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Abstract. An Ito product formula is proved for stochastic integrals against
Fermion Brownian motion, and used to construct unitary processes satisfying
stochastic differential equations. As in the corresponding Boson theory [10,
11] these give rise to stochastic dilations of completely positive semigroups.

1. Introduction

In [10] a quantum stochastic calculus leading to an Ito product formula was
developed which, in its simplest form, uses as integrators the Boson field operators

4(0 = *(*[<>,,]), 4t(ί) = αt(χ[0it]). (1.1)

Here χs denotes the indicator function of the set S and the operators (1.1) are the
smeared fields corresponding to χ[0 t] living in the Boson Fock space over the

HilbertSpaCC ^ = ί?[0;oo). (1.2)

Under the duality transformation this Fock space transforms into the L2-space of
Wiener measure in such a way that A(t) + A\t) becomes multiplication by
Brownian motion; thus the operators (1.1) constitute a quantum Brownian
motion [6]. The Ito product formula can be summarized by the multiplication
rules for stochastic differentials
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(1.3)

which contain the classical Ito formula as a special case [10].
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Underlying the theory of [10] is the heuristic principle [7] that the
eigenproperty of the coherent states φ(/), /e/f,

(1-4)

can be written in differential form

dAιp(f)=f(t)dtψ(f). (1.5)

Matrix elements between coherent states of stochastic integrals can thus be
expressed as Lebesgue integrals, permitting the extension of stochastic integration
from simple integrands to a natural L2 class, and leading to the Ito formula (1.3) as
a consequence of the Boson commutation relations.

The resulting stochastic calculus was used in [10] to construct unitary
processes which generate stochastic dilations of certain uniformly continuous
completely positive semigroups, the general case being given in [11].

In this paper we develop the Fermion analog of this Boson theory, in which the
stochastic integrators (1.1) are now Fermion field operators in the Fermion Fock
space over the Hubert space (1.2). Though the connection with classical Brownian
motion is now only formal, the same Ito product formula (1.3) is obtained,
rigorously justifying its heuristic use in [3].

The use of Grassmannian Fermion coherent states is formally attractive [2],
but it does not lend itself to rigorous treatment of the theory. Instead of coherent
states we use m-particle states

/ f r- P (\ £\

L , ...Jwe^, (1.6)

where ψ0 is the Fock vacuum, for which the analog of the formal relation (1.5) is

m

)= Σ(-i)m

Once again matrix elements of stochastic integrals are reduced to Lebesgue
integrals, and the Ito formula (1.3) now follows from the canonical anticommu-
tation relations (CAR). However, the proofs are more cumbersome than in the Bose
case (which could also be developed as in this paper by using m-particle rather than
coherent states) requiring frequent inductions on the particle number m.

We use the theory as in [10] to construct Fermionic unitary processes and
related dilations of completely positive semigroups. While the extension to the
general uniformly continuous completely positive semigroup is technically simpler
than in the Boson case [11] because of the boundedness of Fermion field
operators, it will not be given here.

Other aspects of Fermion stochastic calculus, particularly of the analog of the
classical Brownian motion A(i) + A*(t), have been extensively developed in [4].
We show that the Ito-Clifford integral of [4] is contained as a special case of our
theory.

We say that densely defined operators are mutually adjoint if each is contained
" (ft) "

in the adjoint of the other. For 1^/c^n, Σ means Σ
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2. Preliminaries

Let A be a Hubert space. The Fermion Fock space over /?, the Fock representation
of the CAR over A and the Fock vacuum vector are characterized to within unitary
equivalence as a triple (ffl , α, ψQ) comprising a Hubert space JΊ?9 a conjugate-linear
map a from A to the algebra B(3tif ) of bounded operators on jtf satisfying

{α(/),α(0)} = 0, {α(/),αt(0)} = </,<?>/, (2.1)

for all f,geέ, and a unit vector ψ0 e 2tf such that α(/)ψ0 = 0 for all /e ̂ , and the
set of vectors

m = 0,l,2,...Ji,...,/me* (2.2)

is total in Jf .

For /=(Λ, ...,/Je X ^ and; = 1, ...,m we write /J= ̂ , ... Λ .../mj. Then
7=1
m

for arbitrary wg O, /e X ,̂ #e/f,

= Σ (-Vm-i<9,fj>ψm-1(fi). (2-3)
7=1

We note also that, since ||

m

(2.4)
7=1

We denote by Jf+ and JfL, respectively, the closed spans of the vectors (2.2)
with m even and odd, respectively, so that thereby 2tf is a Z2-graded Hilbert space,
that is, Jf is the internal direct sum of even and odd subspaces Jf+ and Jf_.
Correspondingly, the algebra B(3P ) is Z2-graded [5] by the rule that Te B(3? ) is
even if T^±g^± and odd if T^f+ £^f+. The parity of vectors and operators is
indicated by the function δ which is 0 on even elements and 1 on odd.

