This choice of coordinates is determined by the homology basis
(Figs. 3-5) and the base point in / (Table 1). Therefore, the branch points
EUE2,Q,oo,E3,E4 are unambiguously represented in S.

Given this fact, it becomes clear that special symmetries and features of the
Kummer surface only reveal themselves in the proper choice of coordinates. This is
where a choice of homology basis (i.e., choice of "cut structure") becomes relevant.
Said differently, only the tractabilίty of information about theta functions and
geometry of S is affected by the choice of coordinates.

The derivation of A, B, C, D in terms of the branch points of 01 is based on the
Cayley irrational representations of S (see Hudson [22]). We outline the
construction of one Cayley representation of S. From the orthogonal matrix of
tropes, Sect. Ill, the second and third columns are orthogonal,

(ac)(bά) - (da)(cc) + (cd)(db) - φb)(ad) = 0. (A.la)

Moreover, when evaluated at the node [α: β: y: δ]9 the corresponding quadratic
relation is [see (III.7)]

[da] [cc] - [cd] [db] + [66] [ad] = 0. (A.lb)

Next consider three constants λ, μ, v such that
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and the following four quartic surfaces:

]/-λ(da){cc) +]/μ(cd)(db) +γ-v(bb)(ad) =

]/λ(ac) (ba) -hi/- μ(bb) (ad) 4- ]/ v(ad) (db) = 0,
L \ I (A.2)

Y - λ(bb) (ad) + ]/μ(ac) (ba) + ]/ - v(da) (cc) = 0,

Yλ(cd) (db) + Y - μ(da) (cc) + ]/ v(ac) (ba) = 0.

In view of (A.la, b, c), it follows that each of these quartic surfaces has the eight
planes

(ac) = (ba) = (da) = (cc) = (erf) = (fed) = (bb) = (ad) = 0

for tropes, and thus the eight common points for nodes. The projective space of m

degree surfaces in Ψn has dimension I J — 1, so the projective space of quartic

surfaces in P 3 has dim = 34. Forcing the surface to pass through a node imposes 4
conditions, so that the eight nodes impose 32 conditions on this space, which are
independent. By imposing one more node on this space, a unique quartic surface is
determined, which is invariant under the automorphisms described in the text, and
therefore is the Kummer surface. One can check that the node [μ\β:y\δ~] does not
pass through the four quartics in (A.2) for arbitrary λ + μ + v — 0; imposing this
node yields

(λ: μ: v) = ( - [dα] \_cc~] : [cd] [dV] : - [bb] lad]).

The result is the:

Cayley Irrational Representation of S.

Ylcd] Idb] (cd) (db) + Ylbb] lad] (bb) (ad) + |/[dα] [cc] (da) (cc) = 0. (A.3)

Consider the tangent cone to S at the node [y: δ: — a: — β]. Six tropes pass
through this node, and each is tangent to this cone. By duality, the normals to these
tropes are projectively equivalent to the branch points of 01 (Table 1, Sect. III).
Thus, in our notation,

(A.4)

which serves as the definition of ku ...,k6.
Next consider the Cayley representation of S in (A.3). The elements kl9..., k6 in

(A.4) lie on the intersection of S with the fundamental trope (aft) = 0. We bring the
trope (ab) to the forefront by applying the automorphism (ac) to (A.3), which yields

E,

I
(CO)

I

E2

1
(cc)

I
k2

0

1
(da)

t

00

1
(dd)

h

E3

ϊ
(be)

I

k5

ϊ
(bd)

X

K

cd-] [db] (bc)(aά) +]/\bV\ lad] (ca)(dc) + γ[dά] [cc] (ab)(bd) = 0 . (A.5)
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The intersection of (A. 5) with (ab) = 0 is a "singular" conic (Sect. Ill), which is
isomorphic to P 1 . This isomorphism can be realized by restricting any linear
fractional function on P 3 to the conic. In particular, we realize this map by any
ratio of tropes which does not vanish on the singular conic. This map carries the
nodes in (A.4) to six elements in P 1 , which therefore are projectively equivalent to
the branch points. Different mappings will yield different sixtuples of elements in
P 1 , but all are equivalent up to linear fractional transformations.

