Communications in
Commun. Math. Phys. 96, 1-13 (1984) Mathematical
Physics

© Springer-Verlag 1984

Translation Group and Spectrum Condition

H. -J. Borchers
Institut fiir Theoretische Physik der Universitidt Go6ttingen, Bunsenstr. 9, D-3400 Géttingen, Federal
Republic of Germany

Abstract. Let {4, R% «} be a C*-dynamical system, where R? is the d-dimen-
sional vector group. Let ¥ be a convex cone in R? and V its dual cone. We
will characterize those representations of A4 with the properties (i), ae R? is
weakly inner, (ii) the corresponding unitary representation U(a) is continuous,
and (iii) the spectrum of U(a) is contained in V.

I. Introduction

The spectrum condition is one of the essential ingredients of quantum field theory.
Especially the discovery of the fact that the translations are weakly inner auto-
morphisms for finite particle representations [4 ] has made the spectrum condition
an interesting subject. Many problems in connection with this have been studied
and answered [4-7]. In the previous investigations, which are based on the
“covariance-algebra” introduced by Doplicher, Kastler, and Robinson [9],
it has been assumed that the translation group is acting strongly continuous
on the C*-algebra in question. On the other hand, in the theory of local observables,
one usually is only interested in representations which are locally normal with
respect to the vacuum representation. But this means that the algebra associated
to a bounded region should be a von Neumann algebra. Such an assumption,
however, contradicts the assumption of strong continuity of the translations.
Since in a recent paper [7] it has been shown that one can handle the problem
of covariant representation without using the continuity of the group action
on the algebra, we will treat the problem of the spectrum condition again.

Furthermore in the existing literature only the one dimensional case and its
iterations have been treated with full mathematical rigour. But the case where
the cone in question is an arbitrary convex cone with interior points is still missing.
We also want to fill this gap.

In the next section we handle the one dimensional case again. We show that
by introducing the reasonable concepts one can reduce this problem to results
existing in the literature. The results obtained here are generalized in Sect. III to
the n-dimensional case where the spectrum is restricted to a half space. The n-
dimensional case where the spectrum is in a cone is treated in Sect. IV and V.



2 H. -J. Borchers

II. The One Dimensional Case

Let 4 be a C*-algebra and G be a topological group, acting as a group of auto-
morphisms on 4, i.e. «:G — Aut(A). Following [ 7] we will denote:

A¥={peA*;g— oo, is a continuous function on G
with values in the Banach space A*}.

This is a norm closed linear sub-space of 4* invariant under the transposed
action o* and generated by its positive elements.

If G is a locally compact group with left invariant Haar measure dg, then
for peA¥, fe £1(G), xe A**, the expression j(p(agx)f (9) dg is well defined and
defines a continuous linear functional on A*. The set of all continuous linear
extensions to all of A* will be denoted by [x(f)]. If ye[x(f)], then we have
[x(f)]=y+ N, where N, is the annihilator of A* in 4**.

Having these notations at hand, we can use, in the case where G is also abelian,
the spectral theory of Arveson [1] (o) acts strongly continuous on A¥, and 4**/N,
is the dual space of 4¥), and the results obtained from it by linear methods. Using
the notations of G. K. Pedersen [11, Chap. 8] we define for G =R the space
R(— o0, p) = A** to be the o(A**, 4%) closed linear sub-space generated by all
[x(f)] with xe A**, fe #*(R) with f having compact support and suppf < (— o0, p).
(f denotes the Fourier-transform of f.)

In the same manner as in the case where o acts strongly continuous on 4,
we define E(A) = projection onto the common null space of all yeR(— oo, — 1),
i.e. E(1) = maximal projection E in A** such that R( — o0, — A) E = 0 and E(c0) =
- 1131 E(Z). Our aim is to show that these projections have the same properties as

the corresponding projections one obtains when o, acts strongly continuous on A.
In order to show this we define:

IL1. Definition. Let {4,R,a} be a C*-dynamical system, and let E(1) be the
projections defined above. Then we denote:

(a) A*([@Jr)_((PEA* E(0)p = @E(0) = ¢},
(b) A¥(R*)={peA*; such that there exist A, u < oo with E(u)p = ¢ E(A) = ¢}.

I1.2. Proposition. With the above notation we obtain:

(i) AX(R™) is norm-dense in A¥R™").