Now let /f = L2[0, ex)). Denote by At and ff the Hilbert spaces L2[0,ί] and
L2(ί, oo), by 2tft and Jf f their respective Fock spaces and by ψ0t and φό their
vacuum vectors^ Corresponding to the natural decomposition

A = At©# (2.5)

there is a natural identification [9] jf = J^φJf* in which

^0 = ̂ 0*®^ (2 6)

and, for each /e/l having components /t in ^t and f in ̂ ,

Here ® denotes the anticommuting tensor product of operators defined as
follows; if S e B(^t\ Te B(tf*)9 ψ e j^ and φ e jf * then, assuming Γ and φ have
definite parity

(2.8)
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We denote by <?, δ+, and <ί_ the algebraic spans of the vectors (2.2) in 3f with m
unrestricted, even and odd, respectively, so that $ = $+ + <?_, and by <?ί5 ̂  ±, <?', and
<?£ the counterparts of these subspaces in 3% and 2tf\ respectively. Then for ί^O

where ® denotes the algebraic tensor product.
We are concerned with operator-valued processes which live in the tensor

product /I0® 2tf of Jf with a Hubert space ^0 called the wzίία/ space. We write

Then for each ί ̂  0, & = $t®3P\ i=St®Sl. We assume that >ί0 is Z2-graded, with
even and odd subspaces >f0 ±> and we denote by θ the pαπty operator, that is the self-
adjoint unitary operator which is / on $0+ and — / on ̂ 0_. Then $ is Z2-graded
by

We also write

An operator T in j^ with domain δt is said to be even if T$t±ζ$t±, and odd if
Γ^ί±gJfίT. Every operator T in j^j with domain St can then be decomposed
uniquely into the sum T= T+ + T_ of even and odd parts.

If S is a bounded operator on Jf r its ampliation to Jf7 = J^® Jf7 1 is the bounded
operator /® S on Jf5. If T is a not necessarily bounded operator in 3% with domain
δt we define its algebraic ampliation to be the operator in $ with domain
S = δt - ® Jf f which acts on product vectors asT®Iιp®φ = Tψ®φ(ψe<$t,φe 3?*)
(note that / is even). If Γis of definite parity and S e B(^) is of definite parity, then
as operators on ^_® #?\

(2.9)

3. Adapted Processes

Definition 3.1. By an adapted process we mean a family F = (F(i): ί^O) of
operators in Jf7 such that

a) for each ί ̂  0, F(ί) is the algebraic ampliation to δt® ffl l of an operator in J^
with domain δt\

b) there is a family Ff = (F f(ί) : ί ̂  0) also satisfying condition a) such that each
Ff(ί) is adjoint to F(t).

Note that in this definition we are guided by [11] rather than by [10]. Ff is
clearly also an adapted process called the adjoint process to F. We denote by s4 the
complex linear space of all adapted processes.
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Definition 3.2. We say that the adapted process F is simple if there exists an
increasing sequence tr, r = 0, 1 , 2, . . . with ί0 — 0 and tr — > oo such that

oo r

F = Σ Frχ[tr tr+ j, continuous if for arbitrary w e /f 0, m ̂  0, /i , . . . ,/m e /I the vector-
r = 0

valued functions ί->F*(ί)w®V;m(/ι? >/m)> where F* is either F or Ff, are strongly
continuous on [0, oo), and locally square integrable if each such function is strongly
measurable and satisfies

ί
J \\F*(s)u®ψm(f)\\2ds<vo
o

for all ί>0.
We denote j/0> ^c

 and ^L Λe subspaces of j/ of simple, continuous and
locally square integrable processes, respectively. Clearly,

The following proposition is proved exactly as Proposition 3.2 of [10].

Proposition 3.1. Let F e L^oc. TTierc there exists a sequence Fn, n = 1 , 2, . . . of simple
processes such that, for each ί>0, ι/e/f 0, w^O, /15 ...,/me/f

lim
« 0

We say that F e s/ is ei en (respectively odd) if each JF(ί) is the algebraic
ampliation of an even (respectively odd) operator in $t with domain St. Clearly,
every Fe «s/ is uniquely expressible as the sum F+ +F_ of even and odd parts.

Definition 3.3. The annihilation and creation processes are the mutually adjoint
processes A and ̂ f defined by

(3.1)

These processes are clearly odd. Since

\\A*(s)-A*(t)\\2=\\I®a*(χ^

it is clear that they are continuous. It follows from (2.1) that for 0^s<ί and
arbitrary φί9 φ2 e ̂ ,

- A(sj)ψl9 (A(f) - A(s))φ2y + (s-ή <^15 φ2y . (3.2)

Let 0^5 <t and let F,Ff be mutually adjoint operators in $ which are
algebraic ampliations to $s®3?s of operators in J^ with domain <?s. Since A] — Al
is bounded and At — As maps ^s®Jfs to itself, the products (A] — Al)F and
F\At — As) are well defined mutually adjoint operators in $ with domain $t®3?\
which are algebraic ampliations of operators in J^ with domain δt.
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4. Stochastic Integrals and Ito's Formula for Simple Processes

Definition 4.1. Let F, G, HE<$/O and suppose that

oo oo oo

F= Σ FrXltr,,r+l), G = Σ Grχ[tr,Wl), H= Σ HrXlfntr.ύ, (4.1)
r=0 r=0 r=0

where

0 = t0<tί< ... <tr — > oo.

