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Abstract. Derrida’s random energy model is considered. Almost sure and L°
convergence of the free energy at any inverse temperature f are proven.
Rigorous upper and lower bounds to the finite size corrections to the free
energy are given.

Introduction

The Random Energy (R.E.) Model has been introduced by Derrida [1, II] as a
simplified version of the mean field Sherrington-Kirkpatrick (S.K.) model [1II] of a
spin glass.

Both in the S.K. and in the R.E. models, the energies associated to each spin
configuration in the volume N, are gaussian random variables with mean zero and
covariance N.

In the S.K. model, we have an explicit microscopic hamiltonian, where the
couplings are assumed to be independent gaussian normalized random variables
so that the energies turn out to be dependent, whereas in the R.E. model, the
microscopic hamiltonian is not specified and the energies are supposed to be
independent random variables with the proper normalization. Thus the R.E.
partition function has the following expression:

2N
Zy= Y expB)/NX;; X.,eN(0,1). (L1)
i=1

In a recent paper, Eisele [TV] studied the R.E. model in a slightly more general
situation by means of the theory of large deviations. He rigorously proved that the
quenched free energy converges as N—oo, to a function F(f) whose second

derivative is discontinuous at f=f8,=|/2log?2 (third order phase transition). He
was able to prove the almost sure convergence of the free energy only for f<8,,
whereas he showed the stochastic convergence for any f. In the present paper we
study the R.E. model by means of quite elementary techniques and establish the
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almost sure convergence for any > 0 together with I” convergence for any p> 1.
We analyze the rate of convergence of the free energy and give explicit bounds to

. . logN
the finite size corrections that are of the expected form <~ % for p=p,,
~exp(—constN) for f< g, [II] . We also show that the convergence is always

geometric (see Definition 4.1 of [IV]) contrary to the conjecture formulated by
Eisele (see remark after Theorem 5.4 of [IV]).

~ Let us now give a short description of the main idea of the proof. We divide the
range of the random variables X, namely, the real line into intervals A, and for
any given sample X, ... X,., we treat separately the contribution to the partition
function coming from the different intervals. It turns out that with high
probability, the “occupation number” of an interval

[X]/N}/2log2,(X +4X)]/N|/2log2[

is of the order:
2M2~NX? for |X|<1, and practically zero for |X|>1,
so that we are led to examine the function:
Gy(X)=(1—-X?)log2+p)/2log2X, |X|<1, (12)

which can be regarded as the contribution to the free energy per unit volume
coming from the “level” X in a typical sample. Now it is clear that the main
contribution will come from the level X(f), where the function G4(X) gets its
maximum value in the interval [0, 1] (the negative values of X can be seen to be
unimportant).

Therefore, it is reasonable to expect that the free energy converges as N — oo to
the function:

Fp=G4X(P)). (L3)

We rigorously prove this result in the case of the Derrida’s (gaussian spin ) model
for the sake of simplicity; but our method, that in fact goes back to the non-
rigorous calculations made by Derrida [I, IT], can be applied as well with minor
changes to the class of models considered in [IV].

In Sect. II, we state the results in a precise form (Theorem I and
Propositions 2-5).

The proof of Theorem I is very simple and it is contained in Sect. III.

The proof of Propositions 2-5, which is little more lengthy, is given in
Sect. IV.

II. Definitions and Results

Let (2, Z,IP) be a probability space. We assume that for any N €N there exists a
family {X },=1... 2V of independent normalized gaussian random variables that
are defined on (Q, 2, IP).

Let § be a positive real number; we define the random variables:

2N
Zy(B)= ¥ exp(B)/N X)), (IL1)
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and the random variables:

Fy(B)= logZN(ﬁ) (IL2)

(finite volume free energy).

Define also: ,=|/2log2 and

B*2+p22 if 0<SB=p,,
= 1L
o {ﬁﬁﬂ it pzB,. )
Our main result is:
Theorem 1. V >0,

I&im Fy(B)=F(pB) almost surely

and in I7(Q,2,P) for any 1 <p<co.
The following propositions summarize our results about finite size corrections:

Proposition 2. Let f= 3, then for almost all w € Q there exists N _(w) such that for
al NN _(w)

1
Fy(B)Z F(B)— 2%2 OJgVN +o <1°§]N> . (IL4)
Moreover,
E(EO)Z )~ 55 25 102N, aws)

for all sufficiently large N.