(i) peA*(R™) and x,yeA** implies xpyeA*(R*) or equivalently E(0)
belongs to the center of A**.

(iii) An element @ A* belongs to Ag‘(R*L) if and only if the following conditions
are fulfilled:

(o) a— o(xa,(y))is continuous and it is the boundary value of an analytic function,
W,(z) holomorphic in upper half-plane satisfying the estimate ] w, (2)] <
[x]|y]| el exp {m|Imz|} for a suitable constant m.

(B) a— o(a,(x)y) is continuous and it is the boundary value of an analytic
function W,(z) holomorphic in the lower half-plane fulfilling the estimate
(W@ | < x| |y el exp {m'|Imz|} with a suitable constant m'.
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Proof. Note first the relation

for A < u. From the definition of E(4), it follows from this that E(4,) < E(4,)
for 2, < 4,. This implies E(/) is monotone increasing and hence strongly con-
verging to E(oo).

Furthermore it is easy to see that R( — oo, p) contains the identity operator
for > 0. From this we get E(1) =0 for A <0.

(i) From the definition of A*(R ") it follows that with ¢ also ¢* and || belong
to this space. This means A*(R") is a linear space generated by its positive ele-
ments. Therefore it is sufficient to show statement (i) for positive elements. Let
0+ weA*(R*)* and let 1 be such that w(E(o0) — E(1)) < ¢/4| o |. Then we get:

| — E(QwEQR)| £ | (E(oo) —EM)o|| + | EQwE(w0) — EA)) |
< {ll o] (E(0) = E(2)e(E(o0) — E(2)) |}
+{ | EQwEQR) || | (E(c0) — E(A))w(E(o0) — E(A)) || }*/?
S6{[ ] /4[] ;70 ="
For the estimation of (E(c0) — E(4))wE(4), we have used the formula
[(E(0) — E(4))wE() | < {o(E(c0) — E(4))- o(E(2)}'?

which has been proved in [7, Lemma I1.2].

(i) We remark first that R(— oo, 4) > N, the annihilator of A*. Therefore,
every peA*(R"') annihilates the o(4** A*) closed left ideal generated by N,
(since E(A) is the left annihilator of R( — oo, — 1)). From this we get: xe A** and
peA¥(R") implies x¢ annihilates N_and hence xpeA¥ (and also @pxeA¥, since
A* and A*(R™) are both invariant under involution). Let f(a)e #*(R) with supp
f(») <[ —uul] Then f w(@) = f(a—b) is an entire analytic function of b with
values in ' and we have | f, |, < | /|, exp {u|Im b|} (see e.g. Boas [2, Theorem
6.7.1]).

From this we obtain (see Boas [2, Theorem 2.2.10]):

o] bn
fa) =21~
3 .

with || f® |, < M(u + ¢)" for some suitable constant M(e). This implies in parti-
cular that /™ belongs also to #'. Let now peA*(R") and x, y, ze A**. Then
@(xya,(z)) is continuous in @ and consequently ¢(xyz(f,)) is an analytic function
inb.

From this we get for such ¢,

(2o, (V)2(f)) — p(xyz(f)) = p(xa {yz(f_,)}) — @(xyz(f))

= (o)) — o) + T ol (2}

and hence with the above estimate
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n

| p(xo,(n)2(f) = @lxyz(f)] )
<ot 92(1))) = sz + X o | 1] =M+

= lo(xa,{yz(/)}) = olxyz(N)| + M@ |- x [ v ][] 2] e 1.

Since xpe AY, it follows also that x¢z(f)eA¥* for supp f compact. Before going
on, let us first prove statement (iii). If ¢eA§(@+), then we know a— g(xa (y))
and ¢(a,(x)y) are both continuous. Assume @E(1) = ¢ for one A< co. Then it
follows that [p(xa(y)) f(a)da =0 for fe#* and supp f < (— oo, — A). This shows
the Fourier transform of ¢(xo (y) has its support in [ — 4, o], and hence ¢(xo (y))
is the boundary value of an analytic function holomorphic in the upper halfplane
W, (2). (For the theory of Fourier transforms of tempered distributions see e.g.
Gel’fand and Vilenkin [10, Vol. I and II]. Here one also finds relations between
support properties and the analytic continuations of the Fourier-transform. We
Remark in our case that ¢(xa (y)) is always bounded on the reals. Therefore one
obtains restricted estimates for the analytic continuation by Phragmén-Lindel6ff
typ arguments.) Since ¢(xa,(y)) is for real a bounded by |¢ || | x |||y |, it follows
that W,(z) is bounded by ||| | x||-|y| exp{Imz(1 + ¢)}. Replacing ¢ by ¢*
we get the corresponding statement for W,(z). This shows the necessity of the
condition. Conversely, let ¢ fulfill the conditions. By writing ¢(a (x)) = ¢(la,(x)) =
@(a,(x) 1), we see that ¢(x,(x)) is an entire analytic function W(z) with [W(z)l <
@] |lx| exp {n|Im z|} with n = max {m, m'}. Using Schwarz’ lemma (e.g. [ 12, 5.2])
we get for [a| < 1:

lo(ex) =) < @] x[-{2expn}-|al,

which shows @eA¥. Moreover the estimate of the analytic continuation of
@(xo (y)) gives us that this is the Fourier transform of a distribution with support
in [ —m, c0]. But this implies that ¢ annihilates the left ideal generated by
R((— o0, — A)), and hence @E(1) = ¢. Using the functional ¢*, we see by the same
argument that the conditions of (iii) are also sufficient for showing that goeA(’)“(ﬂAW).

Next we continue the proof of (ii). We assume e A¥(R™), fe #* with supp
J< [ — u + u]. We want to show that ¢z(f) belongs to A*(R*) again. If E().))p = ¢,
then clearly E(4,)¢z(f). Assume next @E(4,) = ¢. Then W, (z), the extension of
@(xa,(yz(f)) into the upper half-plane, is bounded by [¢ | [x ||| ] z] ]l f ], exp
{(Im z)-4,}. From this it follows that ¢(xa,(y) z(f)) = @(xa(yz(f_,)) has again
an analytic extension into the upper halfplane and this function W,(z) fulfills
the estimate:

(Ws@I= el IxI-Iylz]-17-0 1 -exp[4, Im 2]
el IxIyllz0-1 /1 exp[uTmz|Jexp[4, Im z].

But this shows by (iii) that ¢@z(f )eAg‘([@*). In all the estimates we have used the
%! norm of f. Since the #' functions with compact Fourier transforms are
dense, it follows that ¢z(f)e A*(R*) for peAXR*) and fe L' (R). Using the
estimate

lo(x{z(f) = 2D)| < {|@*|(ex*)| @[ ([2*(f) — 2] [2(f) — 2D},
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we want to derive that ¢z is the norm limit of z(f) for a suitably chosen sequence
f,- We remark first that o e A¥(R ") with ¢ E(4) = ¢ implies a* || has an extension
as entire analytic function of exponential type with o¥*|@|E(1) = E(A)a*|@| =
o¥|¢p|. Writing

aklo| = Zlcol‘"’

we obtain the estimate ||@|™| < ||¢||M(Z+e)" for some constant M (see
[2, Theorem 2.2.10]). Let a be in a compact set and ¢ > 0. Then there exists N with

|o¥lel = ZI(PI‘”) H<-‘3

and hence we obtain by an 3 ¢ argument that b—a*|¢p|(xa,(y)) is equi-con-
tinuous for a in that compact set. This implies for any given ¢ > 0 there exists
6, such that |o*|@|— ||| <e| @] for |a] <é,. If we restrict a to |a| <,
then we can find J, such that

| ol ay@) - atlo|*2)| <el ||| 2]* for [b] <4,

Choose now é such that § < 6, and 26 < 6, and fe #*(R) with f(a) = 0, [ fl@)da =
1 and supp f =[ — §, 6]. Then we obtain

lo|({5(f) — 2%} {=(f) — z}) < 2 ¢l | o] | | 2|

This shows pze A*(R™) for q)eA*([ﬁ{ ). But since @,z converges to ¢z whenever
¢, converges to ¢, it follows from (i) that pze A¥(R™) for pe A¥(R™) and ze A**.
Since A*(R™) is invariant under involution, it follows that A*(R™) is invariant
by left and right multiplication with elements in A**. Hence A*(R™) is a folium
and E(o0) belongs to the center of A**.

This result tells us that [A**E(o0), R, a**} is a W*-dynamical system with
(weakly) continuous group action, and therefore we obtain the standard results:
(see G. K. Pedersen [11, Theorem 8.4.3])

(1) E())=0for A <.

(2) A— E(J) is increasing.

(3) E(0) = si-lqigl E(A)e center of A**.