Let M = (M(ί) : t ̂  0) be the family of operators defined inductively by

M(0) = 0;

tr)H, (4.2)

for tr < t ̂  tr + !. Then M is called the stochastic integral of (F, G, 7f) and we write

M (t) =

(4.3)

o

M is an adapted process whose adjoint M1 is given by

Clearly, M depends linearly on (F, G, if). We use the differential notation
= dA^F + GdA + Hdt to describe the situation that M = (M (ί) : t ̂  0) is an adapted
process satisfying

M (f) = M (0) + ί (<MfF + GdA + fids) ,
o

where M(0) is the ampliation to /!0® 3C of an element of B(ά0). Note that, if dM
= dA*F + GdA + Hdt, then

t ; (4.4)

in particular, if F and G are odd and H is even then their stochastic integral is even.

Theorem 4.1. Let F,G,He<^Q and M(t)= $ (dA^F + GdA + Hds). Then for
o

arbitrary u,vea09m,n^Q, fl9...,fm,gl9...,gneά and feQ9

t ( m

f Σ (-
o U= i

Σ (-
fc=l

(4.5)
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Proof. Assume F, G, H given by (4.1). Equation (4.5) clearly holds for ί = 0 assume
inductively that it holds for t = tr. Then for ίr<ί^ίr+1 from (4.2)

From (2.8) and (2.3),

(A(t) - A(tr))M®¥>m(/) = /® α(χ((rιf])M® v>»(/) = θu® a(χ(tr,t])ψm(f)

j = 1 r
Similarly,

(A(ί)-4(ίr))ϋ®v»to)= Σ (-i)π"*ί
fe=l ίr

Substituting we find

ί ( m

= π.Σ(-ιr
tr U=l

n

+ Σ (-1Γ
k = l

Ί

ds.

Since F(s) = Fr, G(s) = G,, if (s) = £Γr for s 6 (ίr, ί) the result now follows from the
additivity of the Lebesgue integral. D

Theorem 4.1 implies that the differentials dA\ a A, and at are independent in
that, if dA*F + GdA + Eat = 0, then F, G, and H may be equated to zero. Indeed, if
the left-hand side of (4.5) vanishes identically in ί, then, taking (generalized)
derivatives of both sides and picking / and g so that each //ί) = gk(t) = 0, we see
that H = Q, since the ψn(f) and ψs(g) corresponding to such / and g are total.
Relaxing separately the conditions /j(ί) = 0, gk(t) = 0 we see similarly that
F=GΞ=O.

We shall see that Theorem 4.1 remains true for locally square integrable
integrands, as is the following which is then essentially Ito's formula.

Theorem 4.2. Let F, G, H, F', G7, H' e j/0,

M(ί) - 1 (<L4fF + GdA + JMs), M'(ί) - J (dtfF + GX<L4 + H'ds).
o o
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Assume that M and Mf have definite parity. Then for arbitrary u,veά0, m, n§:0,
fι9...,fm9gι,...,gneΛ,thefunctionon(Q9 w),
is absolutely continuous with derivative

m Λ M'

= Σ (- l)m-{7χί){<G(ί)0H®γ>m_ !(/'), M'(t)v®ψn(g)> + (-
j=ι

• <Af (oftίΘv,,- iσo, nί>®vΛ(ί/)>}
+ Σ (- !)"-*{(- l)a(M''<.F(ί)"®Ψm(/), M'(t)θv®ψn. !(/

(4-6)

Proof. Assume F, G, if given by (4.1) and that ί", G', ί/' share the same intervals of
constancy. Then, for te(tr,tr+1), writing M(ί) in the form (4.2) with a similar
expression for M'(ί)> we have

<M(t)u®Ψm(f),M'(t)υ®ψn(g)y= Σ Σ<Φi,ΦΊ>,
ί=Q l = Q

where

φ0 = M(tr)u®ψm(f), φλ = (

φ2 = G,(A(t) - A(tr))u®ψn(g) , φ3 = (t- tr)Hru®Ψm(f)

with analogous definitions φ'^φ^φ^φ^. (φ0,φ'oy is independent of ί so that

^<«Wό> = 0. (4.7)

Writing M(tr) as the algebraic ampliation of an operator in $tr and using (2.9),
(2.8), and (2.3) we have