Proposition 3. Let f=f3,, then for all positive 6 and for almost all w € Q there exists
N . (w, d) such that for any N=N ,(w, ),

FN(ﬂ)<F(ﬂ)+( s +5>l°gN +o(‘°gN ) (IL6)
267 N
Moreover,

E(Fy(B) <F(B)+ ( ;2 +5> logN +0<10]%]N ) (IL7)

for all sufficiently large N.
Proposition 4. Let = f,, then for any ¢>0,

lim ]P(FN(B)>F(/3) 1+ )logN > 0. (IL8)

252
Proposition 5. Let < f3,, then there exists a positive number A(f8) and for almost all
w € R, there exists an N(w) such that: for any N = N(w)

F(B)—exp—MB)N < Fy(B) =F(B)+exp— AN . (I1.9)
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Moreover,
F(B)—exp—A(B)N S E(Fy(B)) = F(B) +exp— A(B)N (IL.10)
for all sufficiently large N.

We notice that the lower bound on the quenched free energy given by Eq. 11.5
coincides with the first two terms of the asymptotic expansion given by Derrida

logN .
£ that we found is in some sense

[II]; in other words, the constant in front of

optimal. Moreover, the result given by Proposition 4 is indeed an upper bound in
probability to the free energy which contains exactly the same (negative) finite size
correction. This is a further indication that in fact, the right finite size correction is
given at the lowest order by

1 logN
282 N
Unfortunately, we are not able to prove the almost sure analogous statement,

but in any case, the result given by Proposition 3 enables us to say that the order of

logN

the finite size correction is almost surely at most so that, for example, we can

1 L .
exclude —— corrections in a rigorous way.
N

Finally, we remark that, for f<f3, exponentially small, corrections were
already obtained by Derrida for the quenched free energy [1I].

III. Proof of Theorem 1

The proof of Theorem 1 is based on the following decomposition of the real line:
Let M e IN\{0}. We set:

M+1
R= U 4, (IIL1)

K=-1
where
A-1=]_000]>

B )V T

Apgos =]<1+ %) I/NB., +oo[.

We call 4, the energy levels and study the occupation times of these energy levels,
namely: The integer valued random variables:

Ng= 2_2N 1, (X)=#(/X,e4y). (I11.2)

We first prove the following lemma.
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N
Lemma IIL1. Let AN =EXP 1 then

Z M Sup P(Ng>o2NE, (x))<co. (I1L.3)

O<K=M
Proof. By Markov’s inequality (V) we get:
Prob(Ng > oy2VIE(1,, )) =Prob(N ¢ > oyE(N))

N
<exp— —. )
Sexp— 47 (I11.4)
Hence the lemma follows.
Now, if we define:
M
Qy= () {weQ/Nyw)Soy2"E,,)}, (IIL5)
K=0

the Borel Cantelli Lemma (V) and Lemma IIL.1 imply that:
Prob(lim©Q3)=0.

Now, we want to prove that for any given >0,
l—ir_n%logZNg(l +¢)F(B) almost surely. (I11.6)
In order to do that, we decompose the partition function in the following way:
z exp)/NBX,= z (Exp/NAX )1y (X)+14,, (X))
+ éo f_ZNl 1,,(X ) exp]/NpX.. (I1L.7)

We first consider the last sum in the right-hand side of (IIL.7). As we have seen
before, we have that for almost all w there exists an N,(w) such that for any
N=N,(w) and for any K=0,1,...,M:

3 S ampeny/iprs 3 ot eoyvo| oV V]
(I1L.8)
Since o
ﬂZ

E(l,)Sep— " b

the right-hand side of (IIL.8) does not exceed
K+1 2 K?
by aNexpN[ﬂﬁ (K+ )+ﬁ2 <1_W>] (IIL9)

Now recalling that

ﬁz
G,;(x)=ﬁﬁvx+ (1—x?), (II1.10)
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we get
Max Gy(x)=F(f);
xel0,1]

then, if N> N(w), (II1.9) does not exceed
oM exp <NF(ﬂ)+ %ﬂ . [L). (I1.11)

On the other hand,

2

2N
> 1, (X,)exp)/ NﬁX,§2N=expN—2—‘« <expNF(B) (IIL.12)
=1

[since if B< B, F(B)=Pp7/2+p*/2> B2/2 if B>, F(B)=p- B.>p2/2].

