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Abstract. Using an expansion based on the renormalization group philosophy
we prove that for a T step weakly self-avoiding random walk in five or more
dimensions the variance of the endpoint is of order T and the scaling limit is
gaussian, as T->GQ.

1. Introduction and Results

We consider walks ω(s) in TLd which start at the origin and consist of |ω| = T nearest
neighbor steps. If each such walk ω is assigned a weight proportional to

Pτ(ω)= Π (l-^(ω(s)-ω(ί))), 0<λ^l ,
0<s<t^T

we say that the walk is weakly self-avoiding or self-repelling. Here 5, t denote non-
negative integers and δ(j) = 1 if j = 0 and δ(j) = 0 otherwise. When λ = I only walks
which strictly self-avoid are counted. Now let us define an expectation of a
functional F on paths ω, |ω| = T by

Σ F(ω)Pτ(ω)

H = τ

A natural quantity to study is the mean square displacement of co(Γ) defined by

In the physics literature R2(T) is expressed in terms of a critical exponent v via the
relation R2(T)^C(λ)T2v for large T. On the basis of renormalization group
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considerations v is supposed to be independent of λ for 0 < λ ̂  1 and v = 0.75, 0.58
in dimensions 2 and 3 respectively [1]. In four or more dimensions v is expected to
be \ with logarithmic corrections in four dimensions [1].

On a mathematical level almost nothing has been proved about v, except when
a = 1 where v = 1. For example it would be very interesting to obtain a lower bound
on v such as v^| or an upper bound v ^ l — β, β>0.

In this paper we examine the case d ̂  5 for small positive values of λ We prove
the following theorem.

Theorem. For d^5, there is a A 0>0 such that for each λ, O^A^/10, there is a
positive constant D and

Furthermore the scaling limit of the endpoint is gaussίan, i.e.

lim (eίkω(st)l]/*yst(λ) = e-
Dtk2'2

s->oo

uniformly on compact sets of k and t.

Dobrushin has informally announced results similar to ours but no proof has
yet appeared.

A careful analysis of our proof shows that the coefficient of δ(ω(s) — ω(ί)) may
be set equal to 1 for \s — t\^M large. The smallness in λ is only needed for

The role of dimension can heuristically be seen from the fact that two
independent random walks intersect only finitely often with probability one in
dimension d^5.

Our result exemplifies the validity of mean field theory in high dimensions.
Another such example are the remarkable results of Aizenman [2] and Frόhlich
[3] on the gaussian nature of λφ4 field models in five or more dimensions.
[Formally, self avoiding walk may be regarded as the ΛΓ->0 limit of λφ4 theories,
where N denotes the number of components of the field φ.~\ Another related result
is the work of Lawler [4] who proved that the scaling limit of a loop reased random
walk is Brownian motion when d^5.

The proof of Theorem 1 is based on an expansion in λ which uses the
renormalization group philosophy. An outline of the proof appears in Sect. 2. We
believe that our techniques will be useful for analysing a number of other problems
such as random walk in a random environment. We refer the reader to [5] for
other mathematical results which incorporate the renormalization group philo-
sophy. We also recommend the viewpoint and results in [6], e.g. Sects. 1-4.

2.1. Outline of Proof

Let us consider walks which remember to self repel only for a time span τ, thus we
define Vst = δ(ω(s) — ω(ί)), and

Γ

ω Σ_τo<Π<τ(i-wj. (2.1)
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We shall use the same letter C with different arguments to denote its Fourier
transform,

,Ty* *, (2.2)
X

and its Fourier-Laplace transform,

Ct(fc,z) = Σ Ct(/c,Γ)zΓ. (2.3)
τ=o

Here k lies in the torus dual to TL*. We are interested in the probability distribution
of ω(T), the position after T steps, and in particular its variance given by

τ= Σ Cτ(x, T)x2 /Σ Cτ(x, Γ) .

The theory of generalized Markov processes shows that for some non-zero
constant Dτ

as Γ->oo.

[A proof of this, for λ small, is also contained in this paper.] Dτ is called the
diffusion coefficient and our major task is to obtain bounds on Dτ which are
uniform in τ as τ-+ oo when the dimension d ̂  5. We do it by setting τ = 7] = 2/α — 1
and devising an inductive scheme of the form "true for f^m— Γ'=>"true for
*f<Ξm", m=l,2,...yeR+ . We will write Q for CTf etc.

If λ = 0 or τ = 0, then the product in (2.1) is one, and using the independence of
nearest neighbor steps it is easy to show that

where

d

Σ

Let r/fc) denote the radius of convergence of (2.3). Note that r^O) is increasing
in { because (l-lF)gl and τ>(fc) ̂  r/0) k 1 . For / = 0, r0(/c) = |ί>(/c)~1|.

Our strategy is first to show that Q(fe, z) is close to C0(k, z) in dimension d ̂  5.
To make this idea precise let Πf(k, z) and FX/c, z) be implicitly defined by

Γ1 (2.5)

We shall prove that U( is analytic and for |u| ̂ 2,

Λ "<r\'v5"/ ==- t^'"5 V^'W

,^z

for

Here K is a constant independent of f .
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We now explain how these estimates imply that the diffusion constant ΐ>e

obtained using

-Δkce(k,r> =DίT(l+o(τ}}
,T)

is uniformly founded. By (2.6) we see that Q(/c, z) is bounded and meromorphic in
2ff and has a unique real pole r/fc) for small values of fc, which varies differentiably
in k. See Sect. 6. By the Cauchy integral formula and (2.3),

L
dz

<Z8)

Here we have deformed a small circle about the origin to ΰ3)f to pick up the
contribution from the pole at r/fc) plus an error term which is shown to be small
for large T^T^in Sect. 7. Roughly speaking the error term is small because

Now the diffusion constant is easily calculated in terms of the second derivative of
rX/c) at k = 0 (by symmetry r^O) = 0). Uniform bounds on r^(0) are obtained using
the implicit function theorem and (2.6).