- A(try)M(t,)u<8>ψm(f), F'rv®ψn(g)y

= (- l)sm<M(tr)(I®a(χ(tr>t]))u®ym(f), F'rv®ψn(g)y
m ΐ _

= Σ (-ιγw+»>-j$fj(M(tr)θu®ψm-1(fJ),F'rv®
7=1 ίr

which is clearly absolute continuous as a function of t with derivative

jt <Φo, ΦΊ>= Σ (- l)*M)+m-{/ (0<M(ίr)θu<g>ψm- 1(fJ), F'rυ®ψn(g)y

m _

= Σ (-l)δ(M)+m-JfJ (tKM(tr)θu®ψm_1(Γ), F'(t)υ®ψn(g)>

(4.8)
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Also, from (2.8) and (2.2).

<Φ0, Φ'2> = <Φo, G'r(A(t) ~ A(tr))v®ψn(g)y

and

so that

k=l

Tt<Φo>Φ2>= Σ (-irat k=ι

= Σ (- l)""*<M(ίr
ί) > (4-9)

<^o, fa> = <^o, H'rv®ψn(g)y = <M(tr)u®Ψm(f), H'(ί)υ®Ψn(g)y . (4.10)

By similar arguments to that leading to (4.8) we have

<φί,Φ'0>= Σ (-\}d(M>)+n

t=ι

Using the commutation relation (3.2), (2.9), (2.8), and (2.2) we have
(4.11)

®φm(/), (A(f)

+ (t- 1^ <Fru®ψm(f), F'rv®ψn(g)>

), F'r(I®a(χ(tr,t])v®Ψn(g)y

+ (t-tr) (Fru®ψm(f), F'rv®ψn(g)y

7=1

- tr) <Fru®γm(f), F'r

It follows, using the fact that Fr and M, and similarly F'r and M7, have opposite
parities, that

<^1,f1>=-(-i)^)+W) Σ (-

k=l

• <Frθu®ψm-ί(fj), F'rθv®ψn. 1(0*)> + <Fru®ψm(f), F'rv®ψn(g)y
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> Σ (-1),π — k

r)}Fru®\t>m(f), F'r
> F'ru®ψm(g)y

«— fc

/ c = l

(4.12)

The nilpotency relation a(χ(tιtr])
2 = 0 shows that <^ι,^'2> vanishes, so that

^ι,f2>=0, (4.13)

while, writing H^ as the algebraic ampliation of an operator in $tr and using (2.9),
(2.8), and (2.3)

\n — k

so that, since H'r and Mf have the same parity

4:<^3> = (-l)*W) Σ (-l)"-^^®^

-t,) gk ,
tr

k=l

• (Fru®ψm(f), (t-t

(f), H'(t)v®Ψn(g)y + ( -

Similar arguments show that

. (4.14)

, (4.15)

(4-16)



Fermion Ito's Formula 483

Σ (-iT-ifj
7=1

2,Φ'3y = Σ (-j=ι

, (4.17)

<Φ3, ΦΌ> = <H(t)u®Ψm(f),

< ;̂ > = <H(tyu®Ψm(f), (A\t)

<Φ3,Φ2>= Σ (~l)"fl ί t=ι

, F'(t)v®Ψn(g)y , (4.20)

(4.21)

, (ί- ίr)tf;»®φB(0)> . (4.22)

Summing the Eqs. (4.7X4.22) and recalling (4.2) and the analogous expression for
M'(ί) establishes (4.6). D

5. Extension to Locally Square Integrable Processes

Equating (F, G', #0 to (F, G, H), vtou,n to m, and g to / in Theorem 4.2 we get

d

=ι

.Σ {I/XOI'EIIM^M®^-!^)!!^ ||M(ί)M®φm(/)||2]

+ ||M(ί)w®ψm(/)||2

(5.1)
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for arbitrary F,G,Hε<$/0, where we use the inequality 2Re<^1?^2>^ \\φι\\2

Now let F,G,HeL2

oc. By Proposition 3.1 there exist Fn, Gπ, Hn e j/0,
n= 1,2, ... such that for arbitrary we>f 0 , m^O, /15 ...,/OTe^, and ί>0

m ^ - ^ 0 . (5.2)
Let "

s ) , n=l,2,...9 ί^O.
o

Theorem 5.1. For arbitrary ueά0, m^O, /1? ...,/me/l, and T^O ίfte sequence
Mn(t)u®\pm(f\ n=l,2, ... converges in $ uniformly for ίe[0, T] ίo α /imzί
independent of the choice of Fn, Gn, Hn e j/0, n = 1 , 2, . . . satisfying (5.2).