Finally, we consider:

2N
> 1, (X)exp)/NBX,. (IIL.13)
=1

By using Markov inequality (V) we get:
Prob gﬂ >1 AR Nﬁf 1+ i
= A +1= 2 = exp 2 M
N
<2exp— — p2. IIL.14
<2exp— - 2 (1L 14)

Therefore, the Borel Cantelli lemma implies that for almost all w there exists an

2N
N () such that for any N=>N,(w): 0 T 1 X,)= %
i=1

A +1

(X,) can only take integer values, it follows that it is necessarily

A +1

2N
Since Y 1
i=1
equal to zero for N = N,(w). This fact together with the inequality:
2N 2N
0% X 1, (X)expl/NBX.< [exp (/N Max X,)| 3 1, (X)
=1 152N =1
(TIL.15)

implies that for almost all w if N=N,(w),
.ZZNI 1,,,..(X)exp]/NBX,=0. (I11.16)
By Eqs. (IIL.11), (II1.12), and (I11.16), we eventually get: for almost all w there
exist an N(w)=Max (Nl(a)), N,(w), No(e)= 2loi2M> , such that for all
22+5-5.) ’
€

N=N(w) if M>

%logZN <(1+9F(B). (ITL.17)
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Now we prove that for any ¢>0
1
li_m—ﬁlogZN =(1—¢)F(B) (II1.18)

almost surely.

The idea of the proof is very simple: we bound from below the partition
function by only keeping the contribution coming from the level near to the point
X=X(B), where the function Gy(x) [see (IIL.10)] gets its maximum value in the
interval [0,1].

Notice that

i(ﬁ)={f/ﬁ‘ g ?éffﬁ (II1.19)

We can write,

2N 2N 1
forallw 3 exp|/NBX.z ¥ 1Ak(Xa)eXPNﬂﬁp<f—M>,
=1 i=1

(I1I1.20)
where K=[Mx]—1if M =B,/B.
Using Tchebychef’s inequality we get
2N 1
Prob ( Y LX) 5 2NIE(]1A,—<))
i=1
2N
§Pr0b< 3 1,,(X)-2"E(,,)| 2 %2”E<11A,-<))
i=1
2N 2
SQRVTE(M,,) E ({ -; (LX)~ ]E(lef()} )
SQRVTIEM, ). (IIL.21)

Now it is not difficult to see that
EM,)=E1,, ). (11.22)
On the other hand, the right-hand side of (I11.22) is bigger than
(1~ 55r) Vs, x2 2 2
J =3 dx _12% B exp— NP (-ﬁ) (L11.23)
(1=3r)V, 2

therefore, since

Mgz (i) W M BN (ITL.24)
N= 1‘/— =N=11/N P 4 M ’ '

the Borel Cantelli lemma implies that for almost all w there exists an N;(w) such
that for all N2 N;(w):

2N 2
S A (X )= 2V B, )22V ! [ -ﬂz— exp— % x2. (I11.25)
i=1
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Therefore, for almost all @ if N = N;(w),

2 i, < { _g. i}) YN
i;e = | expN<{F(B)—p B‘M Yk (I11.26)

and this concludes the proof of the first part of Theorem 1.