In order to obtain bounds of the form (2.6) on Π^(k, z) we first develop a
formula for U£ in terms of a convergent series. A detailed derivation of this formula
in presented in Sect. 4. Section 5 is the core of this paper. It is there where our
induction hypothesis is formulated and a bound on Uf and δΠ^ = Π^ — Π^_ί is
obtained in terms of Lp norms of Q-^x, T).

In the remainder of this section we shall sketch a formula for H£ and some of the
ideas of Sect. 5. Let

We begin by expanding the "interaction"

Π (i + ι/J=Σ Π U Λ , (2.9)
|s-ί|^τ Γ sίeΓ

where Γ ranges over all collections of "lines" or pairs 5, t such that

ί^T and |ί-s|^τ.

Any such collection of lines is called a graph. A time a, 0 < a ̂  Γ, is said to be a
Markov time for Γ if there is no line sίeΓ such that s<a<t. Thus there is no
interaction (or line) across a. A graph Γ on [0, Γ] is said to be primitive if it has no
Markov points in (0, T) and 0 belongs to some line of Γ. Every graph decomposes
uniquely into primitive subgraphs over the appropriate intervals and it is not
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difficult to prove that this leads to the formula

(2.10)

where

= Σ
|ω| = Γ Γ primitive sίeΓ

on [0,T]

(2.11)

(see Sect. 4). There are too many graphs in (2.10) in the sense that if absolute values
are taken inside (2.11), (2.10) will diverge. For this reason we resum our family of
primitive graphs. To each primitive graph Γ we associate a (unique) minimal
subgraph S(Γ)CΓ which is a primitive subgraph of Γ with as few lines as possible
(see Fig. 1 below). We call such a graph S(Γ) a lace. The precise definition of S(Γ) is
given in Sect. 4.
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Fig. 1. Typical primitive graph Γ and its associated lace Time-

We now sum over all primitive graphs Γ with S(Γ) = L held fixed and then sum
over L. The sum over Γ with S(Γ) = L reconstructs part of the interaction, cf. (2.9),
indeed

Σ
Γ:S(Γ) =

/sί= Π
sίeL

Here #τ(L) is defined in Sect. 4 to be the set of lines compatible with L. Our desired
expression for Uf is

Σ Σ Π (
L co sίe^τ(L) sίeL

(2.12)

where Σ is the sum over all lacings on [0, Γ].
L

Let ΠN denote the contribution to the sum in (2.12) arising from all N lacings,
i.e. lacings with precisely N lines. Then we have
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In Sect. 5 we prove that the right side is convergent for z e 9)€ uniformly in f and
each term is bounded in terms of the L norms of r Q_ ^(x, T), p ̂  2, which

D^.lk
2T)\\9 so that e.g. in x space,by inductive assumption is less than

We illustrate this method by bounding

When N=1,L = {(0, Γ)}, and ̂ (L) = <gτ = set of all pairs si, 0 ̂  s < t <Ξ T such that
|s-ί|^T, and |s-ί|<T. Thus

v o ( λ — λ V Λ V Pίω(T]

2^ 11 V 1 AYst) yoτe

The factor Foτ above ensures that ω(T) = 0 so that

,
|ω| = Γ

ω(Γ) = 0

In the last inequality we have used (2.1) and the fact that 0^(1—
inductive assumption [see (2.8) and Sect. 5 for details]

r,_ 1(0)τ C,_ Λ* = 0, T) = r,_ ι(0)Γ f C,_
<KT~d/2

When Γ> T ?̂ Jfl1 =0, thus, by (2.10),

dΠ1

^l. By

dz
T\z\(T~l}Π\k,T)
t

fd-d/2)

Now for d ̂  5 the right side converges uniformly in 7} and z e 3)^ so we have
obtained part of (2.6) inductively1. In Sect. 7 it is proved, along the lines of our
discussion of (2.8), that the bound on 77, (2.6), allows us to advance the inductive
assumptions on C.

3. Notation and Conventions

In this paper we use K to denote a constant independent of all parameters, except
the dimension d. In particular K is independent of the induction step, labelled by
m= 1,2, For constants which do not enjoy these properties we will indicate
dependences as arguments, e.g. K(δ). E, as in error, is used to denote a function of
fc, z, λ which is bounded in absolute value by some K. K and E are not necessarily

1 We are omitting an argument that τ> -1(0) — τ>(0), when f is large or λ small. In addition we
have simplified the estimate of the sum over T which in fact involves disection into subranges
according to values of Tf>, t'-^t
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the same in different locations including strings of inequalities for the same
quantity. The rest of this section is a compendium of our notation.

For each f e IR we define a memory 7} by

Γ, = max(2'"-l,0) ' with a = 9β. (3.1)

We also define f(s) by 7}(s) = s. To each ( is associated a random walk, self-avoiding
(with strength λ) with memory 7},

CXx,Γ)= Σ (2dΓτ Π (1-λKJ, (3.2)
ω:Q-+x,\ω\ = T st,\t — s\<Tt

0^s<ί^7>

ω(f) ,- ~v
, (3.3)

^Λ^l, Γ-1,2,....