Proof. The proof is by induction on m. When m = 0, replacing M by Mp — Mq in
(5.1) gives

d_
Tt

+ \\(Hp-Hq)u®Ψo\\2,

whence using the integrating factor e~'

\\(Mp(t)-Mq(t))u®Ψo\\2

^let-s{\\(Fp(s)-Fq(s))u®Ψo\\2 + \\(Hp(s)-Hq(s))u®Ψo\\2}ds
0

^eτ]{\\(Fp(s)-Fq(S))u®Ψo\\2+\\(Hp(s)-Hq(s))u®Ψo\\2}ds
0

whenever ί e [0, T]. From this it is clear that the sequence Mn(t)u®ψ0, n = 1,2,...
is uniformly Cauchy and thus uniformly convergent for ί e [0, T].

For general m, from (5.1)

d_:

dt
m

^ Σ {\m2mMp-Mq)θu®Ψm_1(fJ)\2 + \\(Mp-Mq)u®Ψm(f )\\2l

+ (m+\)\\(Fp-Fq)u®ψm(f)\\2+\\(Hp-Hq)u®ψm(f)\\2.

Using the integrating factor exp ί — ί— J Σ |/:(s)|2ίίs>, we find
0 . 7 = 1

p-q

t m
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• [ .Σ {l/X^lΊKMpW-M^βttOφm-iσOll2

+ II (Gp(s) - Gq(s))θu®ψn _ ,(fj) || 2} + (m + 1) || (Fp(s) - Fq(s))u®ψm(f) \\ 2

\\(Hp(s)-Hq(s))u®ψm(f)\\2]ds

m \ 1
Σl//τ)|2 + l )dτ

• ί Γ Σ {i/x
o|_./=ι

^

Making the inductive assumption that each Mn(s)θu®ιpm-1(fj), n=l,2, ... is
uniformly convergent hence uniformly Cauchy for s e [0, Γ], recalling that each fj
is square integrable, and using (5.2) we conclude that Mn(t)θu®ψm(f), n = 1 , 2, . . . is
uniformly Cauchy hence uniformly convergent for t e [0, Γ]. A similar inductive
argument shows that the limit does not depend on choice of (Fn, Gn, Hn), n = 1 , 2, . . .
satisfying (5.2). D

The operator M(t) defined on $ by

f}= \imMn(t)u®ψm(f)
n

extends uniquely as an algebraic ampliation to it®^\ we denote the extension
also by M(t). Then M = (M(t) : t ̂  0) is an adapted process called the stochastic
integral of the locally square integrable processes (F, G, H), and denoted by

M (ί) - } (dA*F + GdA + Eds) , t ̂  0 .
o

The adjoint process Mf(ί) is given by

In view of the uniformity of the convergence in Theorem 5.1, the integrated
/ Γ ί / m \ ]\

form using the integrating factor exp < — j Σ l//(s)|2 + 1 ds > of (5.1), namely
V I 0 \ j = l / J /

0

m

.

(5.3)
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remain valid in the transition from simple to locally square integrable integrands,
as does the corresponding estimate,

ί Σ I//0)2K
^τ j = l

L m
Σ {\fj(^\2\\(M(τ)-M(s))θu^ψm_ί(fj)\\2+ \\G(τ)θu®ψm-ί(fJ)\\2}
= ι

got by replacing (F, G, #) by (Fχ[s> ̂  GχlSt „>, Hχ[Sί ^ in (5.3). From this it follows
that the stochastic integral M(ί) is a continuous process; in particular, the
functions t-*M(i)u®ψm(f) are bounded on finite intervals. From this it follows
that we may pass to the limit of simple approximations in (4.5) and the integrated
form of (4.6) to obtain that Theorem 4.1 and 4.2 hold for integrands F, G, H e L2

OC.
We denote by Jf the set of all adapted processes M satisfying dM = dA*F

+ GdA+Hdt for locally square-integrable F, G, and H, with the further property
that for each ί^O, M(ί), F(ί), G(ί), and H(t) are bounded operators, and

sup max{||M(s)||, ||F(s)||, |
O ^ s ^ ί

Theorem 6.3 below shows that Jl is far from empty.

Theorem 5.2. Jί is a *-algebra under poίntwίse operator multiplication and the
involution M-^M1". Furthermore, for M1?

d(M1M2) = dM1 - M2 + M1 - dM2 + dM1 - dM2 , (5.4)

where, assuming that dMj = dA^Fj+GjdA + Hjdt and that M1 ?M2 are of definite
parity,

dM, - M2 - dA^F,M2 + ( - l)δ(M^GlM2dA + i^ M 2Λ , (5.5)

1F2 + M,G2dA + Mi^dί , (5.6)

GίF2dt. (5.7)

Proof. The uniform boundedness of My, F^ , G^ , and H; shows that the integrands
on the right-hand side of (5.5) and (5.6) are locally square integrable so that the
corresponding stochastic integrals are well defined. Equation (5.4) now follows by
combining (4.5) with (4.6), in which we set M = Mj, M' = M2. D

Theorem 5.2 is the rigorous justification of the Ito product formula (1.3) [3].
Just as the classical stochastic integral against Brownian motion is contained

as a special case of the Boson stochastic calculus of [10], an Ito-Clifford stochastic
integral [4] can be obtained from that developed here as follows.