(4) E(A)€center of A%* (= o** invariant elements in A**),

(5) Ula)= [ exp[iaA]dE(A)e A**E(c0) implements the automorphism o}*
0

on A**E(o0).

(6) U(a) is minimal in the following sense: Let © be a normal representation of
A**E(00) and assume V(a)e B(H ) is a continuous unitary representation of the
group R such that

(i) m(of*x) = V(@)n(x)V*(a),

(i) spectrum V(a) = R*.

Then spectrum V(a)n(u(a))* = R* follows.
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III. The Spectrum in a Half-Space

Assume next that G = R" is the n parametric vector group and that we deal with
the C*-dynamical system {4, R", a}. (Again there is no continuity assumption about
the action of «,teR", on 4.) We want to look at covariant representations
{n(A), p(R"), #} with

(1) p(t)is strongly continuous.

(2) There exists a direction t,eR" t, # 0 such that the group representation
p(At,), A€ R fulfills the spectrum condition. In other words

spectrum p(t) = {peR"; (p, t,) = 0}.

We again denote by A* the set of peA* such that t —of¢ is a continuous
function on R" with values in the Banach space A*. If ¢t # 0, then for peA* and
X€A**, j(p(oc () f(A)dA is a well defined functional on A*. The set of extensions
will be denoted by [x(t, f)]. With these objects we now can work as in the last
section. In particular we will fix a direction ¢,. Let now R(t,, (— o, 4)) be the sets
defined as before with respect to the direction t, and the operators [x(t,,f)]
be defined by 4* (the latter with respect to the whole group). Then we see R(t,,
(— o0, ) is invariant under the whole group. If E(t,, ) is again the right anni-
hilator of R(t,,(— o, —4)), then E(t,, /) is invariant under the whole group.
If E(t,, co) is again the strong limit of E(t,, 4), then N _E(t,, co) = 0, which implies
that pe A*, and E(t,, )¢ = @E(t,, c0) = ¢ implies automatically pe A*.

Working now with these projections E(t,, ), we obtain the same results as
in the last section.

IIL.1. Theorem. Let {A, R",a} be a C*-dynamical system (with no continuity
requirement). Let t, #0 be a fixed vector in R". Then the projections E(t,, A)
defined above have the following properties:

(1) E(t,,A)=0 for 2<0.

(2) E(ty, 4) is invariant under o* for every geR"

(3) E(t,, A)e A** is increasing in A.

(4) E(t,, ©)=s-lim E(t,, A)e center of A**.

A=
(5) Uty )= f exp [ipd]dE(t,, N)e A**E(t,, c0)  implements  the  auto-
-0

morphism o.f* -y on A**E(o0).
(6) ax*{U(topu)} = Ultyp) for every acR".
(7) U(tow) is minimal in the sense described in the last section.
We also can generalize the proposition of last section.

IIL.2. Definition. Let {4, R", o} be a C*-dynamical system, and ¢, # 0 be a fixed

direction in R"; and let E(t,, /) be the projections as before. We put:

() A¥(R:") = {peA*;E(t,, ) = pE(ty, 00) = ¢}.

(b) A(’)“(R:'(;Jr) = {peA* such we can find A < oo with E(t,, )¢ = @E(ty, 1) = ¢}.
With these notations we obtain:
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IIL3. Proposition. With the assumptions and notations as before we obtain:

(1) A*(R” ") is norm dense in A*(IR" ).

) o belongs to A*(R” *)if and only if @ fulfills the following conditions:

(@) peAf,

(B) u— o(xa,, (y) is for every x, ye A** a continuous function, and it is the
boundary value of an analytic function W, (z) holomorphic in the upper halfplane
which fulfills the estimate

(W@l [l x] v exp{2|Tmz]}

for some suitable constant A.
() u— ol (x)y) has the analogous properties except for the replacement of
the upper half-plane by the lower half-plane.

Remarks(i) In contrast to the one dimensional situation we have to add the
condition () of Proposition III.3.(2) in order to obtain continuity of the group
action also in directions different from ¢,

(i) The set A*(IR" *) is the pre- dual of A**E(t,, o) and it belongs to A*.
Hence by [7, Theorem IIL 2] there exists a faithful normal representation (r, #)
of A**E(t, 00) and a continuous unitary representation p(t) on # of R" with

p(On(x)p*(t) = n(o*(x)), xeA**E(t, o0).

