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Abstract. Let us consider a monopole theory with a compact, simply connected
gauge group and the Higgs field in the adjoint representation. Using root
theory we show that.

(i) The homotopy class of the Higgs field is a p-tuple of integers where p is
the dimension of the centre of the residual symmetry group. These "Higgs
charges" can be expressed as surface integrals of differential forms.

(ii) To any invariant polynomial on the Lie algebra is associated a
topological invariant which turns out to be a combination of the Higgs
charges.

(iii) Electric charge is quantized. The monopole's magnetic charge is a
combination - with the Higgs charges as coefficients - of p basic magnetic
charges which satisfy generalized Dirac conditions.

The example of G = SU(JV) is worked out in detail.

1. Introduction

The fundamental role played by topological invariants in monopole theory has
been recognized since the very beginning [1, 2, 3, 18]. Essentially three types of
such "charges" have been considered so far:

(i) Assume that the full gauge group G is broken spontaneously to H by the
vacuum expectation value of the Higgs field Φ. The usual requirements concerning
the asymptotic behaviour of Φ imply the existence of a map from S2, the 2-sphere
at infinity, into an orbit G/H of G. We have thus a homotopy class

[Φ]eπ2(G/tf). (1.1)

This first topological invariant shall be referred to as the Higgs charge,
(ii) Let F denote the field strength tensor. If the Higgs field is covariantly

constant, the quantity

/ = J t r ( F - Φ ) (1.2)
52
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is also invariant under smooth deformations. It appears for instance in the formula
of Bogomolny for the lower bound of the energy [4]. Remarkably, the integrand of
this "trace invariant" (1.2) is just the topological charge density of the 4-dimen-
sional pure Yang-Mills theory to which the static Yang-Mills system is equivalent
if the Higgs potential vanishes [5].

(iii) To each generator of the unbroken symmetry group H corresponds a
massless gauge particle one of which is identified with the photon of electromagne-
tic interactions [2, 3]. The possible electric charges are eigenvalues of the charge
operator

Qem = e0Φ/\Φ\. (1.3)

The electromagnetic field itself is the projection of the gauge-field onto the
Higgs-direction [7, 8, 9]. The monopole's magnetic charge is defined to be

0 = (l/4π* 0)fTr(F-Φ/|Φ|). (1.4)
s2

These charges are of course intimately related. The aim of this paper is to give a
systematic study of all the aformentioned topological invariants in a gauge theory
with a compact, simply connected gauge group, broken spontaneously by a Higgs
field in the adjoint representation.

We show first that the Higgs charge (1.1) is an p-tuple of integers

Φ = (w l 5...,mp), (1.5)

where p is the dimension of Z(f)), the centre of the Lie algebra off/ [6, 9]. The m/s
are also expressed as surface integrals

m^α/^πl/^ϊ) J Φ*ω(ί). (1.6)
s2

The closed (but not exact) 2-forms ω(ί) on G/H correspond with properly scaled
vectors of a basis of Z(f)).

Next we show that, for any invariant polynomial / on the Lie algebra of G
which is homogeneous of order k + 1 the quantity

/<•»= J/(F,Φ,...,Φ) (1.7)
s2

is again a topological invariant, supposing that DΦ = 0. This is proved by showing
that 7(/) can be written, just like the Higgs charges in (1.6), as the integral of a closed
2-form. Comparing the two formulae we see that /(/) is a linear combination of the
Higgs charges:

k = l
(1-8)

The coefficients λk are explicitly obtained. They depend only on the modulus of the
Higgs field and the group structure (see Sect. 3).

In particular, we give formulae for computing the "higher order invariants" [6]
of the form

»), n=l ,2 , . . . . (1.9)

Equation (1.8) generalizes the corresponding expression for SU(3) [10, 11].
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We study then the electromagnetic properties. The electric charge operator is
defined by the Higgs field [8,13,14]. In order to have quantized electric charge Φ
must define a U(l) (rather then merely an K) subgroup. In this case there exists an
(unique up to sign) minimal U(l) generator Co pointing in the electromagnetic
direction. This minimal generator plays an important role in the sequel. First:

All electric charges in the theory are integer multiples of

4ri* = eM. (1.10)

Co here is the minimal U(l) generator determined by the Higgs field's direction (see
Sect. 5).

The magnetic charge g of the monopole is in turn a combination - with Co-
dependent coefficients - of p partial magnetic charges gl9...,gp each of which is the
multiple by the corresponding Higgs charge mk of a basic magnetic charge #f}:

Λ = mrfί°>. (1.11)

qmin and g satisfy a generalized Dirac condition [13,14].
The basic magnetic charges correspond to the "fundamental monopoles" in

[27,28].
The general theory is illustrated on the example of G = SU(N) [8, 15,18].
We conclude that root theory [16,17], combined with that of differential forms

[19,23] provides us with a via regίa to solve any problem concerning topological
invariants in monopole theory.

2. Roots, Weights and Characters

The basic facts and definitions of root theory we summarize here without proof will
be used through the whole paper. For more details the reader should consult refs.
[16,17].