In particular, consider the map -y- evaluated at the nodes in (A.4). At points
(dc)

where this function is apparently indeterminate, specifically along (ab) = 0, (A.5)
yields

(be) lbb][ad] (ca) (A.6)
(dc) [cd][db] (ad)'

From Sect. Ill,

(be) _ yx + δy — az — βw

(dc) ax + βy — yz — δw'

(ca) βx — (xy — δz + yw
(aa) δx — yy — βz + ocw'

Referring to Table 1 and (III. 7), we evaluate (bc)/(dc) at the nodes to obtain

„ Tbb][ad}idd] , _ Λ ,

=k» ( A 7 )

The linear fractional transformation

I z )
\_ddλ \db~\ V \db~\J

ω(z) = k — - — (A.8)
lad] z

carries these branch points to

(A.9)
lad] ' ~* lad] '

0-0 E -Λdb^dd^
4~ lad]

which is the expression (111.20).
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We convert Eq. (III.4) for A, B, C, D to the notation of quadrics. Using (III.4)
and (III.7), it follows that

2-A _[dd][da] 2-B _[dd]jdb]
4 ~[_aά]lad]' 4 [ ] [ ]

(A.10)
2-C [Wide] D-WL(2_Λ)(2 B)(2_c)

Next, using (A.4), (A.7), (A.10) together with similar arguments to those above,
we relate these Kummer parameters to branch points. These relations are
expressed as cross ratios, so are invariant under linear fractional transformations,

fc2) = ( £ 1 - £ 3 ) ( J E 4 - £ 2 )

-k5) (E^EJiEt-E,)'

2-B = (k6-k3)(k4-k5) = EA

4 (k6-k5)(k4-k3) E4-E3'

C (h Is \(h h \ F
(All)4 (h \r \(h h \ V F '

ι/v3 4/v 1 2/ 1 2

rv j l (^3~~k^)(kγ — k4)(k2~"k^jyk?, — k5) — (k2~^3/(^4~"^5X^1 ~~^3/(^4~"^β)

Appendix B. Kummer Varieties and the Jacobi Inversion Formulae

This appendix has two purposes. First we establish Proposition II.4 concerning
the number of connected components of M. Our method uses the Kummer variety
which is a higher dimensional analogue of the Kummer surface developed in Sect.
III. In the second part we present a geometric derivation of the Jacobi inversion
formulae (III. 13a, b) for JV = 2. This derivation uses the orthogonality relations
presented in III.C.

Both of these topics require some further discussion of the Abel-Jacobi map Ψ
(I.I 1). Ψ is a holomorphic mapping from &{N) = {ffl x ... x St)lσΉ onto / . It is 1 - 1
off of a codimension 1 subvariety of ̂ ?(iV). This subvariety is contained in the inverse
image of the theta divisor. Algebraically, this means that / is birational to &{N).

For example, when N = 2, Ψ is 1 — 1 off of the subvariety of hyperelliptic
divisors, <(μ, y), (μ, — j/)>, in ^ ( 2 ) . This subvariety is isomorphic to P 1 , and, under
Ψ, all of it maps to 0 in /; 0 is contained in the theta divisor of / .

For general N we can define a theta map

wherext(z) = θ\ ι (2z 2B). Here &t = (εfx,...,siN) with&tj — 0 or 1 and iindexes all

iV-tuples. As with the case N = 2, this is a 2:1 map of f onto a ^-dimensional
algebraic variety called the Kummer variety, denoted by S.
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Since β is birational to &{N\ one can ask, what map on ^?(N) corresponds to
Φ? From the definition of Ψ one easily observes that identifying £ with — f
corresponds to identifying ({μx,y^ •• ,(^) ;iv)> with <(μ1? - j^), ...,(μN, -yN)}.
Thus Φ corresponds to the quotient map

One can go a step further with this and identify all branches:

<Oi, ±}>i),...,(/% ±}>*)>•

In other words we map each point of &(N) to its projected μ-coordinates,

P 1 x ... xPVσN is isomorphic to PN, complex projective ΛΓ-space, since it is
naturally coordinatized by the symmetric polynomials in the μt:

...μ i V]. (B.2)

We summarize all of this in the following diagram:

IP x ••• X*P _piv y ) pw
Diagram 1 σ^

We now turn to the proof of Proposition Π.4. A fundamental addition formula
for quadratic theta functions is

Θ(z + w, B) θ(z - w, B) = Σ θ Γjjl (2w, 25)Θ M (2z, 25). (B.3)

Let a4 = 0 !j (0,25) denote the theta nulls. Then from (B.3) we deduce

Θ2(z)=

.Σ
where lεj = Σ\j-

From the theta quotient representation of w, we then have

Σ «Λ
i = l

For u real, this quotient must have modulus 1. However, this quotient has the form

Σ1-Σ2
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where Σ1 = Σ aίxί a n d Σ2 = Σ ^i- I n order for a quotient of this
|εi|Ξθ(mod2) |ε f |= 1 (mod2)

form to have modulus 1 it is necessary that

where rpθ are real. Since the xt are coordinates in projective space we can
uniformly divide them by eiθ. Then

and

(Θψ + A+±))* = Θ2(S + A) (B.5)

if u is real. This suffices to establish Proposition II.4.
Next we will derive the Jacobi inversion formulae for N = 2. Wee seek a rational

map P 3 ->P 2 which induces the map π: S-»P2 indicated in Diagram 1. This done,
the reader will see that we have reduced the inversion of the non-linear map Ψ to
the, comparatively, trivial inversion of a linear map Ψ.

The map π: S->P2 in Diagram 1 represents S as a hyperellίptic surface; i.e., S is
a 2:1 covering of P 2 branched along a curve. This branch locus uniquely
determines the map S->P2. We will determine the map by finding the branch locus
of the corresponding map on the left-hand side of Diagram 1 this map fails to be
2:1 (i.e., it branches) along the union of curves

in ^2(2)/{~}. Under Φoψ these curves map to tropes as follows

P 1 x {0} -+{ac)={

P 1 x {oo} -+(ab) = {

P 1 x {E2}-+(ba) ΞΞ {yx - δy - az + βw = 0} ,

P 1 x {£3} -+(ca) = {βx - ay - δz + y w = 0},

(B.5)

One observes that these are precisely the six tropes containing the node
[a:β:y:δ'] = Φ(ΰ). A 2:1 map S->P2 branched along these six tropes can be
constructed by stereographic projection from the node [α: β: y: <5]. To do this we
choose a basis for the linear space of all planes containing [α: β: γ: δ]. This is a 3
dimensional space. Projectively, it is P 2 . As a basis for this space we choose 3
tropes: x0 = (αc), xx = (ba), x2 = (cb). Using this basis, the stereographic projection
is defined by

P 3 - > P 2 ,

= [ — δx — yy + βz + αw: yx — δy — az + βw: — βx + ay — δz + yw]. (B.6)
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Since S is a surface of degree 4, and we are projecting from a node (which is a
point of multiplicity 2), the map (B.6) restricted to S is a 2:1 map onto P 2 . A priori,
the value of this map at [α: β: y: <S] is not defined because xθ9 xu and x2 all vanish
there. We must blow-up S at this node so that the map (B.6) extends to be defined
on the projectivized tangent cone at this node. As a result of blowing-up we recover
the exceptional locus that was blown down by the Abel-Jacobi map. Thus, the map

P 2 —> P 2 will in fact be biholomorphic, not just birational. However, all
biholomorphic maps ψn->ψn are in fact linear maps [23]. Hence, to determine Ψ it
will suffice to know its values on a basis for P 2 .