We choose now a basis b, , ... b,eR” with b, = ¢, the fixed direction. Then we can
write t = Xu.b,, and hence

p(®) =[] p(w;,)
i=1
But since n(U(ut,))) commutes with p(t) (U(ut) the group representation of Theorem
II1.1) we have that

p'(t) = m(U(u, to))[ [ p(u;b;)

is again a continuous group representation. But, this has the additional property
that p'(u, t,) = n(U(u, t,)) fulfills the spectrum condition and is minimal.

IV. The General Case

Let (4, R", a) be again a C*-dynamical system and V < R" a closed, convex,
proper cone with interior points. The dual cone V is again a proper, closed,
convex cone with interior points. We want to look at covariant representations
{m, p(a), #} such that p(a) is a continuous unitary representation implementing
o,,a€R", and such that the spectrum of p is contained in V. The spectrum of p
contamed in V is equivalent to saying that for every te V, ¢ # 0, the one parametric
group p(ut) has positive spectrum. Therefore, we can use the results of the last
section. In particular, the projections E(t,, c0) belong to the center of A** and
they are ¢** invariant for every aeR".
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Let for teV,t+#0, E(t, A) and E(t, o) be the projections defined in the last
section. All these projections are invariant under o* aeR", and hence they
commute with each other because they are the spectral projections of the one
parametric group U(ut) implementing the automorphisms.

V.1. Definition. (a) Define E(V)= IT{E(t, ©);0 # 1€ V}, where the product is
the limit of the decreasing net of finite products. E(¥) belongs to the center of 4**
and is invariant under o*.
(b) For pe V define
E(C0,p)) = IT{E(t, 2);0 # teV and 4, = (p, 1)}

<0, p> stands here for the order intervall ¥ {p— 17}. The projections E(<0,p))
are also invariant under o**. We show first:

IV.2. Lemma. With the assumptions of this section and the above notation we obtain
(a) Let p, be increasing in the order of V such that | <0, p,> covers all of V.

Then it follows that
s-lim E(<0, p,>) = E(V).

(b) For every xe A** the function a — a, (x)E({0, p ) is weakly continuous and

supp # e, (X)E(<0,pY) = —p+ V,
where F ~ ! means the weak inverse Fourier-transform (in the sense of distributions).

Proof. (a) Let @ be a normal state of A**E(f/), and take a function fe Z(R")
with the properties f =0, [f(a)da =1, and supp # ~'f = K is compact. Define
= o/ wf(a)da. For teV,t#+0 choose A' such that K< {p,(p,1)= — /11}

From the support property of f it follows that o, annihilates every xeR(t (—
— A})), which implies the equation a)f(E(t )= f(E(V)) = 1. Let now p e 1% be

such that (p,, t) = A/ for every teV (thisis poss1b1e when the A are suitably chosen).
Then we obtain w f( ]_[ E(t, (p,. 1)) = w (E( V)), and hence by Definition IV.

1.(b), we get cof(E(<0 p )= (E(V)) Denote by F = s-lim E(<0, p,>). Then
one obtains w (F) = w (E(V)) for every positive f of norm 1 by continuity of w,
in f. Since o acts strongly continuous on A’ (E(V)) (it follows that these states
are norm dense in the set of all states in A*(E(V)) Therefore w(F) = w(E (V)) for
every w with w(E(V))=1. This implies F= E(V). The opposite inclusion is
trivial by the definition of E({0,p>).

(b) Let peA* such that pE(V) = ¢, thena — @(xo () is a continuous function
on R. Let te V. Then we get

§oyo, (X)E(CO, p>)e™*dA =0 for u< —(t,p),
since E(<0, p>) = E(t, ). Varying the directions in V we obtain:

supp Z 1 o(y, 0, (X)E({0, pY)) = —p+ V.
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Assuming E(I7) is not zero, then we have for every te V, t # 0 a unique continuous
minimal group representation U°(ut) fulfilling the spectrum condition and belong-
ing to A**E(V). With these representations we can define special representations
of the whole group R".

IV.3. Definition. With the same assumptions as before denote:
a) B={b', ..., b"} such that '+ 0,b’eV and b’ a linear independent basis
in V.