Let G denote a compact, simply connected (and hence semisimple) Lie group
having Lie algebra .̂ Let us choose a point ξ0 from ,̂ and denote by H its stablizer
under the adjoint action of G. The orbit of ξQ is identified with G/H.

Let us choose a maximal torus TcG in such a way that 2Γ, its Lie algebra,
contains ξ0. Tis a maximal torus also for H, and «^"c, the complexification of ̂ , is
a Cartan subalgebra of @c.

Denote by A the set of roots. A C |/-̂ I «^"*. Let A + be a positive root system and
consider the simple roots

α1? ...,αr(r-dimT = rank of G). (2.1)

Define the subset of indices 7 = {il9 ...9ip} by

i f e eJ if α ί k(£0)Φθ. (2.2)

/ is empty if and only if ξ0 vanishes. Hence / contains p elements, 0<p<r.
Let us choose the vectors ξl9 ...,ξr from SΓ so that

j , i,j=l,...,r. (2.3)

The ξjS form a basis of ̂  dual to the α/s. Let Z(ί)) denote the centre of I), the Lie
algebra of H.
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Theorem 2.1.

{ξiί9 ..., ξip} is a basis for Z(f)).

Consequently p is the dimension of Z(ί)). Since ξ0 is in the centre, it is a linear
combination of the ξίfc's, i f c eJ:

δo=Σ^, (2.4)
ike/

where

G is semisimple and admits thus a negative definite Killing form B( - , ). To
each root α e zi we may associate a unique 77 α e 2ΓC defined by

(2.5)

If μ is a linear function on 3~c with values in C, we may define tentatively a map
from Γ to U(l) by

= exp(μ(0), ζef. (2.6)

χ is clearly a character of T as soon as it is well-defined. This happens if for any root
αezl,

2μ(ηJ/*(ηJεZ. (2.7)

Any root being an integral combination of simple roots, it is enough to require
(2.7) to hold for the simple roots. Let us define μ1? ...,μr by

2Λfoβj)/αΛ»g = 5y. (2.8)

Theorem 2.2. The μ, 's form a Z-basis for those linear functions μ on 3~c which
exponentiate to characters.

These μ/s are the fundamental weights. Their associated characters are denoted
by /!,...,&•

Every weight of any representation of G is an integer combination of these
fundamental weights and so the eigenvalues in any representation of an element ξ
of have the form

Σ^iOD (2.9)
i = l

Theorem 2.3. The character χt of T extends to a character of H if and only if
ί = ik E I. The extension is obtained at the Lie algebra level by setting μ^

The characters are useful in describing the homotopy of H. Indeed, let γ : S1

-+H be a loop and consider a character χ oϊH. The composed map χ ° y goes from
S1 to U(l) and has thus a degree (or winding number) mχ(y) e Z. If γί and y2

 are

homotopic loops in H, the degrees are the same since any smooth function with
integer values is constant. So we get a homomorphism



Topological Charges in Monopole Theories 501

The fundamental theorem of Bott [17] tells us now that we have enough
characters to determine n^H) completely:

Theorem 2.4. Consider those characters associated to the indices in /, and denote

mk(y) = mχik(y). (2.10)

The map

π1(H)?b^(™1,...,mp)eZp (2.11)

is an isomorphism.

If (m1? . . ., Wp) is a p-tuple of integers, it is easy to construct a loop γ having this
p-tuple as its homotopy class. Indeed,

ίe[0, 1] (2.12)

has this property. To see this let us apply the character χif We get

&,()> (0) = exp(2π j/^ϊ t Σ ra*ft, W = exP(2^!/^ &"*,) -

This map has clearly degree mt.
We can switch from the μ/s to the α/s by the Cartan matrix (Cy) :

. (2.13)
J

Cί7 has integer entries. Set

η^ηjvάηj, i=l , . . . , r . (2.14)

The y/ 's are dual to the μ/s:

ft(^) = δy. (2.15)

Equation (2.13) implies

. (2.16)
j

The μ/s and ξ/s are related in turn by

μj = (^ηΛ)/2]/^ϊ) B( ,̂ ...) . (2.17)

It follows that

B(ξi9 ηj) = δtj - (2/=T/αίfaJ) . (2.18)

Observe that, according to (2.17), the μίk's (f f ee/) are represented by correctly
scaled elements of the centre of t). The corresponding ηik's however do not belong
necessarily to Z(f)).

Γ, the unit lattice of ,̂ consists of those vectors ζe$~ which satisfy

exp(2πζ)=l. (2.19)
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The coefficients here are computed by

Theorem 2.5. Any vector ζ of the unit lattice Γ is a combination of (]/~—ϊ times) the
η^s defined in (2.14) with integer coefficients:

(2.20)

(2.21)

Co e Γ is said to be a minimal generator if exp(2π£0£) = 1 the first time for t = 1. This
happens iff the integers nt in its expansion (2.20) have no common diviser. The set of
minimal generators will be denoted by Γ0.