CXfc,Γ)= Σ (2^ΓΓ Π (l-λKrt)ettω(T>. (3.4)
co:|ω| = Γ st,\t~s\^Tg

This is the fourier transform of C/x, T),

τ=o

By convention Q(/c, T = 0)= 1. The arguments are to be used to distinguish the
different transforms being denoted by C's,

TJ is the radius of convergence of C/fc = 0, z). It will be seen that F/fc = 0, z) has a
simple zero at z = r, and the trajectory in C of this zero as k varies will be denoted

kι,...,kd are the components at fc. Πe(k,z) is defined implicitly by

c, z) = [1 - zD(/c) - ΠXfc, z)Γ ' ,

j/ x d (\U\d(H>1?)= α ίU+ l ) _
2 \ 2

M is a multi-index which we use for k derivatives denoted by d£. Likewise dv

z denotes
z derivatives, / s

Throughout this paper ίί ̂  5 and /I is assumed non-negative and small.
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4. A Formula for Π

The interaction of a path with itself over a time interval [0, T] is given by

P[0,T]s Π (1 + ϊ/J,
0^s<ί,ί-s^τ

where

τ( — 7}) is the memory over which the random walk ω self-avoids. Following the
outline given in Sect. 2 we will develop an expansion for P and deduce from it a
formula for Π which appears in Theorem 4.1 below.

We expand P as a sum of all graphs as explained in Sect. 2. For each graph Γ we
let α(Γ), 0 < α(Γ) ̂  Γ, denote the first Markovian time of Γ, as defined in Sect. 2.
Then

Σ
α = l

where

K[0,a] = Σ , Π EV (4.1)
Γ primitive sίeΓ

on[0,α]

The P[l, T] is there because we insist α(Γ)>0. It is the sum of all graphs with no
bond joining 0 to some other time. The second equality follows by noticing that we
can split Γ into two disjoint subsets corresponding to bonds on [0, α], [α, T], and
sum over them independently.

The last equality implies

( \ T
Λ) Σ P[o,ry*ω<τ>
2α/ ω,|ω| = Γ

= \+zD(k)Cτ(k,z)+ Σ fe)ΓΣ Σ
Γ=l \^W/ «=1 ω,|ω| = T

• K[0, a] eίkω(a) P[α, T] eίk(ω(T} ~ω(α)) .

(By convention P[0, 0] = 1.) We can factor the sum over ω across the time a and
continue with

= 1 + zD(k) Cτ(k, z) + Σ Σ K[0, α] eίk^ Cτ(k, z) .
(α=l \2α/ ω, |ω|=α

On recalling that Πτ is defined implicitly by

it follows that

Πτ(k,z)= Σ Σ K[_0,a]eik^. (4.2)
a=l \£U<J ω, \ω\=a
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The next step is to find a better expression for 77, which unlike the one above
will be absolutely convergent, i.e. absolute values can be taken inside all sums
including the sum over graphs inside K[0, 1] provided λ is small. Given a graph Γ
on [0,0] we define a subgraph S(Γ) = L consisting of bonds s ,̂ i= 1,2, ..., JVΓ

obtained inductively by

t :steΓ,s< ί7 _ J j^ 2 ,

ΛΓΓΞΞ first value of y for which tj = a.

Having obtained tj9 s/ is defined by

The set of all L that are obtained by this process applied to Γ as Γ runs over all
graphs which occur in K[0, α], (primitive graphs), is denoted J£?τ[0, α]. If
Le J£?τ[0, α] we call it a /αce. If it has N bonds it is called an N-lace. It is not difficult
to see that L={siti:i= 1,2, . . . , N} e JS?τ[0, α] iff

a) s1=0,ίΛΓ = α,|^-sJ|^τ for y= 1,2, . . . ,ΛΓ,

b) for j = 2, 3, . . . , AT - 1 s/, overlaps with (4.3)

57 _1ίJ _ 1 and sj+ίtj+1. No other overlaps occur.

We say that st overlaps with s't' iff the open intervals (s, ί), (s', 0 intersect.
The discussion so far shows that

X[0,α]= Σ f Σ Π [/ sAΠl/ s ί. (4.4)
Le^τ[0,α]\Γ,S(Γ) = LsίeΓ/L /sίeL

In order to simplify the sum in round brackets we observe that Γ satisfies S(Γ) = L
= {siti : ί = 1 , 2, . . . } iff Γ/L is a subset of ^τ(L) which, by definition, is all bonds si
satisfying

a) 0^s<ί^α, |ί-s|<£τ, stφL.

b) If 5 = 0, t<t1. If s<tt for some i, then ί^ίί+1 . (4.5)

c) If ί = £;, then s > s, .

This assertion is an easy consequence of the definition of L. It follows, cf. (2.9), that

Σ Π Ust= Π (l + UΛ). (4.6)
Γ,S(Γ) = L st e Γ/L ste<gτ(L)

When we collect up (4.1), (4.2), (4.4), (4.6) we obtain

Theorem 4.1.

t(M= Σ Σ ™ *to(T) Σ Π(-^sί) Π (i-AKj, (4.7)
Γ^l ω:|ω| = Γ \^«/ Le^τ[0, T] sίeL sίε^τ(L)

^ = δ(ω(s)-ω(ί)), τ̂[0, Γ] is ί/κ? sβί o/ /αces defined in (4.3) (w/ίA α= T)
and ^τ(L) is the set of bonds compatible with L defined in (4.5).
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We will use this theorem in Sect. 5 to get good bounds on Π. The following
features of ̂ τ(L) will be needed: if L is an JV-lace, N > 1, on [0, T], then its bonds s^
define a partition of [0, T] into 2N—1 subintervals I ί 9 ...,/2#-ι with disjoint
interiors, obtained by putting the times si9 ί = 1,2,..., N, tp j = 1,2,..., N in order
and letting Ik, k=l,2, ...,2N— 1, be the intervals between (see Fig. 2). The
properties (4.5) imply that

st e #t(L) if |ί-s\ ̂  τ and s,te Ij for some j. (4.8)

This means that the random walk ω restricted to any Ij is still self-avoiding.

