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Abstract. An extension of the Kadomtsev-Petviashvili hierarchy by odd
variables is given. Conservation laws and formal integrability are proved.

0. Introduction

It is well known that integrable systems usually admit a natural extension by odd
variables, see e.g. [1-4].

In the articles [5, 6] an infinite hierarchy of nonlinear differential equations
was studied with the property that many known completely integrable systems can
be obtained from this hierarchy by various reductions. It is called the Kadomtsev-
Petviashvili hierarchy and it can be succinctly written in the following way. Let x
be a space variable and ί l5 ί2,... an infinite system of time variables. Denote by
u _ l 5 w_2,... an infinite set of functions depending on x , ί l 5 £ 2 , . . . . Set d = d/dx and

00

introduce a formal pseudo-differential operator L = d+ Σ M_ f 3~ ι . The
Kadomtsev-Petviashvili (KP) hierarchy is ι = 1

^ [ ί / ^ L ] , dt = d/dti9 (1)

where A + is the differential part of an operator A. If in addition L2 = (L2) + , Eq. (1)
becomes the ίth equation of the Korteweg-de Vries hierarchy (KdV itself corre-
sponding to ί = 3).

The objective of this note is to introduce a new system of equations for an
infinite set of even and odd functions, depending on an even-odd pair of space
variables (x, ξ) and even-odd times (τl3 ί2, τ3, ί4,...). We shall call this system the
supersymmetric Kadomtsev-Petviashvili (SKP) hierarchy, since KP is its natural
reduction. We shall show that SKP shares the standard properties of "completely
integrable" systems, e.g. has infinitely many conservation laws, is formally solvable
by the Zakharov-Shabat method, and can be reduced to Lax- and Gelfand-Dikii
(Dickey) equations. In a subsequent publication we hope to discuss the solitons
and algebraic type solutions of SKP, as well as the transformation groups for this
hierarchy.
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Section 1 contains definitions and statements of principal results. The proofs
are given in Sect. 2.

1. Definitions and Results

1.1. Pseudodifferentίal Operators on the 1|1 Line

The reader may consult [7 or 8] for the background in superalgebra and
supergeometry.

We fix an even variable x and odd one ξ; in general we set X = 0 (respectively 1),
if X is even (respectively odd). Set θ = d/dξ + ξδ/dx. Then Θ2 = $[θj'] = d. (We
recall that the supercommutator is defined by [X, Y]=XY-(- l)*ΫYX.)

Let B be a Z2-graded ring, on which θ acts as an odd superderivation,
θb = b+l, θφc) = (θb)c + (-lγbθc. We shall write ffb = b[i]. The ring of formal
pseudodifferential operators ^((θ" 1 )) consists of the formal series L = Σ bβ\

bt e B. It is Z2-graded by ffi = b + ΐ. We set L+= Σ bft\ L_ = Σ bfi\

The multiplication in ^((θ" 1 )) is best described by means of "superbinomial

coefficients" Lfe,meZ. First recall the ordinary coefficients: I ) =0forfc>m,

1 for k = m, (k + 1)... m/(m — k)! for k < m. Now we set

0 for k>j and for (/,fc) = (0,1)mod2

(2)

\[kβ-\) f 0 Γ k-j' 0\fc)Φ(0,l)mod2,

Then we define

9 J Ό^ Σ\JA(-^fkaij-k]θ\ (3)

-\)a<kb$-kΨ + < (4)

[we sometimes use o for multiplication in B((θ~x)) to distinguish e.g. 0J o α from θja

1.2. Flows with Even and Odd Times

The evolution in KP (1) is given by specifying the derivations with respect to the
commuting family of the flows dt. The evolution in SKP is defined with respect to a
non-abelian Lie superalgebra of flows θt, z ^ l , ^ = Γwith the commutation
relations

Lθlb θ2j] = 0 , [θ2i9 θ2j- l] = 0 , [Θ2i-ι θ2j^ J = 2θ2i + 2j-2 ' (5)
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The choice of (5) is motivated by the fact that θ^θ1 is a representation of (5), in the
same manner as d^d* is a representation of the abelian Lie algebra of KP.