In the symmetric μ-coordinates (B.I), which we denote [zo:z1:z2]
= [1:μx + μ 2

: μ φ i ] τ w e represent the branch curves:

1] ={zo=O},

(B.7)

Ψ maps these six lines to the stereographic projections of the corresponding
tropes (B.5). Since these tropes are conies (curves of degree 2) containing
[α: β: γ: <5], projection from this point maps these tropes to degree 1 curves, i.e. to
lines in P 2 . Since they are lines, their defining forms are linear combinations of the
coordinates xθ9 xl9 x2 (B.6). The coefficients in these linear equations turn out to be
fundamental quadrics (III.7). We present here the equations of these projected
tropes in [x 0: x x: x2]-coordinates. The reader may check the correctness of these
equations by direct inspection,

P 1 x {oo} -+{[dά]xo-[cc]x1

P 1 x {£1}->{
(B.8)
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Since Ψ must map each branch curve in [_zo:z1: z2]-space to its correspondent
in [x 0: xx: x2]-space, we see from comparison of (B.7) with (B.8) that

(B.9)

-.λ2Ψ[EAzo-zι + —2

λ0, λi9 λ2 are unspecified scalars. Of course, we have only used three branch curves
here. By substituting the expressions for xt given by (B.9) into the remaining linear
equations of (B.8) and then comparing these with (B.7), we can deduce the
/lΓvalues.

To do this we replace the E/s in (B.7) and (B.9) by their expressions in terms of
fundamental quadrics as given by (111.20) [or (A.9)]. Thus (B.9) becomes

=A 1 [k
[_dc\lddϊ

lad] , (B.10)

2 -

(We have abused notation and dropped Ψ here. This causes no problem because Ψ
is linear.) Comparing the second linear equation in (B.7) and (B.8) (P 1 x oo) we
have

[dα]x0 - [cc]xί + [bd]x2=z0.

Substituting (B.10) into (B.ll) we derive

λt ίcc-Rad-] t λ2 tbd]taa]

(B.U)

k tdc][dd] + T tdb]tdd]

λ1t<x]-λ2tbd]=O.

(B.12)

Since, Ψ is a projective linear map, we may take λx = 1. It then follows from
(B.12) that

_ 1
Ao-τ

(B.13)
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Substituting (B.13) into (B.10) we can finally write down Ψ:

1 [bb][cc][cd]

Ψ =

0

,[dc][dd]
[ad]

[cc][db][dd]

'" [bd][aa]

0

- 1

k[dd][db][dc][dd]

1 lad]

1

k[dc][dd]

[cc] [ad]

[bd] k[bd][db][dd]

(B.14)

Our goal is now before us. We have reduced the Jacobi inversion problem to
the inversion of the matrix Ψ. This is straightforward. The tedious manipulation of
symbolic expessions which arise in this inversion is greatly facilitated by repeated
use of the orthogonality relations among the fundamental quadrics (III.C). The
result is:

1 [dd][ad][ad]

k\bb]lcc]lcd]ldd]

1 laά][ad] 1 [ad] [bd] lad]

k [bb] led] [dd] k [bb] [cc] [cd] [dd]

[db][ad] [dc][aά][bd]

lbb]lcc]lcd]

k-

[bb][cd]

0

[bb][cc][cd]

0
[bb-][cc][cd]

(B.15)

Since [ z 0 : z 1 : z 2 ] 7 ' = ! P ί " 1 o [ χ 0 : χ 1 : χ 2 ] r and [xo:x1:x2] = [(ac):(ba):(cby],
we deduce

[ad][ad]
{[dd](ac)-[cc-]φa

_ί
Z°~ k [bb][cc][cd][dd]

= 1 [ad] [ad]

k[bb][cc][cd]K }'

1
Zl~ [bb][cc][cd]{l a^C

• (ac) - [ad] [db] [cc] (bd) + [ad] [bd] [dc] (cb)},

[dd][db][dc][dd]
Z2~ [bb][cc][cd] {aC)'

From (B.I), we observe that μ1+μ2 = zjzo and μ1μ2 = z2/z0. Hence,

(B.16)

(ac)- {ba)+

(ab)

,[da][db][dc][dd] (ac)
[aa][ad] (abj'
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Using (III. 10) and the orthogonality relations, we deduce the

Inversion Formulae (III. 13).

[do] {E2+E4] (ac) - [cc]£4(

[_dd](ab)

(ac)
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