Fig. 2

The other feature of #τ(L) which we will use in Sect. 5 is that if all the bonds st E L
satisfy |ί — s|^τ/2, then

for τ'^τ, (4.9)

because of condition (b) in (4.5).

5. Inductive Assumptions on C, Consequences for δΠ

The induction is on m= 1,2, ... . The inductive assumptions are: there exist
K(12) fixed throughout our induction such that

(11) 0^r,-r,_ί^K(ll}]λ(2+T,_ί)
9/8-d/2 for

(12) ||δ^Cχ.,T)|

for

(12) says that for large T rJdu

kC(k, T) ̂  du

ke~κk2τ in Lp norm. At the beginning of the
induction m= 1 so /^O. The definitions of τ>? C^ for negative t imply that r^ =
Q = C0 so (II) is true and (12) holds by direct calculation on C0(fc, T) = D(kf,
provided we take K(12} sufficiently large.

In this section we will first prove a bound on δΠ^ = Π^ — Π^ί in terms of x
space Lp norms of Q _ j. This is Proposition 5.2 given below, x-space Lp norms are
convenient since we can use x-space bounds such as 1 —IF ̂  1 on them. They are
converted to fe-space Lp bounds by the Hausdorff- Young inequality, and then the
inductive assumptions are applied to obtain our main result for this section which
is:

Proposition 5.1. (1 1) and (12) imply that if λ is smaller than a universal constant, then

\di dv

z δπjk, z}\ ̂  κλ[2 + r,_ j -'<»'*> , (5.1)
for /^m, |w|^2, and z in the disc

. (5.2)
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δ£ dv

z δΠj(k, z) is analytic on this disc and continuous in k. The constants d(u, t;), ε^ are
given by

,

Notice that we have started our inductive step because in Proposition 5.1
f^m as opposed to the m-1 in the inductive assumptions. In Sect. 6 we will
use Proposition 5.1 to advance (II) to f^m. In Sect. 7 we will use Proposition 5.1
and results from Sect. 6 to advance 12.

Estimates on δΠ. To illustrate the basic strategy we will first obtain a weak version
of the estimate we will ultimately need.

We start with the expression of Theorem 4.1 for Π^ and estimate \Π^\ by taking
absolute values inside the sums over T, L, and ω, and use

on all sίe^/L). The result is

I^ Σ Σ
Γ=l ω:|ω| =

(5.3)

ΓM<5(ω(s)-ω(ί)). (5.4)
sίeL

The contribution of each L can be expressed in terms of C0(x, z); consider the first
three laces

(5.5)

These diagrams, according to the product over si e Lin (5.4) correspond to the sum
of random walks that intersect themselves as indicated in the figure below

where the times opposite each intersection indicate the times at which the
intersection takes place. With Land positions of intersection held fixed, we can
rewrite the sum over ω in (5.4) as separate sums over ωlyω2,..., where ωt is the
restriction of ω to the time interval It in Fig. 2. We can also introduce times σt ̂  1
for each ωt:

l9.
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and replace the sum over Γby sums over σ1?σ2, ... ̂  7} separately. Define

C0(x9z) = Σ zσC0(x,σ). (5.6)
σ^T>

Now we can write down the result of doing the sums over σ1? σ2, •> and positions
of intersection. The contributions of the three diagrams (5.50 to the righ-hand side
of our upper bound on \Πf\ are less than

λC(o9 |z|), λ2 Σ Cl(χ, |z|), A3 Σ ((<?§ * c2,) Co) (*, M) ,
x Λ;

where * denotes convolution. Let M denote the operation of multiplying by C0, i.e.

and let C denote convolution by C0 :

c :/(*)
y

Then these three contributions may be rewritten in the form

ΛC0(0, |z|), λ2(CMC) (0, |z|), Λ3(CMCMC0) (0, |

This pattern continues; the next diagrams are

which correspond to

A4((CM)3C0)(0, |z|), A5((CM)4C0)(0, |z|),...,

and an easy induction shows that this pattern persists so that the right-hand side of
(5.4) equals

Σ((CM)'eo)(0,|z|)λ'+1. (5.7)
ΐ = 0

We now introduce a bound for each term in this sum whose content is that each
term may be bounded by a product of L2 norms of C0 with one factor of C0 omitted
and instead bounded by an L^norm. Let, for j= 1,..., i, C2j be convolution by a
function /2j and M2j be multiplication by /2j -ι? then we claim that

Π(C2,M2,)/0

2i

^ Π \\fj\\2 IIΛ

for any fc=l, ...,2i.

Proof. We use Young and Holder's inequalities in the forms
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so that

Also using My :£„-»• L2,Cβ:L2-» L00,we obtain

liς,My||Lo^L^lί/ll2||0||2.