In order to prove the second part of Theorem 1, we use the mean convergence
criterion (V): If the random variables {|Y,|?, » =1} are uniformly integrable (u.i.),
that is

lim Sup | |Y,2dP=0, (I11.27)

a= 0 nZno |Yx|PZa

and Y,—Y in probability, then Y,—Y in IF.
We start from the inequalities:
1 1 1
__ < <p—— 4
ﬂl/ﬁ 12/,1-2)2(1\!)(‘: NlOgZNzﬁl/N 1lé\/’I;uZ(NX‘—HogZ. (II1.28)
From (II1.28) we have if =1,
[ |Fy(p)PdP < . (g) (Fy(B))rdIP + . | (=Fyp)rdP (IIL.29)

[FN(B)IP>a N ~(B)

1 p
= / { T e, Xtlo 2} dP  (IIL30
gl Max X;>a ‘BI/N 15¢<2N g ( )

N t1=<is2V

+ § (—B—l— Max X,.>pd]P. (ITL31)

1 ]/N 15i<2WN

log2 +/JV—N: . l;lliagzNX; <-a
In order to estimate (IIL.30), we use the following asymptotic estimate for

1 o aK 2N
Prob(—— Max X,>-K|=1—|1-Prob(X>—-]/N|| (IlL32)

[N 1257 B B
a?’K2N
<2Vexp-— T (ITL.33)
which implies that (II1.30) does not exceed
® (o PN a?K2N
K§=:1 <E (K+ 1)+10g2> 2% exp— T
o P © O(Z 2
=< <— +log2> S (K+1)Pexp—— 5. (ITL.34)
B K=1 4f°

(IIL1.34) goes to zero as o goes to infinity.
In order to estimate (II1.31), here we use:

Prob <ﬂ—l/% 1242»* X< —K(oc-l—log2)) = [Prob <X§ - K(oc+log2)KﬁT!>:|2N

<exp—(x+log2)? %2-2“’1(2 , (IIL35)
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which implies that (I11.31) does not exceed

© N2VK?
> ((a+1og2) (K + 1)) exp—(x+10g2)? o
K=1
0 K2
<(x+log2)y > (K+ 1)"exp—(oc+log2)2~2—l?, (I1L36)
K=1
which goes to zero as « goes to infinity.
IV. Proof of Propositions 2-5
1. Proof of Proposition 2
We start from the following inequality:
2N
Zyz ¥ 1,(X)exp)/NpX., (IV.1)
i=1

logN . o
where 4 is the interval [[/N&(l—a 0]%] ), Wﬁc], a is a positive number

depending on N that will be chosen later. We get

Zyz {expN <F(ﬁ)—ﬂ Ba 1"]ng )} S 1,x). (IV.2)
=1

Now it is clear that the first part of Proposition 2 will be an immediate consequence
of the Borel-Cantelli lemma and of the following:

Lemma 6. Define

1 1
4= 267 + loglogN’ Iv-3)
_ 2B p:
" logN  loglogN" a4
Then
© 2N
> IP< > ]IA(XJ)§e_”‘°gN> <00.
N=1 \i=1
Proof. If the following condition on a and b is satisfied:
exp—blogN<12"E(1 ), (IV.5)
then
N
Prob( 3 1A(Xi)§exp—blogN>
=1
N
éPr0b< Y X)) -E(, X)) z2Y _IIE(]IA))a (Iv.6)
i=1

The right-hand side of Eq. (IV.6) can be estimated by means of the Bernstein’s
inequality [VI]:
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Suppose Y, are independent random variables with mean zero, |Y<1. If
= ¥ E(Y?) and if 0<t<]/D,, then
i=1
2

Prob( Y| 2t)/D, > <Jexp— % Iv.7)

We choose t=]/2""'E(1,). Since Dy=2" (E(1,)—[E(1,)]%, EM,<i,

and so

2B ,) <Dy <2VE,), (Iv.8)
we get
2N
Prob < 3 1,(X)-Ed,X) 22" 1IE(M)
i=1
<2exp—32"E(1,). (Iv.9)

Now, in order to prove the lemma, it is sufficient to find a lower bound Ay to
2¥E(1 ) such that:

i) Ay=2exp—blogN
[so that condition (IV.5) is satisfied], and (Iv.10)
i) i exp— Ay <.
N=0 4

Now it is easily seen that if 0<0y=a, then

logN ] (IV.11)

2
ZNE(ﬂA);iNEﬁLGNlogN-eXp[ 'B (2(41 Oy)— /L) N

In fact, by definition:
Vﬁﬂc(l_(a—eN)l—oﬁN—) 2 gy

) exp— X
v 1o 2o

from which estimate (IV.11) immediately follows.