We take £0 = <C so that ̂  = J^. Equipped with the tracial state
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the von Neumann algebra # generated by the operators

is a probability gauge space [12]. The map T-> Tt/;0 from ̂  to ffl extends uniquely
to a Hubert space isomorphism D, the duality transformation of [13], from L2(^)
onto $e . % is generated by the operators Ψ(f) = A\t) + A(f), t ̂  0. We denote by <βt

the von Neumann subalgebra generated by the Ψ(s), 0 ̂  5 ̂  ί then D maps
onto ^®v?0, where t//0 is the vacuum in Jf '. We write || ||2 for the norm in
and use the traciality of the state ω to obtain the estimate

(5.8)

valid for F e<$9

Theorem 5.3. Let F : [0, oo)-^L2(^) fee measurable and such that, for each ί^O,

j \\F(s)\\lds<ao and F(t)eL2(%t\ so that [4] the Ito-Clίfford integral f F(s)dΨ(s)
o o
exists. Then F is locally square integrable and, denoting its even and odd parts by F ±

we have

as operators with domain

00

Proof. Suppose first that F is ^-valued and simple, say F= Σ Frχ[tr9tr+l}, where
> oo. Then [4] " = 0

J = 0

= Σ (FJ+ + Fj-)(Ai(tJ+ 0 - A\tj) + A(tj+ 0 -
J = 0

+ (Fr + + Fr _)μt(ί) - A\tr) + Λ(ί) - ^(ίr))

= Σ {(^+1)-^t(ίJ))(FJ+-FJ-) + (^++FJ-)(^

More generally, if F satisfies the hypothesis of the theorem there exists a sequence
Fp, p=l,2,.. . of simple ^-valued processes such that, for each ί^O,

j ||F(s) - F,(s) || |ds —> 0 then f F(s)dΨ(s) = lim J Fp(s)dΨ(s), where the limit is in
0 P 0 p 0
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the norm of L2(#f). (In [4] the F are L2(^)- valued, rather than ^-valued, however,
using the density of each <gt in L (#r) it can be seen that there is no loss of generality
in our stronger assumption.) The theorem now follows from the inequality

l|Gv»(/ι.../JII^ΛJG«2, (5.9)

where Pm is a polynomial in the |</) ,/fc>| ,j, k=\,...,m valid for arbitrary G e L2(<^),
which will now be proved by induction on m. When m = 0, | |Gψoll = ||G||2 by
definition of || ||2. More generally,

||Gα(/mV(/m_ t) ... flt(/l

m-1

J)Vm-ι(/m)ll+ Σ K/»,/y>l \\Gψm-2(f3'm)\\ .

Inequality (5.9) now follows from the inductive hypothesis, together with the
inequality (5.8) in which we take F = a'*(fm) + a(fm). D

6. Stochastic Evolutions

Let Lp j— 1, 2, 3 be bounded operators on the initial space AQ and denote by L7 ,
j= 1,2, 3 their ampliations to $. Assume L1? L2 odd and L3 even. Set

C = max{| |L J | |,j=l,2,3}.

We show that the stochastic differential equation

dU = dA*UL, + U(L2dA + L3dί) , (7(0) - / (6. 1)

has a unique solution.
We establish existence iteratively, defining processes Up9 p = 0, 1,2, ... induc-

tively by

Clearly, [70eL2

oc. Assume C/p_1eL2

o c. Then the processes t-^Up.^Lj are
strongly measurable, moreover, for arbitrary ue^f 0, m^O, fl9 ...9fme£9 and ί>0

0

f ~ t ~

o p J m o J p

so that these processes are locally square integrable. But then their stochastic
integral exists and is likewise locally square integrable. Thus Up is well defined for
all p.
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Clearly, each Up is even. Also

,

'

(6.3)

Theorem 6.1. For arbitrary p>0, m^O, w e / f 0 , /15 ...,/we/f, αrcd ί>0,

h i Σ \fj\2}t^C2p(2m + 2Y+m\\u\\2^p Σ l l / j l l 2 . (6.4)
O j = l J j = l

Proo/. We give the proof for Up9 that for Ϊ/J being similarly based on the iteration
(6.3). The proof is by induction on m. From the estimate (5.1) we have

£t\\(Up-Up-Ju®ψm(f)\\2

m

^ Σ

+ (m+l)||(^_1-^_2)L^

ί ' m }
Using the integrating factor exps — ί— J Σ I//I2 r we °t>tain

I 0 . 7 = 1 J

ί m

J Σ I//
s j = 1

.