Finally, using My :L2-*-L2orL1 and C9:L2orL1->L00,we obtain

The claim is a combination of these bounds.
We return to (5.7) and apply this bound (5.8) to obtain

z)\£ Σ Π (IICo(-,M)ll*M', (5.9)
i = l 7=1

where * = 2 or oo, with one || H^.
Now this bound is insufficient for our needs but without destroying the

structure of our argument it can easily be improved: in (5.4) it is not necessary to
"throw away" all factors 1 —λVst by the upper bound (5.3). Instead we can remove
only those factors 1 — λVst which couple walks ωf, ωp ϊ'Φj in our argument above.
These are the bonds which couple the parts of ω in a way which is inconsistent with
the factorization of the sum over ω (lace L fixed) into independent sums over
subwalks ω l5ω2, .... With these bonds removed by a bound, the previous
argument may be repeated yielding a bound in terms oϊL2,L^ norms of

See (4.8) and the remark after it. Since 5^7} this equals

Q(*,M)Ξ ΣklsQ(s)(x,s), (5.10)
s^Tf

where f(s) is defined by 7}(s) = s, so that

1 | z | ) I U ) A ί . (5.11)

The (1-λ)'1 restores the OΓ bond in the first diagram in (5.5).
Next we consider δΠ^: δΠ^ = Π^ — Π^,1. The expansion in Theorem 4.2 is

applied to each Π on the right-hand side and we see that laces Lin which every
bond si e Lis short, i.e. |s — 1\ ̂  \ 7}_ 1? make identical contributions and cancel in
δΠ [see (4.9)]. Therefore we may restrict the sums over L by requiring that each L
contain at least one long line steL such that \s — t\^^T^_ΐ. We write
δΠj = Πj — Πt_l9 where the primes mean that the sums of laces, L, in Theorem 4.2
are constrained so that each lace contains at least one long bond st : \t — s\ ̂  7}_ J2.
The method of bounding Π applies also to δΠ\ after using \δΠ^\ ̂  \Π^\ + |Π£_ J. A
long bond implies a long walk, so when we apply the arguments leading to (5.1 1) to
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each TLf we can assume that one C norm is replaced by a norm on

Define

H '^l OΓ

The bound is

~~ l—λi=ι * j=ι

where the sum over * is a sum over all ways of allocating the L^ norm. We have
made use of the flexibility in L^ norm in (5.8) to coordinate the L^ norm with δ.

All these arguments can be extended to derivatives with respect to z and k of
δΠ. We differentiate under the sum over laces, L, in Theorem 4.2. The z derivatives
act on the factor zτ which we write as

2 ΐ - l

7=1

Each zs corresponds to a subwalk ωt prescribed by lace L We distribute the
derivatives over the factors zs by Leibniz rule and proceed as before, fc-derivatives
act on the exp(i/cω(Γ))in (4.8) which we can also factor along the walk ω = ω^
uω2...uω2 j_1, as prescribed by a lace L Again we apply Leibniz rule, take
absolute values inside the sum ways of distributing derivatives and proceed as
above. We obtain a bound on δΠ in terms of x space norms

Proposition 5.2.

9 oo 2i-l

Π ll( )M^F^*Q( ,|z|)||,, (5.13)

v = 0,1,..., \u\ = 0,1,2,3,..., the unlabelled sum is over: non-negative multi-indices
Uj such that Σ \uj\ = \ul non-negative v/s such that Σvj = v and choosing one \\ \\ ^
norm to be \\ \\ ̂  the rest are \\ \\ 2 norms. In each L2 norm <5*Q = Q. The L^ norm
has δ*Cf = δCf where

(5.14)

and f(s) is such that 7}(s) = s.

Note that the numbers of terms in the unlabelled sum is less than

which will be dominated by λ powers if λ is small.
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Now we use Proposition 5.2 to obtain Proposition 5.1, our main result for this
section.

For^m, 7}^1,

I Σ W(.)tt<
MΪ>

I I (χ sPace)
I! 2 or oo

2 or oo

(5.15)

by the Hausdorff Young inequality, u and t> are arbitrary. By the inductive
assumption (12), which we have for / ̂  m — 1, and can use, because /(s) — 1 ̂  { — 1,

with p = 2 or 1,

(5.16)

because s ̂  1} and for all f,r(~^.\. The |z| factor has to be bounded carefully, using
(5.2)

By summing (II) over ( from t- 1 down to <f e [<f(s)~ l,«f(s)-2],

for any ί < 1. Since Tf(s) = s and ^ can be chosen so that (9/8— d/2)δ^ — 1,

We substitute this upper bound for \z\jr e(s)_ ί into (5.16) to find that the norm (5.15)
is less than

KTv+u/2 Σ

By observing that the exponent is less than or equal to ̂  log s for s S; e we bound this
by

Thus taking p = 2 and p = I,

r/

5 = 0

Σ
(έsέι-
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We substitute these bounds into Proposition 5.2 and find, using Σ vt = v, Σ N = M
that \dldlδΠt(k,z)\^λKTvt+ul2T?L*-άl2 for /^m, provided λ is smaller than a
universal constant. This is the desired bound (5.1), since T^KTf_ 1 for all f . The
analyticity of δΠ in z is immediate, the continuity in k follows from the expansion
(4.8) and the bounds we have proven. Proposition 5.1 is proved.

6. Poles of Q(fc,z)

In this section we shall obtain information about the poles of C/fc, z) using (5.1)
and the inductive assumption II. More precisely let

0/a) = {z:|z|£r, + ee,}. (6.1)

We shall prove that for < ̂  w, Q(/c, z) is meromorphic in the disc ®X3/2) and has a
unique real pole r/fc) which varies differentiably with k provided k /2d^s^. These
results will follow from implicit function type arguments.

Remark. By 1 1 note that

for α^l/4 and 1 smaller than a universal constant, hence the discs 3)f(a) are
decreasing in /, for /^m— 1.

Let us observe that Q(fc, z) has the following symmetries:
i) Q(k, z) is even in kί? z = 1, . . . , a,

ii) C//c,z-) = Q(fc,z),
iii) Q(k + π,z) = Q(/c, -z),

where π = (π, . . . , π). Identities i) and ii) follow easily from using the invariance of the
sum (3.4) under ωl^—ω\ and iii) follows from the observation that
ω1(7) + . . . + ώd(7), Tare either both even or odd. The same symmetries hold with
Q replaced by Uf (by definition of 77 )̂. From ii) it follows that the poles of C//c, z)
are real or come in complex conjugate pairs.

