

© Springer-Verlag 1984

Quantum Logic, State Space Geometry and Operator Algebras

L. J. Bunce and J. D. Maitland Wright

The University of Reading, Department of Mathematics, Whiteknights, Reading, RG6 2AX, United Kingdom

Abstract. The problem of characterising those quantum logics which can be identified with the lattice of projections in a JBW-algebra or a von Neumann algebra is considered. For quantum logics which satisfy the countable chain condition and which have no Type I_2 part, a characterisation in terms of geometric properties of the quantum state space is given.

Introduction

Quantum logics, as defined below, are σ -complete orthomodular lattices. They have been vigorously investigated in recent years. In most mathematical formulations of the foundations of quantum mechanics the lattice of "questions" associated with a physical system is a quantum logic.

Important examples of quantum logics are, in order of successive generalisation:

- (a) The lattice of all closed subspaces of a separable Hilbert space.
- (b) The lattice of all projections in a von Neumann algebra.
- (c) The lattice of all projections in certain Jordan operator algebras known as JBW-algebras.

Characterisation of those quantum logics isomorphic to (a) have been obtained by Piron, in 1964, (see [8]), and by Wilbur [9], in 1977. Can one characterise those quantum logics isomorphic to the lattice of all projections in a von Neumann algebra, or in a JBW-algebra, by geometric properties of the quantum state space of a quantum logic?

We obtain a partial solution to this problem by restricting our attention to quantum logics which satisfy the countable chain condition and which have no Type I_2 part (see below for definitions). We show that, when Q is such a quantum logic, there are three geometric properties which will be satisfied by the quantum state space of Q if, and only if, Q is isomorphic to the lattice of all projections in a JBW-algebra.

We also, as a corollary, give a geometric characterisation of those orthomodular

lattices which are isomorphic to the projection lattice of a countably decomposable von Neumann algebra with no Type I_2 direct summand.

Let L be an orthomodular lattice with orthocomplementation $x \mapsto x^{\perp}$. A probability measure, ϕ , on L is a non-negative real valued function, $\phi: L \to \mathbb{R}_+$, such that $\phi(0) = 0$, $\phi(1) = 1$, and if (x_n) is a sequence, in L, of mutually disjoint elements for which $\vee x_n$ exists, then $\phi(\vee x_n) = \Sigma \phi(x_n)$. (The sequence (x_n) is said to be mutually disjoint if $x_n \leq x_m^{\perp}$, for every m, n, with $m \neq n$.) The set of all probability measures on L is a convex set which we shall denote by K_L .

The convex set K_L is said to be *strongly full* if the following three properties are satisfied.

(1) For $x, y \in L$ we have $x \le y$ if

$$\{\phi \in K_L: \phi(x) = 1\} \subseteq \{\phi \in K_L: \phi(y) = 1\}.$$

- (2) Whenever $x, y \in L$ and $\phi \in K_L$ with $\phi(x) = \phi(y) = 1$, then $\phi(x \land y) = 1$.
- (3) Whenever ϕ lies in a proper norm-exposed face of K_L , then $\phi(x) = 0$ for some non-zero element x of L. (A face F of K_L is said to be norm-exposed if there exists a bounded affine function, b, on K_L such that b > 0 on $K_L \setminus F$ and b = 0 on F.)

The orthomodular lattice, L, is said to satisfy the countable chain conditions (abbreviated c.c.c.) if every family of mutually disjoint elements in L is at most countable. It is said that L is a quantum logic if $\vee x_n$ exists in L whenever the sequence (x_n) , of elements of L, is mutually disjoint. It is easy to see that a quantum logic which satisfies the c.c.c. is a complete orthomodular lattice.

Consider the orthomodular lattice L and let x be an element of L. The order interval, $L[0,x] = \{y \in L; y \le x\}$, is an orthomodular sublattice of L with the complementation $y \to x \land y^{\perp}$. The element x of L is said to be *abelian* if L[0,x] is distributive. The elements y and z of L are said to *commute* if y and z generate a distributive sublattice of L. The set of all those elements of L which commute with every other element of L is said to be the *centre*, L (L), of L. It is said that L is factor if L (L) = L (L).