If ζ e Γ, there exists a (unique up to sign) minimal generator parallel to it.
We illustrate the general theory on the example G = SU(N). We choose our

maximal torus T to consist of diagonal matrices in the standard representation.

TherankofSU(JV)is(]V-l).
For any diagonal matrix a = diag(α1? . . ., aN\ let εf be the map giving its Γs entry,

ei(d) = ai. Then [εi — Sj\iή=j} gives a root system and {si — Sj\i<j} a positive system
whose simple roots are

α 1=ε 1-ε 2,. . .,αN_ 1=ε J V_ 1-εN .

The dual basis ξl9 ...,(^Λ Γ_ 1 reads

~N-ί
' ' N-'

l

(2.22)

(2.23)

If we choose the trace form Tr (rather then the Killing form B = — Tr/JV) we get

(2.24)
ί i + l

ηa) = 2 in this case.
The fundamental weights are now

The associated fundamental characters are

χ.(u)= Π ui9 u = dias(uύ e Γ, j=

Consider the base point

, ..., JV-

(2.25)

(2.26)

(2.27)
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^ι^^2 = can be assumed without loss of generality. (Such a situation can
namely always be achieved by applying a Weyl transformation which corresponds
physically to a constant gauge transformation.) ξ0 is decomposed to blocks

ξ0=V-ι i l
X!P!

I ,
l

. (2.28)

r
Observe that there are (p +1) blocks, p is hence, as anticipated by the notation,

the dimension of the centre of H Z(f)) is generated in fact by those ξίks, it el.
The little group is

Those characters belonging to the iks (ik e I) extend to H. Denote detfc the
determinant of the block between ik and ik_ί. Then

χ.fc = det1(Λ)...detfc(/ι), heH,k^p. (2.30)

Let us fix 0 </!<...< ip < ip +1= N. The dimension of the corresponding orbit
0j l f . . . , i is calculated by noting that the orbit is the same as it was for U(N). But for
U(N) the stability group would be

so

(2.31)

3. The Higgs Charge

The first of the topological charges we would like to study is the one associated to
the way the gauge symmetry is broken by the vacuum expectation value of the
Higgs field.

Let us consider in fact a Yang-Mills-Higgs theory in Minkowski space with a
compact and simply connected gauge group G. The Higgs field Φ is assumed to be
in the adjoint representation. We choose the standard Lagrangian

— L = (\/4)F vF
μv + (l/2)D ΦDμΦ+F(Φ), (3.1)

where Fμv = dμAv — dvAμ -f \_Aμ, ̂ v], DμΦ = dμΦ + [̂ μ, Φ] (the fields are rescaled so
that the coupling constant is 1).

Let us fix a gauge where A0 is zero and suppose all the fields are static. We are
interested in everywhere regular, finite energy (monopole) solutions. We assume,
as usual, that the Higgs potential F(Φ) takes its minimum on an orbit of G. If
ξQ = Φ(XQ) is a reference point having H as stability group, the orbit in question can
be identified with the homogeneous space G/H. Assuming that the Higgs field
takes its values asymptotically in G/H; we get a map (we denote also by Φ) from S2,
the two-sphere at infinity, into the orbit G/H. Φ defines a class [Φ] in the second
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homotopy group of the orbit, and it is well-known that two situations are gauge-
related and are hence physically equivalent if the homotopy classes are the same
[3]. In the sequel we shall call this class

[Φ]6π2(G/fl) (3.2)

the Higgs charge of Φ.
The aim of this section is to describe π2(G/H\ π^G) — 0 by hypothesis and so

π2(G) is also trivial. The long exact homotopy sequence implies that

δ:π2(G/H)-*π,(H) (3.3)

is an isomorphism. We describe it explicitly as follows: Denote by U1 (respectively
C72) S

2\{south pole} (respectively 52\{north pole}). Let us choose a Φ representing
a homotopy class in π2(G/H). Since the U^s are contractible, Φ\Uh the restriction
of Φ to Ui9 lifts to a smooth map

9ι .Uι-+G, (3.4)

such that

Φ(x) = Mβiξ0, xeUt. (3.5)

0ί(xo) = e can be assumed without loss of generality.
In ί/jπC/2, <7ι and g2 are related by

02 = 0 1 - 7 1 2 - (3 6)

yί 2 is smooth mU1r^U2 and takes its values in H. Denote by 7 its restriction to S1,
the equatorial circle, y can be considered also as a loop in H having a homotopy
class [y] e π^ff). Furthermore, this homotopy class is the same for homotopic (in
π2(G/fl)) Φ's. We define

(fl). (3-7)

Using Bott's theorem (Theorem 2.4) we get

Theorem 3.1. The Higgs charge of Φ is a p-tuple of integers,

[Φ]=(m1,...,mJΪ)6Z^, (3.8)

where mk is the degree of the map

(3.9)

The degree of a map /: S1 -> U(1) can also be calculated by a contour integral
viewing U(l)cC and / as a contour:

Applied to f = χ(γ)

(3.10)

The Higgs charges can be expressed also as integrals on the two-sphere at
infinity of suitable closed (but not exact) 2-forms [6, 9]. To see this observe that
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each ρ e Z(I)) determines an invariant 2-form ωQ on the orbit G/H. By invariance it
is enough to define it at ξQ :

(3.11)

ωQ is a closed 2-form on G/H. Its pullback by Φ is thus a closed 2-form on S2.