Let us now introduce the even and odd time variables (τ l 5 ί 2 ,τ 3 , . . . ) , and the
following representation of (5) which we shall use in what follows:

Θ2i = d/dt2i, 02 (_1 = δ/3τ 2 (_ 1+ Στ 2 7 _ 1 3/3ί 2 i + 2 J _ 2 . (6)

With minor changes we could also use a more general representation

where T are some odd polynomials with constant coefficients such that

1.3. The Definition of the SKP Hierarchy

Let us assume now that the Lie superalgebra (5) is represented by superderivations
of the ring B, supercommuting with θ. This means that the elements of B can be
informally considered as functions of x, ξ, τi9 ty We shall extend the action of θt to
B((θ~x)) in the obvious way.

Now we shall consider an odd pseudodifferential operator

Λ = θ+ Σ " - i 0 Λ «-i = Γ+l, MfGβ,
i = 0

and we shall call the SKP hierarchy the following system:

θ2iΛ=-lΛ2ί

+,Λ^, 1

]
To explain the appearance of — 2A21 in (7), recall that the ordinary KP (1) can be
written also in the form djL = - [ί/_,L] since [I/+ +Lj_,L] = [Lj,L] = 0. In our
case \_A\ +Aj_,A'] = [Aj,A~]=0 for even j , but it is 2Aj+1 for odd;. Hence the
equivalent form of (7) is

θjΛ = lΛj-9Λ]. (8)

Notice that (8) implies θj(u^ί +iw o

[ 1 ] ) = 0. This is analogous to the conservation
of the (n— l) t h coefficient in the ordinary Lax equations.

To rewrite SKP once more, we introduce the formal differential

d= _Σ

Using (6), we have

j-i = θ2j-i- Σ
k= 1

and therefore (7) and (8) are equivalent to the equations

00

dΛ=-lUA

 + ,Λ] + 2 Σ dτ2J^Λ^=lUΛ-9Λ]9 (9)
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UΛ

±= Σ dt2iΛ
2±+ Σ

ί = l J = l k=l

(10)

1.4. The Superresidue and the Berezin Integral

From now on we assume that B is supercommutative. We set

We remind the reader that the Berezin integral f /(x, £) d(x, ξ) is well defined if—/

as a function of x has a compact support (or quickly vanishes at infinity). In this

case if(x,Od(x,O=i(jtf\dx. In particular ! f(x9ξ)d(x,ξ) = 0 if df/dξ

= dg/dx, where # quickly vanishes at infinity. The following lemma is an analogue
of a well known fact in the theory of the KdV hierarchy (cf. [10, Chap. 2,
Lemma 3.3]).

1.5.Lemma, a) Let P,QEB((Θ~1)). Then there exists a universal polynomial
F = F(P, Q) depending on the coefficients of P, Q and their θ-deriυatives, such that

b) jres θ [P, Q]d(x, ξ) = 0 in the sense that

1.6. Theorem on the Conservation Laws. The SKP equations for an operator A
imply the equations

where

F being defined in Lemma 1.5.

1.7. The Zakharov-Shabat Formalism

In this section we assume that the ring B has an appropriate topology. Then it may
happen that the multiplication in B^θ'1)) can be defined by continuity on a
certain subset of the doubly infinite formal series B{{θ~ -1}} = J Σ bβ\ ίeZ\bιE B\.

We shall show that certain identities in such a ring make it possible to construct a
solution of SKP. Consider a differential form-valued operator

Uθ= Σ dt2iθ
2i+ Σ

7 = 1

00
1- Σ

2k-2



Supersymmetric Kadomtsev-Petviashvili 69

[cf. Eq. (10)]. Let ΨeBϋθ'1}}, Ψ = 0. Assume that the following relations are
valid:

dΨ=-UθΨ, (11)

Ψ=V~1Y9V=\ + Σv-kθ~\γ= Σyfl, (12)

where V= 7 = 0 . The relation (11) is a system of linear differential equations with
constant coefficients, and (12) is the decomposition of a Lie superalgebra ele-
ment into a product of the upper and lower triangular parts, or a solution of the
formal Riemann-Hilbert problem.