E(1,)2

Now if we choose 0y = it is easy to check that conditions i) and ii) in

1
(IV.10) are satisfied. [ logN

In order to prove the second part of Proposition 2, namely, the inequality (I1.5)

we start from:
IE(F y(B)) = E(1o- Fy(B)) + E(1lo F(B)) ,
where
Q ={logZy<0}, Q"={logZy=0}, (IV.12)

MaxNX
Max X,=p-B. [5E2%

Fy(B)z 1/~ L2ionN [/210g2" |’

using
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if
1<¢52N

B= {Max X<O}

By Schwarz’ inequality we get:
Max

1<i<2v ¢

<]

|/2log2"
MaxNX
éﬁ-ﬁc[lE(ﬂs)]“z{lE{

E(1o-FyBD=p- IUE( 1

E(1) <37 and  Max X,)/2log2"
is in L*(Q, X,P) [as it can be seen by using (II1.33) and (II1.35)]. Then
[E(1l,,- F\(B)) = —const exp—2"log2. (Iv.14)
By the previous estimates [Egs. (IV.9), (IV.11)] we know that:

since

2N
i 0,={ 3 100z ;2B

[E(s,)=1—exp—cN' eleN  for some ¢ and o.

Therefore,
E(1,, Fy(B) 2 E(1g, 15,Fy(B)

> I:F(ﬁ)_ 2;2 IO]%,N +0<lo]gVN>]

. [1 —constexp—2Vlog2—exp (— cN1°g‘°gN)] . (IV.15)
The conclusion of the proof immediately follows from (IV.14), (IV.15). O

2. Proof of Proposition 3

We decompose the real line in the following way:
R=NulLululy,

where

1 logN (1+¢) loglogN
I—'1= _w’ﬁﬂc< 2ﬁ2 N + ﬂZ N ]

-

L= VN/30<1——2;2 lo]%]N_'_(lﬂ—i;a ) loglogN fﬂs],
" W’*»((z%ﬁ)lﬁi%)m],
e Jrn o G o o]

(IV.16)
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We have
4 2N
Zys X X A (X)expf)/NX.,.
It follows from Lemma 7 below that:

2N 1
Prob< > (X )expp)/ NX¢.>exp(NF(ﬁ))> <constexp— ﬂ—(logN)“‘.
=1 p

If the following inequalities are true: (IV.17)

2N

Prob ( > 1.(X,)=exp2log logN> <constexp—(logN)?, (Iv.18)
i=1
2N

Prob < .Z 1,,(X,)=exp2log 10gN> <constexp—(logN)?, (IV.19)

Prob( > 1,(X)= 0) =1-

then from Egs. (IV.17)-(IV.20) we can deduce:
logN logN const
Prob(FN(ﬁ)>F(/3)+< 27 +5> g +o< 1%1 )) < s

and so the first part of Proposition 3 is proven.

(IV.20)

To prove inequalities (IV.18)~(IV.20) we first compute IE(1,, ); we get

El,)= "V a
o exp— —dx
V2 v, (1-—; log' | (10 J_lﬁy_v> 2
1 1 1 p?
< (- _ P ,
_ﬁc<(logN)1+‘ I/N> exp 5 N, (Iv.2y
1 1 VN 1N (7)) +9) 2
- Xy
- e
logN B>
=< t ==, 1v.22
cons ]/N exp > ( )
1 + 2
E1,)= | exp— X dx
27 yng, (1+—g—( +6))
const B? 1 exp B?
< ]/N <exp— 7N> (exp—ﬁf (253 +5>logN§ const 572 —N7.
(IV.23)

Equations (IV.18), (IV.19) follow from the following inequality [VII]:
Prob(S, > 2) < e(P(n)x)", (Iv.24)
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where S, = i o,and {0,},-, _, is a family of independent identically distributed
i=1
random variables with values in {0, 1} and such that:
Prob(o,=+1)=P(»).