Lemma 6.1. Assume that 1 1 holds forJ^m—l and (5.1) holds for 0 ̂  / ̂  m. If λ is
taken small, independently of m, then

(a) II holds for /^m,
(b) for /^m, for all k, Π/fe,z) is analytic in z, zε®,(3/2)

{u'v) if

for each δ>0, ze^(3/2),
(c) /or /^m, Q(/c, z) z's meromorphic in z for z e

In particular note that we have advanced one of our inductive hypotheses, II.
For the next lemma, recall that

We will also need r(k, λ = 0) = D~i(k), which is the unperturbed zero solving
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Lemma 6.2. Assume the conclusions of Lemma 6.1. For λ sufficiently small,
independently of m, and all f ^ m,

(a) When k satisfies either k2^2dε^ or (k — π)2 ^2dε^, then C/fc,z) has one
simple pole, 7>(fc), in ̂ (3/2) whose derivatives <?£?>(/£), 0 ̂  \u\ ̂  2, are continuous,
uniformly bounded and obey

r(k,λ = 0)) = λE. (6.3)

(b) With the same condition on k as in part (a), \u\, v^2:

ί \du

kC
v + l(k,z)\\dz\^K(2 + T^ + v\n(2 + Ί,). (6.4)

0^(3/2)

(c) // the condition on k in part (a) is violated, then F^(k, z) has no zero in ®Xi)
and

). (6.5)

Proof of Lemma 6.1. First note that (6.2) holds for f^m— 1 by writing 71̂  as a
telescopic sum of δΠ's and bounding it with (5.1). We must check that the domains
of z are compatible, i.e., for t'-^t^m— 1

for / rg m — 1 . The first inequality follows from 1 1 and the second one follows from
the remark after (6.1), provided λ is taken smaller than a universal constant.

Part (a). To advance the induction step II we introduce an interpolating
function: for /e(m-l,m), H(z,σ) = F^1(0,z) + σδΠ^(0,z). Using (6.2) for
^•^m—l and (5.1) with /^m, we see that

θ^- = -l+λE for
oz

By taking λ small (independently of m) and using the implicit function theorem
H(z, σ) has a locally unique simple zero r(σ) as long as dH/dz(r(σ), σ) φ 0. Local
uniqueness forces r(σ) to be real because zeros of H are either real or occur in
complex pairs.

Let σ be the largest value of σ in [0, 1] such that |r(σ)| ̂  r( _ j + εf. For σ 5Ξ σ and
/I small

using (5.1). By integrating over σ from 0 to σ we find that σ= 1 and

Since τ> lies on the positive real axis and is the zero of F^ closest to the origin, local
uniqueness forces r(σ = 1) = r^ hence 1 1 holds for ί ^ m, provided we take λ small

so that KA^X ( I 1 ) /I.
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Part (b). (6.2) is proved by writing Π as a telescopic sum of δΠ's and bounding
each term using (5.1) for /^m. By part (a) we now have

f>_1+2ε^r, + fβ, for {'<z{<Lm,

so that the z domains are compatible.
Part (c). Immediate consequence of part (b).

Proof of Lemma 6.2. Since the value of t does not change in the course of this proof
we suppress f subscripts on Q, F^ Π^ 7}, e,, r,, and 2^a).

From the definition of F and (6.2),

^j- = - D(k) -d-^ = - D(k) + λE(k, z). (6.7)
oz oz

Suppose k is near 0 or π as in part (a) of the lemma, then D(k) is bounded away from
zero uniformly in f. Furthermore, if F has two zeros z(fc) and z'(k) both in ®(3/2),
then the integral of δF/δz along a contour between z(k) and z'(k) must vanish. For
λ small this is in contradiction with (6.7). Thus for λ small (uniformly in /) F(z, k)
has at most one zero r(k) in ^(3/2) for each fe in the region specified. For small k,
r(k) is in ^(3/2) and r(k = 0) = r by the implicit function theorem. Zeros are either
real or occur in complex conjugates so by local uniqueness r(k) lies on the real axis.
Its k derivatives are

dr(k) dF IdF Λ . „ , / I Λ dΠ n / I N Λ / 3 F
^J I - — (k,r(k)) / —. (6.8)dk, dkil δz \d ̂ w'vv dk,

Since Π is even in fcf, (6.2) implies

(6.9)

for k^O as in part (a). Thus using (6.2) again,

= sin(k/) r(k) (1 + λE(k> r(/c)))/D(fc) (6 1

We take λ small (uniformly in /) and conclude that r(k) moves monotonically away
from r(fc = 0) = r towards the boundary of ^(3/2) along the real axis and (6.10)
holds provided r(k) e ̂ (3/2) and k2 ̂  2ds. By symmetry there is another trajectory
of solutions starting at — r when k = n for which analogous considerations hold.