1.8. Theorem. // 7 is ίnvertible in B{{θ~x}} and verifies ( 7 ~ 1 ) _ - 0 , then
A^VΘV'1 is a solution of SKP.

We point out that the "dressed" operator A verifies the relation

Our next results concern the reductions of SKP to the Lax-Gelfand-Dikii
hierarchies [9, 10].

1.9. Theorem on the Fractional Powers. Let L = ΘN+ Σ unθ
n. If N>0,

N= 1(2), then there exists a unique odd operator A = θ+ Σviθι such that AN = L.

For A r ^0mod2 both existence and uniqueness need not be true.

1.10. Variational Formalism

In the following we shall consider the coefficients ui of the differential operator L as
differentially independent variables. To this end we set B = A\upγ], MY7'1 = Mf+Λ
where wt

 D ] are algebraically independent variables and A is a supercommutative
ring with an action of θ. We shall extend the action of θ to B, setting U\A = Θ,
BuV] = Ujίι + 1], and in what follows we shall denote θ again by θ. The Euler-
Lagrange operators are defined by the formula

Furthermore, we introduce the supersymmetric Gelfand-Dikii operator (cf.
10]),[9, 10]),

Γ — V ( n(c+l)(b+l) α"*~ L1bc— 2^ \~l)
α^o |_

7 " α + b + c + 1 ^

υ J

Here Γ* is defined from the adjointness property
Σ ί (Γbcχc)yb d(x, ξ)=Σ\ (Γb*cyc)χb d(x, ξ),
b,c b,c

where χi = yi = ύi = ΐ+ 1. See (21) for the explicit formula.
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The operator y is a highly formal object, having an infinite order and infinite
matrix coefficients, but it becomes finite if we set uN = 1, ut = 0 for i ̂  N + 1. Denote
the result by y(N\

1.11. Theorem on the Lax Equations. Let N = p=lmod2, p^N, L=ΘN

+ Σ unθ
n, Λ=l, ΛN = L,Λ = Θ+ Σ vβ*. Moreover, let

n^N-l i^ 0

Then the SKP equations for A imply the Gelfand-Dikii equations for the coefficients
of L:

2. The Proofs

2.1. Some Identities with Superbinomial Coefficients

a) The coefficients for O^j, fe^7 constitute the matrix:

\ k

0

1

2

3

4

5

6

7

0

1

1

1

1

1

1

1

1

1

1

0

1

0

1

0

1

2

1

1

2

2

3

3

3

1

0

2

0

3

4

1

1

3

3

5

1

0

3

6 7

1

1 1

It is clear how to continue it further.

The identity ( - l)k (Ίf\- k = ( - l)m ( ~ kY m (which follows from the defi-
nition) implies ^ ' \~mJ

for / , m e Z . (16)

b) The most direct way to describe multiplication in B((θ~1)) is to consider (4)
as the definition. Then it is necessary to prove the associativity law:
(P o Q) o R = p o (Q o R). Collecting together similar terms we can reduce it to a

tityinpj,bilinear identity in , and then prove it directly. Another way is to use the



Supersymmetric Kadomtsev-Petviashvili 71

well-known construction of multiplication in
nary binomial coefficients and the fact that
evident commutation relations,

by means of the ordi-
w i t h

2.2. Proof of Lemma 1.5

T h e s t a t e m e n t b) follows from a) because ^ΘF(P, Q ) = — ( l - ξ — | F ( P , Q).
dξ dx \ dξj

To prove a) it is sufficient to consider the case P = aθm, Q = bθ*. From (4) we find

Hence

resθ(aθmobθ')=l _m 1 ( -

By the symmetry

κφθίoaθm)=\ f |(-l) f f

Using these two formulas and (16) we find

(17)

The right-hand side of (17) is represented as the complete ^-derivative in two

different ways depending on the parity of m + ̂ + 1 ( the case (m,£) = (0,0) mod 2

needs no attention, since then \= 0 I:

[_ — i— l j /

if

if

2.3. Proof of Lemma 1.6

From (8) we find θiΛ
n = [Λi_,Λnl Therefore

θt TQSΘ A
n = res θ QtA

n = resθ [A1 _ _, A").
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2.4. Proof of Theorem 1.8

In the notation of Sect. 1.7 we construct the following operators from the data (11)
and (12):

A = Vo θ o V \ U+ = (dY) o y- \ U~ = -(dV) o V~1.