If L is a complete orthomodular lattice, then so is Z(L) ([5], [8]) and, consequently, for each x in L we can define the *central support* of x in L:

$$c(x) = \wedge \{ y \in Z(L); x \leq y \} \in Z(L).$$

We say that the complete orthomodular lattice, L, has $Type\ I_2$ part if there exist, in L, disjoint non-zero abelian elements x, y such that $x \lor y = c(x) = c(y)$; is disjoint abelian elements x, y can be chosen so that $x \lor y = c(x) = c(y) = 1$, then L is said to be of $Type\ I_2$.

Recall that the convex set, F, is said to be *spectral* if it is the base of a base-norm space, (V, F), and (V, F) is in spectral duality (see [1, Sects. 6, 7]) with $A^b(F) \simeq V^*$, where $A^b(F)$ represents the bounded affine functions on F. The spectral convex set F is *elliptic* if P(Q - Q')P' = 0 for all P-projections P, Q of $A^b(F)$ (Q' represents the quasi-complement of the P-projection Q, [1]).

Iochum and Schultz [6] have shown that a convex set is (affinely isomorphic to) the normal state space of a JBW-algebra if and only if it is spectral and elliptic.

Quantum Logic 347

Theorem. Let L be a quantum logic satisfying the countable chain condition with no Type I_2 part. Then L is isomorphic to the lattice of all projections in a JBW-algebra if and only if K_L is strongly full, spectral and elliptic.

Proof. Suppose that $K = K_L$ is strongly full, spectral and elliptic. Given an element x in L, define the element \hat{x} of $A^b(K)^+$, by $\hat{x}(\lambda\phi + (1-\lambda)\psi) = \lambda\phi(x) + (1-\lambda)\psi(x)$, $\lambda \in [0,1]$, ϕ , $\psi \in K$. Notice then that condition (1) in the definition of strongly full implies that the map $L \to \hat{L} = \{\hat{x} : x \in L\}$ is an order isomorphism and that \hat{L} is an orthomodular lattice, isomorphic to L, with the lattice operations defined by $\hat{x} \vee \hat{y} = (x \vee y)^c$, $\hat{x} \wedge \hat{y} = (x \wedge y)^c$, $(\hat{x})^\perp = (x^\perp)^c$. We may therefore suppose that L is contained in $A^b(K)^+$ and that $x = \hat{x}$, for each x in L. Observe that (with the above identification) 1 is the order unit of $A^b(K)$, and that for x, y in L,

$$x^{\perp} = 1 - x$$
; $x \vee y = x + y$, if $x \leq y^{\perp}$; $x \wedge y^{\perp} = x - y$, if $y \leq x$.

Furthermore, since K is spectral and elliptic, we can identify $A^b(K)$ with a JBW-algebra, M, which has normal state space K, by the result of Iochum and Schultz, [6, Theorem 1.5], mentioned above.

Let $\phi \in K$. The condition (2), in the definition of strongly full, implies that the set $\{x \in L; \phi(x) = 1\}$ is downward directed. Since L is a complete lattice, this means that $\phi(s_L(\phi)) = 1$, where $s_L(\phi) = \wedge \{x \in L; \phi(x) = 1\}$, the support of ϕ in L. Let $(\phi_i)_{i \in I}$ be a maximal family in K for which the $s_L(\phi_i)$ are mutually disjoint. If I is infinite, then we can take $I = \mathbb{N}$, since L satisfies the c.c.c.. It is easy to check that condition (1) implies that for each non-zero y in L there exists ψ in K such that $\psi(y) = 1$. It follows from this that $\sum s_L(\phi_n) = 1$. Now with $\phi = \sum (1/2^n)\phi_n$, we see that $s_L(\phi) = 1$ (when I is finite, the proof of the existence of such ϕ is similar). Observe now that condition (3) implies that ϕ is a faithful normal state on M. In addition, since a JBW-algebra has a faithful normal state if and only if its lattice of projections satisfies the c.c.c. (the proof is similar to the usual W^* -proof, see [7, II.3.19]), it follows that every projection in M is the support projection of some normal state on M.

Let now p belong to \mathbb{P} , the projection lattice of M, such that $p \neq 0, 1$. By the above remarks, there exist ϕ in K such that $p = s(\phi)$ —the support projection of ϕ in \mathbb{P} . Since ϕ then lies in a proper norm exposed face of K, there exists x in L, $x \neq 1$, with $\phi(x) = 1$. But then, $\phi(1 - r(1 - x)) = 1$, and so $p = s(\phi) \leq 1 - r(1 - x) \leq x$.