Theorem 3.2. Let us consider the two-forms

.ω^, ikel. (3.12)

The Hίggs charges can be calculated as

mi(Φ) = (l/2π]/r^ϊ) f Φ*ω(k), i k e / . (3.13)κ s2

Proo/. Let us define 1/5 and C7| respectively as the upper (respectively lower) part of
S2 between 0<#<π/2 + ε (respectively π/2 — ε<θ<π). Their intersection is a
narrow "collar" of width 2ε containing the equator. Let ρ e Z(ί)) be arbitrary.
Then

f Φ*ωe = lim j Φ*ωρ + j Φ*ωρ.
S2 ε-»0 ί/f [/f

Let us choose lifts gi in U\ as in (3.5). Then we have the commuting diagram

G

17, — ̂ -+(9~G/H (3.14)

so

φ*ω

ρ = (π o gt)* ωρ = gfπ*ωQ .

π*ωρ is the (unique) extension to G as a left-invariant 2-form whose value at e e G is
J3(ρ, [C, ff]) This 2-form is exact, since #2(^;#) = 0. It is in fact the exterior
derivative of the left-invariant 1-form ΘQ whose value at ee G is given by

(3.15)

It is easy to see that
(3.16)

where θ = g~1dg is the Maurer-Cartan 1-form on G [19].
π*ωρ = dθQ and thus

Φ*ωρ = ft* dθ* = dtofflO = d(B(ρ, 0f 1 dffl)) .

But on the equator g2(x) = 9ι(x) ' ?W and so, taking the respective orientations
into account, we get

f Φ*ωρ= f B(ρ,y" 1 dy)=Jθ β . (3.17)
S2 S1 y

In particular, for

Qk = {αίk(^ίk)/2lΛT} - ξik (ίk e /) , (3.18)

) = μik = dχik. (3.19)
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So

ί Φ*ωw = J θm = J dχίjχίk = 2πJ/^T mt(Φ). (3.20)
S2 γ y

Q.E.D.

Note for further reference that for any ρ e Z(ί))

ike/

Remark 3.3. The 2-forms ωρ on &ξo we associated to the elements ρeZ(l)) are
closely related to the coadjoint orbit construction of Kirillov, Kostant and Souriau
[21-23]. Observe in fact that Φξo projects onto ύ?ρ, the orbit of ρ. Indeed,
η = Δdgξ0 e C?ξ is mapped to πρ(η) = Ad^ρ. It follows from ρ e Z(l)) that πρ is well-
defined.

^ can be identified with ^*, its algebraic dual, through the Killing form, so Φρ

can alternatively be considered as a coadjoint orbit, carrying a natural symplectic
form. This is defined as the invariant extension to ρ of

l, Π), η, C e 0. (3.22)

Plainly,

ωρ-π*Ωρ. (3.23)

Observe that, according to (3.13), the 2-form ΩQ must be integral which means that,
for any 2-sphere lying in &ρ,

(l/2πl/^ϊ) jβ ρ eZ. (3.24)
s2

In other words the orbit ΘQ endowed with its canonical symplectic structure is
prequantizable.

Coadjoint orbits have been studied extensively in the literature [21-24]. Their
knowledge makes it easy to describe the Higgs charges (see Sect. 7).

Remark 3.4. The construction of the isomorphism δ:π2(G/H)-*π1(IΓ) we gave
here differs slightly from the usual procedure [8,14,18]. It is not difficult to show
however that our loop y and the standard one are homotopic.

4. Generalized Invariants

At the "Prasad-Sommerfield limit" of vanishing Higgs potential [25] the static
Yang-Mills Higgs system becomes equivalent to a pure Yang-Mills system [5]. To
the 4-dimensional topological charge corresponds the quantity

I = S B ( F 9 Φ ) . (4.1)
s2

To the self-duality equations in 4 dimensions correspond the equations of
Bogomolny [4] whose solutions have, for a fixed value of /, minimal energy.
Furthermore, this energy is proportional to /.

Recently [6] (4.1) has been generalized to

I(n}= jtr(FΦ"), (4.2)
s2
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where Φ is in some matrix representation so it is meaningful to speak of its nth

power.
In this section we
(i) further generalize (4.1) and (4.2)

and
(ii) relate them to the Higgs charges and to other characteristics of the Higgs

field.
In fact we associate a topological invariant to any invariant polynomial on the

Lie algebra of G.
A polynomial is a sum of homogenous terms so it is enough to restrict our

attention to homogenous invariant polynomials. Remember that an invariant
polynomial of order n is a function f'.^^R such that for any t G R and ζ e 0,

(4.3)

and

(4-4)

Alternatively, we can view / as an invariant w-linear function on the Lie algebra
obtained as

This / satisfies

Let us now consider a static Yang-Mills system (Aμ, Φ) and assume (to have
finite energy) that the Higgs potential is asymptotically covariantly constant:

DμΦ = 0. (4.7)

We intend to show

Theorem 4.1. Let f be an invariant (n + l)-linear function on the Lie algebra of Gj

,...,Φ) (4.8)
s2

is a topological invariant, actually independent of A as long as DμΦ = 0.