The second derivatives of r(k) are obtained by twice differentiating
F(/c,r(fc)) = 0:

d2F 82F dr d2F dr dF 92r 82F dr dr

~ dktdkj + δfc^z Wj + δfyδz ~dkt

 + δz" δ/c^/c,- + ~d?'dki~dkj'
 ( ' }

By (6.10) and (6.2) every term in (6.1 1) except possibly the fourth is equal to its λ = 0
value +λE. For k = 0 or fc^π as in part (a) 3F/δz is bounded away from zero
according to (6.2), so we obtain (6.3) with |w| = 2 by solving (6.11) for the double
derivative of r. At present (6.3) is known provided k2 or (k — n)2^2dε and
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). By integrating (6.3) with \u\ = 2 from zero to k using the fact that
fe. = 0 at k = 0 (by symmetry) we find that k2 <; 2dε=>r(k) e 0(3/2) provided λ is

smaller than a universal constant, consequently (6.3) is fully established for \u\ = 2.
For \u\ = l it is immediate from (6.10). For |M| = O we note that at k = 0,
\r(k = ΰ) — r(k = Q,λ = 0)\^Kλ by the implicit function theorem and (6.2), so we
obtain (6.3) for |w| = 0 by integrating (6.3) for \u\ = 1. Continuity of derivatives is
evident.

Part (b). We will consider only the case \u\ = 2, v = 1. The others are similar.

%C(k, z) = 2C3(fc, z) (dkiF) (dk.F) - C2(k, z)dkίdkjF. (6.12)

We bound derivatives of F using (6.2). By integrating (6.3) with \u\ = 2 from zero to
k, k2^2dε, we find

From this we conclude that if λ is small (uniformly in /) and k = 0 or k = π as
required in parts (a) and (b) then r(k) is strictly inside 0(3/2), indeed

|z-r(fc)|^ε/4 for ze 50(3/2). (6.14)

Therefore by the fundamental theorem of calculus

^K\z-r(k)\, (6.15)

because by (6.7) dJF~l, when ze 0(3/2) and fc~0 or π. Thus by integrating the
inverse of (6.15),

J \C(k,z)\n+1\dz\^(KsΓn\lκKs\. (6.16)
50(3/2)

The logarithm is actually only necessary if n = 0. We combine this inequality with
(6.12) and obtain the inequality of part (b) for the case |M| = 2, v = l.

Part (c). First let us suppose 2ds ̂  k2 ̂  1. To bound the contour integral we
need a lower bound on F:

F(k, z) - F(0, z) + (1 - D(fc))z - 1 dkΠ(k, z) dk= ] ̂  (0, z) dz + (1 - D(k))z + λk2E
0 r OZ

[using (6.9)]

γ T)(lί\ 7 I l(\ 7\ Π 7 —I- A If f? IV T)(κ\ 7 I —I— >l I 7 ~P I f I Λ If f \ \\ 1 7 I— i JL/\J\>j Δ J Λ V ? / '^ Λlv X./ — \^f Ls\j\ιj Δ j ι ^ ΛyZi / y iJ ι ^ /1//V J-> V /

r OZ

[using (6.2)]. To prove that the error terms are relatively small we use \a + ib\

-\b\\/]/2 to show that for zeδ0(i), i.e., z = (r + s/2)eίθ,

ε \ 1
-- cosθ H— r̂
2r/ V^

For 2dε^k2^ 1, D(fe) is bounded away from 1 in such a way that this inequality
implies |r-D(/c)z|^K(/c2 + |D(fc)sinθ|) with K>Q. We now see that the last error
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term in (6.17) is relatively small when λ is chosen small (uniformly in /). For the
second term in (6.17) we use

and again we see that the first term dominates the second in (6.17). Thus for λ small
(uniformly in t) \F(k,z)\^K\r-D(k)z\^K(s + \θ\) for some K's>0. The bound
(6.5) on the contour integral now follows with the same arguments as in (b). By
symmetry the same arguments are available for k such that 2dε ̂  (k — π)2 ̂  1. For
the remaining values of fc, \l—zD(k)\^.K9 some K>0, arid by (6.2) with λ small
|C(fc,z)|<;K. Part (c) is proved.

7. The Induction Completed. Proof of Main Theorems

In this section we complete our induction by proving that 12 holds for /^m, i.e.

||rJ^Cχ ,Γ)||^space)^K(I2)Γ|M|/2-d/(2p) (7.1)

for T^ T,+ 1 and f<,m. We will prove (7.1) with K(I2) equal to 4 times (the best
constant for λ = 0).

We will also prove that there is a constant D > 0 such that

Γ- l/16i7\ f η o\
Li) {I .Δ)

i OKI

for T large. Finally we shall establish the gaussian nature of the scaling limit of the
end point, i.e. for fixed t

Γ I Γ<

as s tends to infinity.
Q(st)(

Proof of 7.1. It suffices to establish (7.1) for m— 1 5̂  g w. We may also assume
that either Tor 7} is large because we can achieve (7.1) on any bounded set of T's
and T/s by taking λ small.

By Cauchy's formula

)Z-^dz=±dz, (7.4)

where the contour is a small circle centered at the origin. If fc2^2dε^ and (k — π)2

^ 2dεΛ then by Lemma 6.2, C/fc, z) is analytic inside the disc ®(̂ ). We now deform
the contour in (7.4) to d2$). By (6.5) and (7.4) we see that

sup

ί (7.5)

for T^ Te+ί and either T or 7} large.
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For the case k2 ^2dε^ we deform the small contour about the origin to
<g = dS>s(3/2), which by Lemma 6.2 contains exactly one pole T>(/C). Thus we have a
contribution from the pole plus an error term:

—-(fc,r/fc)) r//c)~τ~VJ + rJ<j>C/fc ?z)z~ ( Γ + 1 )dz. (7.6)
oz _\ %

As in our analysis of (7.5) we apply (6.4) to show that the second term on the right
side of (7.6) is bounded by JK(I2)T"d/2 for T^ T^+1. To bound the first term on the
right side of (7.6) we integrate (6.3) with \u\ = 2 twice with respect to fe, remembering
that at k = 0 first derivatives vanish so that

Thus

where ~ means asymptotic as T-> oo, uniformly in f and K(λ, )̂-» 1 uniformly in f
as λ->0. From this we immediately obtain (7.1) for u = 0 provided λ is taken smaller
than a universal constant.