To get the result it is sufficient to take o,=1,(X,), 0,=1 (X)), respectively, and
»=2N. Equation (IV.20) is a consequence of Markov’s inequality [V] [see
Eq. (I11.14)].

Now we want to prove the second part of Proposition 3, namely, the upper
bounds (I1.7) on the quenched free energy.

From the previous arguments it is evident that V5 >0, 3Q,(5) with

const
N 1+a

P(Qy(0) 21— (IV.25)

(for some positive o) such that:
Y we Qy):
%mgzN(w) <F(f)+ <2/132 +5> log N (IV.26)
Now recalling the definitions in (IV.12)
Q. ={weQ:logZy=0},
Q_={weQ:logZy<0},

we can write:

1 1
E (Dﬁ logZN> <E (ﬁ logZy1,, nszN(é))

+]E( logZN]IanN(&)) (Iv.27)

We define

QN={ weQ: ‘E;%—” >2/30}, (IV.28)

and so since

1
IE (N logZy1,, ngﬁ(a)>

Max X

152N
|/N

From Eqgs. (IV.25)<1V.27), (IV.29), and (I11.33) we get the desired result. [

<

SEQ2BBMage)nay) +E +log2) g - (IV.29)
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3. Proof of Proposition 4

We decompose the real line in the following way:

K(N)+1

- AK:
=-1

A_,=[)/NB., + [,
d0=| YD (1~ 53 Y 4, Y

Ae=[Xx+1, X[ if K=1,...,K(N)

with

5 1 logN logN
,&=WW(12 — m—nNg),

B2 N - Y N (IV.30)
N
and K(N)= [leogN] ,
K(N)
AK(N)+ 1 _IR < )
K=-1
We have
K(N) N N
ZNé Kgl (CXpl/NﬁXK) ~=Zl ﬂAK(X") + 4§1 ﬂAK(N)+ 1(X£)
2N N
+ 3 A (X)exp)/NBX,+ T 14(X)exp(N-BB).  (IV31)

We first consider the third sum in the right-hand side of (IV.31):
Z 1, (X)) expfﬁX == expNﬁ B, < L IOLN»

22 N
<P|(ex fﬁ Max X\ X 1, (X)) >1ex NB-B.[1— 1 logN
- (p 1<i<2N )a=1 A-0d) =3 p ° 28> N
Ca 1 1 logN
((eprB1¥3§NX><i§1 1, (X)= geXPNﬁ'ﬁc<1— 2—/33 %}
2N
£ 1, (21
§1P<2 1, (X,-)Zl> =1-[1-IE1,_)]*". (Iv.32)

It is easy to see that the right-hand side of (IV.32) does not exceed

- therefore,

2 1 1 logN const
. > — <

P(; 1A_I(X‘)exp|/NﬂX¢=3exPN/3/30< 2ﬁ2 N >>= l/ﬁ .

(Iv.33)
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Now we consider the last sum in the right-hand side of (IV.31):

N 1 logN
(oo NB8) T 1,060 Sexpng. 1- 575 25N

=3
p
257

§Prob<‘2_2N 1,(X)= 1> =1-(1 —]E(ﬂAO))zN

2¥ 2
=]P< 2 1,,(X)2 %CXP_ logN; ¥ 1,(X)z 1)
i=1 i=1

<1-—exp—2""'E(1,). (IV.34)

A simple change of variable implies that

~ B

(14¢) loglogN w
B>  logN ’

IME(,)< i[(exp —yuB?logN)— ﬁ} .

Therefore, if we choose yy= e get

N 1
P((eXpNﬁ B j;l 1,(X)2 %eXpNﬂﬁﬂ <1 - 2%32 O_J%IJX»

const 1 1
=77, <(1ogN)1“‘1/N>‘ (V.39

In the following lemma we study the first sums in the right-hand side of (IV.31).

Lemma 7.