Theorem 4.1 is proved by relating (4.8) to integrals of 2-forms on the two-
sphere at infinity. Let us define in fact

ω¥\ηξ!ζξ)=f(ίζ,ηlξ,...,ξ), ξeG/H. (4.9)

That ω(/) is a smooth, G-invariant, closed 2-form on G/H is verified in the standard
way.

Similarly, let us define the 1-form θ(f'ξo} on G as the left-invariant extension of

η^f(η,ξϋ,...,ξ0). (4.10)

Clearly,

idg,ξ0,...,ξ0). (4.11)
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If π is the projection G^G/H defined by π(g) = Δdgξθ9 then

Let us now calculate Φ*ω(/). Φ lifts locally to a map g:U-*G so that
Φ(x) = π(g(x)).

φ*ω(/) = 0*π*ω(/) = g*dθ(f. ξo) = d(g*θ(f> ^o)) . (4.12)

Consider

a = Adg-ιA + g~1dg.

It follows from DμΦ = 0 that a takes its values in the Lie algebra of H. Indeed,

la,ξ0] = lAdg-ίA,ξ0] + \:g-ίdg,ξ0] = g-ί('ΪA,φ ] + d(Adgξ0))g = g-\DΦ)g = Q.

On the other hand,

dα + (l/2)[αΛα]=Adβ-,F (4.13)

so using the invariance of /,

Hence by (4.13)

Φ*ω«> = f(da,ξ0,...,ξ0)-d(f(A,Φ,...,Φ)). (4.14)

Lemma 4.2.

/(B,n£o, ..,£o)=o. (4.15)
Indeed, it follows from (4.6) that

but [ί), £0] = 0 by the definition of t).
It follows now from (4.13), (4.15) and the invariance of/ that the first term in

(4.14) is just f(da, ξ0, ..., ξ0) =/(F, Φ, ..., Φ). We conclude that

Φ*ωW = f(F,Φ9...9Φ)-d{f(A,Φ9...,Φ)}. (4.16)

What we have proved is the following:

Theorem 4.3. Equation (4.8) is expressed as a surface integral at infinity:

/ω= Jφ*ωω. (4.17)
s2

Theorem 4.1 is proved now by noting that the integral (4.17) depends only on
the homotopy class of Φ in π2(G/H). It is also independent of A.

Having expressed I ( f ) as the integral of a 2-form, it is easy to relate it to the
Higgs charges. The point is that ω(f} is just ωρ (Definition (3.11)) for a suitable
ρ eZ(ί)). To see this observe that η^>f(η, ξθ9 ..., ξ0) is a linear function on ̂  and
thus, by the non-degeneracy of the Killing-form B, there exists a unique ρ e 0 such
that

(4.18)
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From (4.15) we get on the other hand

so ρeZ(ί)). Comparing (4.9) and (3.21) we conclude

Proposition 4.4. ω(/) = ωρ.

To find ρ explicitly expand it as

Q=Σbkξik
tίcG/

(ρ is in the centre!). Using (4.18) and (2.14) we get

Q= Σ {[αίk(ί/.J/21/^ϊ] -/fo ίk, £o, •••> £o)} £ίfc (4.19)
ik

Using (3.21) this implies

fo, ...,£o)Φ*ω(fc). (4.20)

Comparing to (3.12) we conclude

Theorem 4.5. The topological invariant 1^ is a linear combination of the Higgs
charges mk(ik e /),

(4.21)
ike/

where the coefficients are given as

W = f(l^o,-,to)- (4-22)

This works in particular for f ( F 9 Φ) = B(F, Φ):

Corollary 4.6. The trace- (or rather Killing) invariant (4.1) is expressed as

(4-23)

where

Af> = B(ίlk, €0) - {2/^ϊ/αl.k(^αJ} αjξ0) . (4.24)

Equations (4.23) (4.24) generalize the formula known for SU(3) [10, 11].

Even better, it applies to the higher-order invariants (4.2). Indeed, choosing a
matrix-representation for the Lie algebra Φ", the nth power of Φ, becomes
meaningful and we can consider

/(F,Φ,...,Φ) = B(F,Φ«). (4.25)

Φ appears n times in the argument so / is an (n + l)-linear function. Equation (4.25)
is also invariant, so Theorem 4.4 yields

Corollary 4.7. 1(n} = B(F, Φ") is a topological invariant. It is a linear combination of
the Higgs charges,

Σ Vm f c , (4-26)
ike/
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where the coefficients are given by

4 = β(̂ "o) (4-27)

5. Electromagnetic Charges

The last charges we want to study are those associated to the electromagnetic
properties. Indeed, it is a fundamental requirement that the residual symmetry
group contains the electromagnetic gauge group U(l) as a subgroup. The
electromagnetic direction must be defined at every point. This can be done in a
gauge-invariant way by a Higgs field.