On the other hand, we construct from A "connection forms" U% by the
formula (10). We shall check that if the condition of Theorem 1.8 is fulfilled, then
U± = - l/J. Really, using that Ψ is invertible in view of (12), we find from (11),

Hence

^ - Σdt2iA
2i+ Σ dτ2j.Λ Λ2^1- Σ τ2k-1Λ

2j+2k-2

and, consequently, U± = —U^9 because U+ is a differential operator, and U
is an integral one. On the other hand, by the definition of A,

i.e. the SKP hierarchy in the form (9).

2.5. Proof of Theorem 1.9

Let us construct A using successive approximations. Assume that at the r th step,
r ^ — 1, we have proved the following statement:

there exists an operator Xr = θ + O(\) such, that X,=L + O(θN~r~2); it is
defined uniquely modθ(θ~('* + 1 ) ).

For r= — 1, evidently, Xr = θ. To make the inductive step we set Xr+ι=Xr

+ xr + 1θ~ir+1). Then

JV-l

X N vN i "V vi ύ~(v+ί) vN — i— 1 ι n

r+l=lXr + Σ Λr°Xr+1V
 }oXr + Rr .

i = 0

Now we compute the right-hand side sum modulo O(θN~r~3):

i = 0

(We use the fact that N is odd only in this place: if JV is even the linear term in xr+ x

disappears.) The remainder is the sum of the products of/ ^ N — 2 terms Xr and of
N—j terms xr+ίθ~(r+1\ Therefore its order with respect to θ is not more than
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max [/ — (N —]) (r + 1)] = iV — 2r — 4 ^ JV — r — 3. Hence xr + j, is defined uniquely

from the condition X^+ ί=L + O(ΘN ~ 2 ~ 3 ). To finish the proof we set /I = lim Xr.
We give two examples concerning even JV.
a) LetL = 02 π + Σ ufi\ L = 0. IfresθL<£fl£, then L φ / I 2 " for any odd A In

ί ^ 2» - 1

fact, /L2" = I [/I2"" *, Λ.], so resθ/l2" should be a β-derivative in view of Lemma 1.5.
b) In the case L = θ2 the following nonuniqueness of the square root arises: we

can take A in the form θ + u0 — ̂ u0

[1]θ~1

+ + Σ uβ\ where the wf satisfy the
following conditions: ι - ~ 2

It is possible, for instance, to choose arbitrary coefficients u2p independent of x and
then to compute w 2 p-i by induction. In fact, the first series of equations
follows from the equality

Coefficients of j[Λ,Λ] at odd powers of θ give us the following equations:

m+n=p+1

Now, inductively we get u2p-ltξ = 0. Finally, the coefficients at θ2tf, / ^ 0 , lead to
the last series of equations.

2.6. More on the Variational Formalism

Using the notations from Sect. 1.10 we consider the 5-module of relative
differentials Ω = Ω1B/A. It is freely generated by the elements δu^1. We assume that
δ = 0 (that is δP = P). The derivation θ acts on Ω by the formula θ(δP) = δ(P[1]).
Therefore we can define a bimodule ^((θ" 1)) over the ring ^((θ" 1 )) using the
formula (4) for the exterior multiplication. The associativity axiom is verified by
repeating the reasoning from Sect. 2.1b). The map δ : B((θ~ 1 ))^ί2((θ" 1 )) is defined
termwise. It shares the property δ(PoQ) = δP°Q-\-PoδQ.