K(®N) 2N 2N
P(E @pl/NpX) E 1+ T A (K

1 logN
2ﬁch10gNeXPNﬁﬂp<l—2ﬁ2 ]%, ))

1
<constexp— ﬁ—(logN)1 te, (IV.36)

Proof of Lemma 7. If we use the Markov inequality [V] and the fact that

E(4,,,,,,)<7 it is straightforward that:
2 1 logN
]P<i§1 1AK(N)+1(XZ)geXpN(ﬁ.Bﬁ)<1_Zﬁf N ))
ﬁ BC
< - _ P
<exp (2,80 logN—N|{ B 5 B. 1. (Iv.37

On the other hand, it is a direct consequence of the Bernstein inequality that for
any 1 <K< K(N),

P T 10227 B, )

<P(|F (0,00~ B, 00)| 22E,,)
<exp—2""'E(1,,). (IV.38)
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Therefore,

=

(N)

K(N) RN
X (exp)/NBX) z 1,(X)z ¥ 2”“1E(11A,<)expﬁﬂx,()
< zN exp—2V (1, ). (IV.39)
K=1

Using

logN 2 1 logN logN
]E(ﬂAK)éﬁp‘yN%exp—N%<l 2[32 Igv N(K_l) g > >

we get

K(N) ”
> 2VE(1,,)exp]/NBXg
K=1

éclﬁcleogNexp{ﬁﬂaNO_ (T}y‘%v)loﬁj\]) —%CO]%]N)N}

1
-expN (ﬁz (2B2 v~)o—f]N—

3 exp—KN {Mm“’gN e N KD (l"]gVN) }
(IV.40)
The last sum in the right-hand side of (IV.40) does not exceed
constexp—yy(fp. — B2)logN . (IV.41)
Therefore,
:(Z:Nz 2VE(1,,) exp]/NBX ¢ <constyylog N exp NSp, (1 _ 2_;_02_ 1_9}%#) ‘
(IV.42)

On the other hand, if we use

]E(ﬂdx)—_z Nexp f2KyylogN) (1 —exp— f2yylogN) exp— 0<<1 I%IN> )

B.
we get
K(N)
> exp— 4x) = 2yylogN . (Iv.43)
K=1 2ﬁ
Using yy= (1;28) lolgochng (IV.37), (IV.39), (IV.41)(IV.43), we get the result.

Now the Proposition 4 is a direct consequence of (IV.33), (IV.35), and
Lemma 7. O
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4. Proof of Proposition 5

) __E _ 1-X
Define: X—Ba <1, 0———2 ,
K_=[(X~0)Livﬁ‘],
N

K,= [(X +0) @@] -1, (IV.44)

where Ny 0, and will be specified later.

Ax=[Kyn, (K+ Dyn[ (IV.45)

— K+
A=]R\( AK>.
K=K-
We have

Ky 2N K, 2N
2 T X))/ NEX.SZyS 5 5 1, (X)exp]/NpX,

for K=K_,K_+1,...,K,

N
2

+ 2 15(X )exp|/NpX,. (IV.46)
Let ‘
oY = { jﬁl (1, (X )—E(l (X)) >ex2"EA,, ), VK=K _,...,K +} :
Q)= {;f;l 15X ) exp]/NBX ,>exp NG 4(X +0) + qﬁ} , (IV.47)

where 0<3NNT> 0 and will be chosen later;
4p=7(F(B)—Gy(x+0))>0.
For any we Q{P’nQ@, we have
K+
& (1=en)2expkfyy)/NE(,,)

K.
SZys 3 (1+e)2"exp(K + 1))/ NIE,,)

+expN[Gyx+0)+q,]. (IV.48)
Now since
1 K 1 2,,2 2,2
p——exp— XN g < I o KONy gg)
I/ 2n 2 I/ 2n 2

then for w e QP NQP),
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K+
[K_Z G-(K)vN]2”eXp~v~ﬂl/N~2K+v§—v?v
= N—|: Z G+(K)VN]2NCXPVNm/N+2K+YN+)’Na (IV.50)

_ . 2V_N
where G_(K) = expf/Nyy(K+1)— (K +1) >

1
V2
G.(K)= —V;:nexpm/ﬁym— SEL
and, for xe dg
G.(K)= expf)/Nx— - <G (K),
Ao

2

so that, recalling that % =log2, we get

[ (o) 5 ()
-<exp—yN1/N<ﬁ+2(x+e)+ %))
<Zy< [f <expﬁfx— —>dfx]
.<exp7ﬂN> <expyN1/N <ﬁ+2(>€+9)+ %))