Indeed, let us define the electromagnetic field as the projection onto the Higgs
field's direction of the gauge field:

& = (l/eQ)B(F,Φ/\Φ\). (5.1)

(DΦ = 0 on S2 implies that the definition of the electromagnetic field is unambigous
[7-9, 18].)

According to general principles [26], the elementary particles appearing in the
theory are multiplets belonging to some irreducible representation of the gauge
group. The possible electric charges are the eigenvalues of the electric charge
operator

(5.2)

The electric charges observed in nature are quantized so <2em must generate a
U(l) rather then merely an ^-subgroup in H [12, 13]. This happens if a suitable
real multiple of ξ0 belongs to Γ, the unit lattice (see Sect. 2.) If so, there exists an (up
to sign unique) minimal generator ζ0 parallel to ξ0. Hence by (2.20)

where the coefficients have no common divisor.
It is easy to see what condition must ξQ satisfy for this. ξ0 is in the centre so

ξo=Σakξίk. (5.4)
ikel

Inverting (2.16) we express ξik in terms of the '̂s and the Cartan matrix Ctj:

But [16]

(C ~ % = (ad Cy det C = (ad/Cy |Z(G)| ,

since detC = |Z(G)|, the number of elements in the centre of G. Thus

{ Σ ak(adjC)ikj\ ηj . (5.5)
J

ect and |Z(G)| are integers so
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Proposition 5.1. ξ0 generates a U(l) if and only if its coefficients ak in the expansion
(5.4) are rationally related.

In what follows we shall assume ξ0 has this property. Let us choose a minimal
generator £0 parallel to ξ0 and consider the new Higgs field Ψ(x) obtained from
Φ(x) by rescaling:

. (5.6)

Hίol, so βem reads also

(This apparently complicated procedure is needed since the only coherent way to
define the electric charge operator is through a Higgs field.)

Representation theory [16, 17] - see Sect. 2 - tells us that in any irreducible
representation the eigenvalues of Qem belong to the weight lattice: there exist
integer coefficients fc, such that

Using the expansion (5.3) and the duality property (2. 1 5) it is easy to evaluate q :

Theorem 5.2.
(i) Electric charge is quantized:

9= ΣMi βmin
\ i = l /

(ii) The minimal charge qmin is determined by the length of the minimal generator

Co

«min = eo/ICθl (5-10)

The minimal charge qmin is attained in some representation: the fcf's can be
chosen to satisfy Σ k^ — 1 since the n f's have no common factor.

Co belongs also to the centre and so

ίo=ΣV£ i k . (5.11)

Thus

£J = Σ{2/aίk(ηxJ} bknik. (5.12)

So the minimal charge reads

«min = eo Σ {2/«ik(i?£li>t)} nίkbk -
1'2 . (5.13)

ikel

On the other hand, monopoles carry also a magnetic charge defined as

flf = (l/4π)f ^. (5.14)
s2

Using the definition (5.1) of the electromagnetic field and the fact that on
S2\Φ\ = \ξ0\, (5. 14) becomes

g = (l/4πe0\ξ0\)lB(F,Φ). (5.15)
s2
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Here we recognize the trace invariant - topological charge of Sect. 4.
Consequently:

Corollary 5.3. The magnetic charge (5.14) is proportional to the topological charge
(or, more exactly, to the trace invariant) I:

Equation (5.16) can be further developed using the results of Sect. 4.

ike/

ike/

= (l/2e0)Σmk{2/xίk(ηΛJ} bk/\ζ0\.
ike/

Notice that bk/\ζ0\ = ak/\ξ0\. Finally we get:

Theorem 5.4. The magnetic charge of the monopole is a combination of p "partial
magnetic charges" gl9 ...,gp:

9= Σfl*(l£ιJ/l£ol)Λ = Σ 6*(lί fcl/lίol)Λ, (5-17)

where each of the gk's is the multiple by mk of a fundamental charge g(^:

βk = mk g^, (5.18)

9k 2~ΊΓϊ I Γ Ί v ίfe=1'-'P) (5 19)

How are the electric - and magnetic charges related? (5.9) and (5.19) imply that

2# Qk = [2/α (n )]/ICollί l ? (5.20)

so we conclude:

Theorem 5.5. The total magnetic charge g and the minimal electric charge qmin satisfy
a generalized Dirac condition:

2mΛ ,^ ^irj (521)

ike/

It is interesting to notice that the magnetic charge admits also a cohomological
expression, i.e. can be written as the surface integral of a 2-form. Indeed, from (5.15)
we get, using (3.21), that

9= Σ (ak\ξik\/\ξQ\) 2^τ ( Φ*ωδl*. (5.22)

comparing to (5.19):

n — f (f>*m&k K 7^\^ f e — - if \ ^ ' \O.LJ)

We see that the "basic charges" g(°} are associated with the "basic 2-forms" ω(ξίh) of
Sect. 3 [9],
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The situation is particularly simple if ξ0 is parallel to one of the fundamental
ξ/s - say to ξk. Then the centre oft) is 1-dimensional [13]. The Lie algebra of H is
decomposed now as

ί> = tt(l) + Jf, (5.24)

where Jf = [ί), ί)] is semisimple. Physically, this corresponds to the situation
[13, 14] when the residual symmetry group is (locally) the product of an
electromagnetic U(l) and a color group K.