+ .Σ

(6.5)
J

When m = Q, (6.5) becomes

+ ||(l/p_1(S)-[/p_2(s))L3M(x)Vo||
2}ii5,

whence we obtain by repetition that
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so that (6.4) holds in this case. More generally, making the inductive assumption
that

ϊU)|| f || 2

s+l Σ^lf I 2 r s p C 2 p (2m) p + m ~ 1 \\u\\2QX.Ό Σ^II/ΊI 2

0 k=l j k=l

we see that the first term on the right of (6.5) is bounded above by

Σeχpj ί+ί ΣωIΛ, ..
7=1 ( 0 fe=l J O

m

•(2m)p+m-1||M||2exp

Since, integrating by parts,

ί exp if \fj\2 j \fj(s)\^ds = f exp if \f}\
2

0 [ s } 0 [ s

this is in turn bounded above by

Similarly, the second term on the right of (6.5) is bounded above by

m ( t m ~) t Ct 1

Σ exp ί + j Σϋ)IΛI2Mexp]ίl/J |
2[s'-1ds((p-l)!)-1C2'-2

J = l I 0 fe=l J O (s J

gmexp ί+J Σ I/
(. o j = ι

•(2m)p+m-2||M||2expΣ ll/)-!!2.
j=ι

Thus (6.5) gives

Γ ί m Ί Γ m

ί+J Σ |// ^C2^||W||2exp Σ l l / y l l 2

( O j = l J 0=1

t ( t m

f «
0

(6.6)
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We now establish (6.4) by induction on p, noting that when p = 1,

\\(Vp(t)-Up.,(t))u®ιpm(f)\\2

, + L2dA + L3dt)u®ψm(f) f

ι/;m(/) - A(t)L2u®\pm(f) + tL3u® ψm(f) \\2

O J - 1 " J

using (2.4), together with the inequality ||^4*(ί)||2 ̂  t. Thus (6.4) holds in this case.
Making the inductive assumption in (6.6) that

f Σ I/
O j = l

»-l +m

•IIM2

and using the inequality

establishes (6.4) in all generality. D

From the estimate (6.4) it is clear that

U(t)u®ψm(f)= lim E

= M®V»σ)+ Σ (UP(t}-UP-mu®ym(f) (6.7)
P = l

exists and defines an even adapted process U. Moreover, the convergence is
uniform for t in finite intervals enabling us to take strong limits on vectors of form
u®Ψm(f) on both sides of (6.2) to conclude that U satisfies (6.1).

Theorem 6.2. The solution U of (6.1) is unique.

Proof. It suffices to show that the only solution of (6.1) with the initial condition
replaced by £7(0) = 0 is U(t) = 0. Since if U satisfies this equation, so do its even and
odd parts and we may assume that U is of definite parity. Then from the estimate
(5.1), for arbitrary we/!0, w^O, fl9 ...,/me/f,

^\\U(t)u®ψm(f)\\2

ί Σ
j=ι
+ ||l7(ί)L20w®φm_1(/')||2}

(6.8)
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We prove that U(t)u®ψm(f) = Q by induction on m. When m = 0 (6.8) becomes
2

whence we obtain, recalling that U(0) = 0 and using the integrating factor e~\

^ ί *'"'{ II U(s)L, u® ψo I I 2 + II t7(s)M® Vo I I 2}ώ. (6.9)

Since 17 is a stochastic integral, s-> U(s)LjU®ψQ is continuous and hence bounded
on [0, f] for each u e /I0. Hence by the principle of uniform boundedness there exists
M;>0 such that, for all s e [0, ί]

\\U(s)LjU®ψ0\\2£Mj\\u\\2.

Iteration of the estimate (6.9) now shows that ||C7(ί)L/w®ψ0||
2 = 0. Making the

inductive assumption that each \\U(t)v®ψrn_ ^g)^ =0, we have from (6.8) that

Tt\\u(t)u®ψm(f)\\2ϊ]Σ\fj(t)l

ί m

— t— J Σ I / / I 2 Γ 5 we obtain
0 . 7 = 1 l

ί m

J Σ I//
s j = l

A similar argument to that of the case m = 0 now gives that || U(t)u®ψm(f) \\ 2 = 0 as
required. D

We now find necessary conditions on (Ll5 L2, L3) for the solution U of (6.1) to
be unitary. Since if this is so, 17, C7L1? £7L2, ί7L3 are uniformly bounded on finite
intervals, we can use Theorem 5.2 to write

= dA^Ll [7f U + Ll [7f UdA + L^ C7f t/Λ + dA* U* UL,

+ U^UL2dA+U^UL3dt-^LlU^ULίdt .

Since L7tC7 = 7 this gives, on equating to zero coefficients of the differentials,

Hence for unitarity of U it is necessary that

(L1?L2,L3H(L, -L\iH-±UL), (6.10)

where Le 5(>I0) is arbitrary and H e B(ά0) is self-adjoint. Theorem 6.3 below shows
that this condition is also sufficient.
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For a triple of form (6.10) we denote by Jδf , $£' the operators on the Banach
space B(A0),

'(X) = - i\H9 X] -\(ULX - 2UΘXΘL + XUL) . ( ' '

Theorem 6.3. A necessary and sufficient condition that the solution U of (6.1) be
unitary is that (Lί9L2,L3) be of the form (6.10).