+expN(G4(X+0)+qp). (Iv.51)

From which by an easy calculation we get:

{[exp—yN]/N<ﬁ+2(i+0)+ %):I [exp+NF(,B)]}< —2exp— Gﬁz )
<z {[expny<ﬁ +2(x+60)+ VN)] [expNF(ﬁ)]} (14e- M),

(Iv.52)
Now we claim that V< f,, 3¢>0:

0]/ N
PQV)=1— L sN exp¢N . (IV.53)
In order to obtain Eq. (IV.53) 1t is sufﬁc1ent to show that VK=K _, ..., K,

11>< 221 1,,(X)—Ed, (X))

2
<exp— %” 2VE(,, ), (IV.54)

>8N2N]E(‘IIAK)>
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since it follows from the definition of K _, K, that:
inf  E(, )22 "Vexp¢N

K-<K<K+
for some positive constant &.
Equation (I'V.54) is again a consequence of Bernstein’s inequality (see the proof
of Lemma 6 above).
It is easy to see by an argument very similar to the one used in the proof of
Theorem 1 that 3 4>0, such that

P(Q{)>1—exp—puN. (IV.55)

2N
In fact, the quantity > 1;(X,)exp BVNX , appearing in the definition of Q{’ is a
i=1

sort of partition function evaluated in the “restricted ensemble” that excludes the

energy levels in the interval [Xx — 6, X+ GJI/N&; so we can apply the analog of the
heuristic argument given in the introduction (namely, the maximization of G4(x)
in [0,1T\[x—6,x+6] as well as the rigorous estimates (IIL.4), (IIL.7), (II1.12),
(ITL.14), to get (IV.55).

. N
Now if we choose ey =exp— éz and for example, yy=exp— N, then by Eqgs.

(IV.52),(IV.53), (IV.55), using again Borel-Cantelli’s lemma, we conclude the proof
of the first part of Proposition 5.

To get the other result concerning the quenched free energy, namely Eq. (I1.10),
we proceed exactly like in the case f=f, but now, we use the exponentially
decreasing estimates (I'V.53), (IV.55), instead of the power like bounds of the case

ﬁ —Z B c*
Finally, if we apply the explicit bound (I11.33) to evaluate

Xé
k| v, VN +iog2) 1|

[see Eq. (IV.20)] we get the result. [

Remark 1. 1t follows from Egs. (IIL4) and (II1.14) that F(f) is geometrically
bounded from above by F(f) for all >0 (see Definition 4.1 of [IV]). On the other
hand, we get from (I11.24) that Fy(f) is geometrically bounded from below by F(f)
for all B> 0. These two facts imply geometric convergence for all §> 0 (Definition
4.1 of [IV]).

This convergence was proved in [IV] for f<f,. In the same paper, it was
conjectured that the geometric convergence fails for f> f,. Our method allows us
to disprove this conjecture.

Remark 2. It is not difficult to see by using Bernstein’s inequality that Fy(f) is
hypergeometrically bounded from below by F(f) (Definition 4.2 of [IV]) for any
p>0.

We can also prove the following statement: For all f>0, Fy(f) is not
hypergeometrically bounded from above by F(f). The reason is the following:

2N
P(Fy(B)22F(B) 2IP(ZyzexpNpp,y) =P (‘; Rig yyw, + ol X )2 1) ;
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if y is such that g8, y>2F(f), but

2N
IP<~§1 ]l[l’vyl/ﬁ,fr (X )2 1) =1-(1 —PYOb(XéﬂcJ"/N))ZN
>const 2V exp—ﬁfyzﬁ,

and so Fy(f) can be at most geometrically but not hypergeometrically bounded
from above by F(f).

Remark 3. By straightforward calculations it is easy to extend the results contained
in Theorem 1 to the case of models describing by the partition function

Zy= Y exp(N)'"pX,,
i=1

where X, are independent identically distributed random variables with

.
Prob(X,=x)~exp—bx?~1!

for x— oo for some positive b and pe[1, + oo[ (see [IV]).
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