/ = {£}, so we have just one Higgs charge m = mk. The minimal electric charge
reads now

(5-25)

There exists one basic magnetic charge, g (

k

} = #mίn and any magnetic charge is
the multiple of it by the Higgs charge:

0 = ™ 0min (5-26)

with

. (5.27)

(This follows also from (5.22) and (3.12).)
The generalized Dirac condition becomes

2«min flWn = !/**• (5.28)

The integer nk here counts the number of times the U(l) - and the semisimple
subgroups intersect. Indeed, H has the form [13]

ff = [U(l)xX]/Z, (5.29)

where Z = U(l)nK. Z C Z(K) so it has a finite number of elements. Equation (5.29)
shows also that nk is the number of times U(l) x K covers H [15, 18]. Or this
number is recovered by applying the weight μik to the generator of the U(l)
subgroup of H, which is Co-

Notice that the minimal magnetic charge is - up to normalisation - the
reciprocal of the length of the fundamental ξk to which ξ0 is parallel [14] :

0mm = {eo«ik('/JI^I}~1 (5 3°)

This follows from (5.19) noting that ζ0 = bkξk now.

6. Application: G = SU(]V)

The aim of this last section is to illustrate the general theory outlined above on the
example of G = SU(t7). This is also of practical interest, since most of the gauge
groups considered in physics belong to this class.

G = SU(2). Let us start, in order to get a feeling what is going on, with G = SU(2).
The base point now has the form

λ
_λ =J/-Uσ3eSU(2). (6.1)
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Identifying SU(2) with #3, the orbit of ξ0 will be a 2-sphere of radius \2λ\. The
little group consists of the rotations around the third axis:

tf = {exp(2π/^ϊσ3ί), te [0,1]} . (6.2)

/ = {!} so Z(f))~l)~w(l) is generated by

ξι = y^σ^/2. (6.3)

There is just one Higgs charge m = ml. It is computed, according to Theorem
3.2, by

m(Φ) = (l/2π j/^) ί Φ*ω, (6.4)

where

^-»(1) i si /I / ϊ~ /'Λ ^^

Observe that the orbit of ξ0 - the 2-sphere of radius \2λ\ - projects to the orbit oϊξί

- the sphere of radius l/j/2,

ω = π*Ω, where π:ΘξQ-+Θξί. (6.6)

Ω here is the canonical symplectic (surface) form of the 2-sphere of radius l/j/2.
Expressed by the group elements, Ω reads

3.g-ldg)9 (ζ = Mgξ0). (6.7)

In 3-dimensional notation Ω is expressed cf. [3, 7, 9].

(l/r*)sίjkdχi®dxk(r = \x\). (6.8)

In these terms the Higgs charge (6.4) becomes

m(φ) = (l/4π) ί Tr(Φ[^Φ, 3vΦ])dσμv . (6.9)

The orbit of ξί is prequantizable: the integral of Ω on it is 2π.
The trace invariant or topological charge (Sect. 4) reads now

I=-4πλm. (6.10)

The higher order invariants are also easily computed:

,<»> - for nodd
|θ for neven.

ξ0 is automatically a U(l) generator. The minimal generator parallel to it is

. (6.12)

The particles having an SU(2) internal structure belong to irreducible represen-
tations characterized by an integer k (twice the isospin). Their electric charge
reads hence, according to (5.25),

(6.13)
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Similarly, the magnetic charge is obtained by (5.26) as
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(6.14)

2qg = kmeZ, so Dirac's condition is satisfied.

G = SU(3). Let us consider now what happens for G = SU(3). The base point ξ0 has
now the form

(6.15)

There are two possibilities.
(i) Two of the λt

9s are equal. One can arrange, by applying a Weyl
transformation, that λί=λ2. By (2.29),

= S{U(2)xU(l)} = U(2). (6.16)

The orbit is the so-called minimal one. It has dimension 4 and has the topology
of P2(C). I = {2} so Z(f)) is 1-dimensional and is generated by

i

-2

(6.17)

(or by ξQ which is proportional to ξ2). The orbit of ξ2 is also a minimal one and &ξo

projects obviously onto Φξ2. The canonical symplectic structure of the latter is
calculated the simplest way by representing the elements of SU(3) by elements of
C3: SU(3)30 = (Z19 Z2, Z3), where Z^eC3, ZiZj = δίp detg = L

The pullback to SU(3) of the canonical symplectic structure of (9ξ2 reads then

(6.18)

(6.19)

(gt here is the lift of Φ on [/.. The result does not depend on the choice of the lift.)
The Trace invariant becomes

There is again one Higgs charge, m = w2, calculated as:

m = (l/2πl/^T) f Φ*ω(2)-(l/2π]/^Ί) f gf
V V

I — — βπλm .