Proof. For the sufficiency we first prove that if (6.10) holds, t/f is isometric. From
(4.6) we have, for arbitrary u,υeάQ, m,rc^0, /1? ...9fm9gl9 ...9gneA

~

and since C/t(0) = / it follows that t/f is isometric. To show that U is also isometric
we again use (4.6) to write

, - v.,_ v r m J), C/(ί)tX8>ψn(0)>
at

= Σ (-

+ Σ (-i
fe=l

- <U(t)u®Ψm(f), U(t)ϋθυ®ψm- 1(gk)>}gk(t)
f ) , U(t)v®Ψn(g)y

+ <C/(ί)u®ψm(/),

+ <U(t)Lu®ψm(f),

Hence the bounded operators Km>n(f,g; t) defined on /I0 by

<«, Km,,(f,g; ί)»> = <U(t)u®ψm(f), U(t)v®Ψn(g)y

satisfy the system of (weak sense) ordinary differential equations

£tKm.n(f,g; t) = θ ΣJ-ir-JffcKK^JlJJ.g; ί),L]

+ θ Σ (-!?'*&, **,.-!(/, 9*1 i)]gk(t) + &'(KmiJif,g;t))
k=ί

(6.12)

with the initial condition [which follows from ί7(0) = /]

(6-13)
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We prove by induction on N = m + n that Km „(/, g ί) is equal to its initial value for
all f^O. When N = 0so that m = n = 0, (6.12) becomes

Since <£' is bounded the solution with the given initial condition is unique; since
«5P'(/) = 0, this solution is jK0t0(ί) = jK0f0(0) = /. Making the inductive assumption
that Km_ 1 > M(/ 7,g; ί), KOT> „_!(/, gk\ t) are identically equal to their initial values
given by (6.13), we have from (6.12) that

Hence by the reasoning of the case N = 0, Kmtn(f,g; t) is also identically equal to its
initial value (6.13). But then from the definition of Kmtn(f,g;t) we see that
(U(t)u®ψm(f), U(t)v®ψn(g)y is also identically equal to its initial value
(u®\pm(f\v®\pn(g)y, and so U(t) is isometric as required. D

7. Applications

Let U be the unitary solution of the stochastic differential equation dU
= dA!uL-UDdA+.U(iff-$DL)dt9 17(0) = /, where L,HeB(A0) and H = H*.
For each XεB(£0) defines the process (X(t):t^0) by X(t) = U(t)X®IU(tf.
Applying Theorem 5.2 to the processes UX®I and t/f, if X is of definite parity
we find

= άA\LX - ( - V)d(x}XLγ + (XU - ( - 1 δ(x)UX

with Sf given by (6.11). When X is a Fermion annihilation operator a satisfying
{a, α f} = /, jf is a Fermion diffusion in the sense of [3].

We define the vacuum conditional expectation E0 : J3(^)->jB(^0) by

<w, E0[J]ι;> =

and define families of operators (Tt: ί^O) on >?0 and (̂ : ί^O) on

Tt = E0[t/(ί)] ,

Theorem 7.1. a) (7J : ί ̂  0) is a uniformly continuous contraction semigroup on ά0 with
infinitesimal generator

~,t=0

b) (SΓt\ ί^O) is a uniformly continuous semigroup of completely positive maps on
with infinitesimal generator j£? given by (6.11).
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Proof, a) Tt is clearly a contraction. By Theorem 4.1 with m = n = Q, for u,veάθ9

= f<u,TJ(iff-iL tL)»>ds,
0

whence

b) ^ is completely positive being the composition of an ampliation, a unitary
conjugation and a conditional expectation, each of which is completely positive.
For M, v e /?0, X e B(^o) °f definite parity, we have

<w, (̂ (JSQ - JSQt;> -

=
Since

we have, applying Theorem 4.2 with m = n = 0 to [7f and

with 3! given by (6.11), whence b) follows, ϋ

As in the Boson case perturbation of these semigroups leads to noncommuta-
tive Feynman-Kac formulae, in the case [2] of (Tt: ί^O) of the type of [8] and in
particular including a Fermion Feynman-Kac formula of the type of [9], and in
the case of (̂  : t ̂ 0) of the type of [1]. The construction of a Fermion stochastic
dilation of an arbitrary uniformly continuous completely positive semigroup
similar to that of the Boson case [11] is evidently possible. Details will be
published elsewhere.

Both authors acknowledge many useful discussions with K. R. Parthasarathy. We are
grateful to the referee for correcting a number of inaccuracies and suggesting several clarifications.
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