It follows that $L \subseteq \mathbb{P}$. Indeed, let $y \in L$. Then r(y) $r(1-y) \neq 1$. Suppose that $q = r(y)r(1-y) \neq 0$. Then, it follows from the preceding paragraph that there exist a non-zero x in L such that $x \leq q \leq r(y)$, r(1-y). Consequently, $x \leq y$ and $x \leq 1-y$, implying that x = 0, a contradiction. Hence, r(y)r(1-y) = 0, which implies that y(1-y) = 0. Therefore y is a projection.

Let \vee denote lattice suprema in \mathbb{P} . Then, for x, y in L, $x \vee y \leq x \vee y$. On the other hand, given ϕ in K, if $\phi(x \vee y) = 0$, then $\phi(x) = \phi(y) = 0$, so $\phi(x \vee y) = 0$, by (2). Hence, by (1), $x \vee y \leq x \vee y$. It follows that L is a sublattice of \mathbb{P} .

Finally, since, as we have seen, given $p \in \mathbb{P}$, $p \neq 0$, there exist non-zero elements of L dominated by p, we can choose a maximal mutually disjoint family $\{x_{\alpha}\}$ in L dominated by p. Then, for each ϕ in K_L , $\phi(\vee x_{\alpha}) = \Sigma \phi\{x_{\alpha}\} = \phi(\Sigma x_{\alpha})$. So, $\vee x_{\alpha} = \Sigma x_{\alpha} \leq p$ and hence $\vee x_{\alpha} = p$, by maximality. Consequently, $L = \mathbb{P}$.

To obtain the converse we shall make essential use of the results of [3] which generalizes the work of Christensen [4] and Yeadon [10, 11].

Let us now suppose that L is isomorphic to the projection lattice \mathbb{P} , of a JBW-algebra, M. Then $K = K_L$ is affinely isomorphic to the set of probability measures (as defined here) on \mathbb{P} , also denoted by K. From [3, Lemma 3.5(iii)], for example, we see that M has no Type I_2 direct summand. Therefore, since \mathbb{P} satisfies the c.c.c., it follows from [3, Corollary 5.5] that K can be identified with the normal state space of M. Therefore, as can be seen from the results of [1], K is strongly full for \mathbb{P} and, by [6, Theorem 1.5], we know that K is spectral and elliptic. This completes the proof.

By [6, Theorem 2.9], the normal state space of a JBW-algebra *M* has the global 3-ball property if, and only if, *M* is the self-ajoint part of a von Neumann algebra. This observation and the above theorem gives the following corollary.

Corollary. A quantum logic L which satisfies the countable chain condition and with no Type I_2 part is isomorphic to the projection lattice of a von Neumann algebra if and only if K_L is strongly full, spectral, elliptic and has the global 3-ball property.

References

- Alfsen, E. M., Shultz, F. W.: Non-commutative spectral theory for affine function spaces on convex sets. Mem. Am. Math. Soc. 172 (1976)
- Alfsen, E. M., Shultz, F. W.: On non-commutative spectral theory and Jordan algebras. Proc. London Math. Soc. 38, 497–516 (1979)
- 3. Bunce, L. J., Wright, J. D. M.: Quantum measures and states on Jordan algebras. Commun. Math. Phys. (to appear)
- Christensen, E.: Measures on projections and physical states. Commun. Math. Phys. 86, 529–538, (1982)
- 5. Holland, S. S. Jr.: A Radon-Nikodym theorem in dimension lattices. Trans. Am. Math. Soc. 108, 67–87, (1963)
- Iochum, B., Schultz, F. W.: Normal state spaces of Jordan and von Neumann algebras. J. Funct. Anal. 50, 317–328 (1983)
- 7. Takesaki, M.: Theory of operators I. Berlin. Heidelberg, New York: Springer 1979
- 8. Varadarajan, V. S.: Geometry of quantum theory. Vol. I. Amsterdam: van Nostrand 1968
- 9. Wilbur, W. J.: On characterising the standard quantum logics. Trans. Am. Math. Soc. 233, 265–282 (1977)
- Yeadon, F. J.: Measures on projections in W*-algebras of Type II. Bull. London Math. Soc. 15, 139– 145 (1983)
- 11. Yeadon, F. J.: Finitely additive measures on projections in finite W^* -algebras. Preprint

Communicated by H. Araki Received February 1, 1984