Similarly, the higher order invariants are expressed as

I(n) = 2πλn (- l)(w+1)/2[l -(-2)"] - m .

ξ0 is parallel to ξ2 = (lβλ)ξ0, so it generates a U(l). In fact,

The minimal generator (0 reads

(6.20)

(6.21)

(6.22)

(6.23)
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so b2 — 3 and n2 = 2. The electric charge of a particle belonging to an irreducible
representation of SU(3) is a multiple of

(6.24)

There is one basic magnetic charge, 0(

2

0) = gmin, and

92 = m gmm = ]/6m/4e0. (6.25)

The generalized Dirac condition becomes hence

2qmin gmin=l/2 (6.26)

(the same result is obtained directly from (5.28) observing that n2 = 2).
But there is also another possibility, namely when
(ii) all the λ^s are different. / = {1,2}, yielding the residual symmetry group

ff = U(l)xU(l). (6.27)

The orbit of ξ0 is 6-dimensional and has the topology of PTP2(C). This is the
maximal orbit.

It is generated by ξ2 and

"2

-1 (6.29)

-1

The orbit of ξ1 is again a minimal one. Its canonical symplectic structure is given
by

(6.30)

@ξo projects now to both &ξl and (9ξ2. There are two Higgs charges:

j =1,2. (6.31)
S2

(gt denotes again the lift of Φ on 17,..) The ωω's are of course the pullbacks to &ξo of
the Ωω's. Both orbits Φξj ( j = l , 2 ) are prequantizable.

The trace invariant becomes [11]

(6.32)

For the higher order invariants our formulae yield

1-yl2}
M)m2]. (6.33)

ξ0 generates a U(l) only if ̂  and λ2 are rationally related. In this case nί = rλ1

and n2 — nv — rλ2 are integers for a suitable real number r. Let us choose the least
such positive r. Then

^o- Co = 1/̂ 1(̂ 1 + ̂ 2). (6-34)

In terms of the ξ^s ζ0 is expanded as

(6.36)
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For the minimal electric charge we get from (5.10) (or (5.13)

4min = *0/lίθl = ̂ /l/^ ("? - "1*2 + *!) - (6-36)

On the other hand there are now two basic magnetic charges,

ώ0) = fl&0) = 1/6/4*0- (6-37)

The monopole's magnetic charge is hence

So the generalized Dirac conditions become

Mminί? r\ / 9 ?\ yw.^^y
2(nl-n1n2 + r%)

G = SU(ΛΓ). The generalization to G = SU(N) is now straightforward. Indeed, an
element of SU(ΛΓ) can be represented by Λf-tuples,

g = { (Z 1 ? . . . ,Z N )\Z t E CN,ZjZk = 6^ det(Z1? ...9ZN)=l}. (6.40)

The base point is given, after rearrangement, by (2.28) (see Sect. 2). The residual
symmetry group is hence

The orbit is described as [24]

£o = I/3! V AfaZt- 1/ΛΓ), (6.42)
i = l

where

Λί = A1 + . . .+2A ί +.. .+A N _ 1 . (6.43)

H has a p-dimensional centre whose Lie algebra is generated by those £ίfc's, ik e / (cf.
(2.23)). The corresponding orbits are prequantizable. Their canonical symplectic
forms pull back to G as

l^dZjΛdZj9 ikEl. (6.44)

The trace and respectively higher order invariants are obtained by (4.23) and
(4.24),

Consequently,

λl+1) mk. (6.45)
ike/

Let us study finally the electromagnetic properties. First, ξ0 generates a U(l) if
the λi's in (2.28) are rationally related. If so, let us consider the minimal generator C0
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parallel to it. Let bk (fc =!,...,/?) and nteZ, i=l , . . . , r its coefficients in its
expansions in terms of the £ίfc's and the ηt's respectively. The formulae of Sect. 5
work beautifully: the minimal charge is expressed as

qmin = e0{ΣnίkbkΓ
ί/2. (6.46)

There are p basic magnetic charges,

0i°>= l/2e0\ξik =(l/2e0)]/N/(N-iJ (6-47)

The generalized Dirac conditions are those given in (5.20) and (5.21) respectively.
In particular, if we choose [15],

Ί/N-M
'• l/N-M !

i - l/M

' -1/MJ

, (6.48)
M

then there are just two blocks, I = {N — M} and the 1-dimensional centre is
generated by

ξN-M = {(N-M) M/N}ξ0.

Being parallel to one of the fundamental ξ/s, (6.48) generates a U(l). The minimal
generator in its direction is

where n is the least common multiple of (N — M) and M. This is obvious from
(6.48). Alternatively, we can see this from the decomposition

, _ pv-M M-i Ί
o = /Γϊ Σ (j/N-M) ηJ+ Σ (M-j)/M) ηN.M+J\.

L J = I J=1 J

This shows also that

The minimal electric charge is hence

while the basic magnetic charge is

Thus the generalized Dirac condition becomes
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