Let ω G Ω be a variational differential. It has a unique representation in the
form ω = ωo + θωu where ωoe ®Bout. The existence is proved by the classical
procedure of integrating by parts

-θ(aδui

u*)). (18)

The uniqueness follows from the fact: if θωί φO, then θω1 φ © Bδu{ because the
term aδu^ in ωγ with maximal j gives the term aout

[j+1] in θωx which cannot
cancel.
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It is easy to derive from (18) the following lemma, giving the invariant
description of the Euler-Lagrange operators (13):

2.7. Lemma. Let PeB and δP=Σδui0i + θω1. Then 0:=—.

OUi

To prove Theorem 1.11 we need the following facts:

2.8. Lemma, a) Let AεB{{θ~ι)\ Λ=l, Λ = θ+ Σ vβ\ p^l. Then
i1) if p== 1(2)

b) LetL = AN. Then

—VQSθ{δLo Λp~N)modθΩ if N = p=lmod2.

Proof, a) We have
p - ί

A1 o δλ o Av~i~ 1=(- lfP-^δΛ o Λp~1 - [δΛ o Av~l~ \ A1']).

p - l

Furthermore Σ (-l) ί ( p~°-p if p= 1(2) and 0 if p = 0(2). So the statement a)
ΐ = 0

follows from Lemma 1.5, remaining undoubtedly valid when it is applied to
commutators in

b) Similarly

N-ί

δANoAp~N= Σ AioδAoAp'ί~1 = NδAoAp-ίmodθΩ if JV=1(2).
i = 0

This finishes the proof.

N- 1

2.9. Lemma. Let N ~ 1 (2), L = ΘN + Σ ufi\ L = 1, uf being independent differential
i = 0

variables. Let A be the odd Nth power root from L, constructed in Sect. 2.5. We define

the differential polynomials vk I — J in ut by the formula

Then if p=\ mod2, we have for k^N —

δuk

υ\Nj JVV ; k\ N 09)
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Proof. Since v0 ί -— I is even, resθA
p = v0 ί —: j . From the previous lemma we have

SV°[N
p-N

'p-N

To finish the proof we use Lemma 2.6.

2.10. The End of the Proof of Theorem 1.11

From the SKP equations for A we derive the following equations for L:

or
N~1 Γ in N\Ί

- Σ (0,-^)0*= Σ uβ', Σ θ-'-^υ.jl?—) \. (20)

We shall show that the coefficient at θb in the first member of the commutator is

equal to Σ ^ y ~ ^ o T7 L where Γ&c are defined in (14). Really
c ouc \N J

Hence it is sufficient to compute (LΛP ~ N _) + and (Λp ~ N _ L) + . Using Lemma 2.9 we
have

U<ΘΌ Σ ( _ i y θ f l

OU \N

r _ iy>(7+i)

: aS>0
α + bVc-Γl :
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Here we have denoted S—j — b—l=a,j = c. Computing (Λp ~ N _ L) +, we obtain at

first

a,b,c>o \_-a — c—lj \ ouc \NJJ
+ b + +Ί^N

Then we transform the superbinomial coefficient using (16):

L-α-c-lJ L c J

If a or c are even, then the sign is equal to (— ίj-2λ If a and c are both odd then the

coefficients vanish. Finally

Σ
a,b,c>o

The reader can check that the operators we have computed are adjoint.

2.11. Examples. Set L = Λ* = Λ4

+=θ4 + v1θ + v0, v1 = l9 vo = 0. Then Lax's

equation Lt = [L3l2,L] is equivalent to

f;o2/4 + 3i;1ι;o
[11/4) 1

Setting here vί = 0 we get KdV. On the other hand, setting v0 = 0 and i;x = w1 -\- ξw0,

wx = 1, w0 = 0, we get from (22)

/4 + 3wo

2/4-3w1w1 J C/4) 1

o w 1 /4). J

Setting wi=0 here we again get KdV. The first Eq. (23) after rescaling

coincides with the first equation of Kupershmidt's SKdV, but the second

equations are different (cf. [3]).
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