Next we consider the case \u\ = 2, k2^2ds^. We take the second derivative of
both sides of (7.6). The second term on the right is again bounded by T~d/2 using
(6.4) as before. To analyze the first term let us set r = τ>(/c) and

Then we have

~ ~ ~71 H~dk
(7.7)

After multiplying by rχθ)τ we shall show that the last two terms of (7.7) are
dominant in If norm for large Γ. Moreover if k = 0, the second and third terms on
the right side of (7.7) vanish because r/fc) is even. To show that the first two terms
are relatively small we shall use the following lemma.

Lemma 7.1. For k2 ̂  2dε^ we have

<K[T2β(l+

where )8 =
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Proof. The total derivatives with / subscripts suppressed are given by

-ί-H=-i
_dkίdz dz2

and

dk2 idk.dz dz2 dk,

F i ? .
d2k, dz dkdz2 dk dz3 \dk dz2 d2k,

The lemma now follows directly by applying (6.2) and (6.3) to each of the terms
above together with the bound Idr/dk^K}^} (see 6.10). We multiply (7.7) by rj(0)
and take the Lp norm of both sides remembering k2^2dε^. We analyse [r^(k)/r^]τ

as in the u = Q case, and we use Lemma 6.2 part (a) on k derivatives of r^(/c). The
above lemma shows that the first two terms of (7.7) give contributions which are
down by T1/8 relative to the second two terms, hence they can be dropped. The rest
of the argument is as in the \u\ = 0 case. Mixed partials and the case \u\ = 1 are
analogous. End of proof of (7.1).

Proof of (7.2) . We begin by showing that for k2 ̂  Kdε^, with K sufficiently small,

CXk,T) = - U(/c, rχk))J * r,- τ- \k) [1 + T- ̂ 16E] (7.8)

for Γ^ ΓΛ Here / = /(T) is defined so that Tf = T. If t± ̂  t(T) = {, then recall that

-1 + Cχfc,z)z-Γ-1dz, (7.9)

where <β = 8^^(3/2) is the integration contour. By integrating with respect to k (6.3)
with \u\ = 2, we find that r,(fc) = r^D ~\k) + λEk2, so that for λ small r/k) e
For z e ̂  we have

By (6.7), (6.4) and the above estimate the final term of (7.9) is bounded and (7.8)
follows.

The second derivative of C(k,T) = Cj(T)(k,T) at fc = 0 is again calculated using
(7.6) with # as above. By (7.6), (7.7), and Lemma 7.1, we have

dz (7.10)

For notational simplicity we have set r = 7>(Γ)(k), F^(T} = F etc. The term τ(1/2+β}E
represents contributions arising from d2H/dk2\k=Q. Note the dH/dk and dr/dk
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vanish at k = Q. The final term on the right side of (7.10) is bounded by KT15/lβ,
using (6.4) and the fact that for z e «Ίr(0)/z|Γ ̂  KT~5/64. Thus (7.8) and (7.10) imply
that

lid2

T+T15/16E.

To complete our proof of (7.2) we need only show that the T dependence of r = τ> (Γ)

and its second derivative in k are of lower order so that the diffusion constant D in
(7.2) may be chosen independent of T. First note that by II, [r^ -r,(Γ)| ^KT~5/4.
We need to obtain a similar bound for the second derivative of r^(T)(/c). Let ( = /(Γ).
By (6.11) and (6.2),

dk2 '-(k)
dk2 —

-1

(7.11)

The ( dependence of the first factor on the right side of (7.11) can be analyzed as
follows:

dkf θkf
5Ξ sup F((k,z)

^ κτ'2+βτ~ 5/4 ̂

= Σ

(7.12)
Recall that rx(0) belongs to

Σ£<

Hence δ^F^ may be replaced by d^F^. The second factor of (7.11) may be analysed
in a similar fashion, hence (7.2) follows.

Proof of the Scaling Limit (Ί.3). Let st=T. For any given values of k and ί
and K>0 we have k2/s^Kdε^(T) as s-*oo. Thus by (7.8) with £ = £(T} we have

Lemma 7.1 implies that

so we can conclude that Q(fc/jA,TJ = Q(0,T) in that

By Taylor's theorem with remainder

Σ d"r(T(ξ) —
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where ξ lies on the line segment joining 0 to k f y s . Note that 3%(T)(0) vanishes for
\u\ = 1 and for mixed partials with \u\ = 2. The proof of the scaling limit follows once
we show that the following limit exists for all k and t

lim — δ%(T)(ξ) = Du,ξe {σk/]/s : 0 g σ ̂  1 } ,
s-+cor^Γ)

where Du is a constant independent of k and ί, which vanishes for mixed partials.
Note that Dlί = D, the diffusion constant.

To establish the limit we return to (6.11) evaluated atk = ξ. The second, third
and fifth terms in (6.11) go to zero as sί=Γ->oo by (6.2) and (6.3) with \u\ = 2
integrated from k = 0 to ξ. Existence of Du follows as soon as we establish limits for
the coefficient dF/dz and the first term in (6.11).

Since duδΠj(k, z) is continuous in k for \u\ ̂  2 and is exponentially small for
large j9 it follows by summing over j that

lim Iδ F KCs), ι Λ«s))] - S"F,[0, rΛ#s))]| = 0 .

As in (7.12) one can show that

Finally δT/O, r^O)) is Cauchy by (5.1) together with the fact that rm(0) e 3)j$ for
all t. The argument for dF/dz in (6.11) is similar.
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