(b) ForaeR", a=) ub', define
1

UB((J) = n UO(#ibi)s

i=1
where U°(ub) are the minimal representations of the last section.
(c) Foragiven basisin V denote by V, the cone generated by B, i.e.,
V= {Zpibi;pi 2 0},

and by I7V the dual cone of V.
(d) For two bases B,, B, put

Wy, 5@ = U, () UE (@)

From the results of Sect. III we see the following properties of the quantities defined
above:

IV.4. Properties

(i) Ugla) is a continuous unitary group representation of the translation group
R? in E(V)A** implementing the automorphisms o, on this von Neumann algebra.

(11) Spectrum Ugla) = V

(iii) Wy, 5, (a) belongs to the center of E(V)A**, is unitary, and W§ , (a) =
WBZ’Bl(a).

(iv) Looking at the definition of Wy, we see for three different bases,

Wy g, (@Wy 33(‘1) Wy, 5,(a).

Looking at the properties (iii) and (iv) we see that there exists a unitary, continuous
representation of the translations

(a)eS(E( JA**) with W, 5, @)=Y, (@Y} (a).

The representation Yy(a) is not uniquely defined. If Y (a) is a continuous unitary
representation in S(E(V)A**) then the most general solutlon of the above equa-
tions is of the form Yy(a) = Y, (@)Y, (a). However, we learn from this and the
relation U g, (@)= (@)U, (a) that

Ug,(@)Y5 (@) = Uy, (@) Y5 (a) = Ula)

is independent of the special base. So that we get U y(a) = U(a)Y,(a), which means

BBZ
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that the dependence on the base is at most in the form of a representation belonging
to the center.

In the last equation neither U(a) nor Y(a) are uniquely defined. Therefore it
is natural to ask whether we can adjust U(a) in such a way that its spectrum is
contained in V. The answer is given in the following

IV.5. Theorem. Let {4, R% a} be a C*-dynamical system and assume that the
projection E(V) defined in 111.2., which belongs to the center of A**, is not zero. Then
there exists a continuous unitary representation in E(V)A** with spectrum of U(a)
contained in V.

Proof. Let B, be a fixed base and write U°a) instead of U, ,(@). If Vp is the cone
{(ZAbP 54, 2 0} then the spectrum of U°(a) is contained in V .Letl be a compact
set in V and 4 = <0, p> be a compact set in V. Denote the spectral projections
of U 0(zzt) by F.Since F(I') and E(4) commute with each other it follows that F(I') E(4)
E(4) is again a projection. These projections tend to E(V) if I tends to V and
simultaneously 4 tends to V.
Let Z(I', A) be the central carrier of E(4)-F(I"). Then the common range pro-
jection of elements of the form x E(A)F(I') for xe A** is Z(I', A). Hence investigating
Z(I', A)U°(a) is the same as investigating the expressions

U%a)x E(4)F(I') = o, (x)U(@) E(4) F(T").

We remark that by the definition of E(4) it follows that o (x) E(4) is the Fourier
transform of an expression having support in V+ (—4). The expression U°a) F(I')
is the Fourier transform of an expression having support in I'. Hence we obtain

supp F ~ o (EM U@ F()} < V* + (=4 +1).

Since now 4 and I' are compact, there exists a vector ge R*such thatg+ I' — 4 = V.
Call this vector g(I', 4). But this shows Z(I', 4)(U%a)e"®?) fulfills the spectrum
condition.

Choose now a sequence I';, 4, such that I', = I',, | tends to VBO, and 4, 4,

tends to V. In this case E(4,)F(I',) tends to E(V) and also Z(I';, 4,) tends to E(V).
Define now a continuous unitary representation belongmg to the center of
E(V)A** by

0

Y(a)=z(z(rl+1’ 1+1)—.Z(Fi’Ai)) exp[i(a’ q(ri+1aAi+1)]-

1
Define U(a) = U°a) Y(a). Then by the construction of ¢(I", 4) :
SpU@(Z(;,,,4,.,)—Z(;, 4,))
=Sp U%a)Z(I',, ,» A,y ,) — Z(I',, 4,)) exp [i(a, g(T',, ,, 4., )] = V.
Since
Y@y, 4, )= ZT,, 4))=E(V), we have that U(a) belongs to E(P)4**

1
and fulfills the spectrum condition.
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The result obtained in Theorem IV.5. does not say that the representation
Ul(a) is unique. This is of course not true. We also cannot expect that there exists
a unique minimal representation without further assumptions on the cone V or
the algebra A. If V is a simplicial cone, then the iteration of Theorem III.1 gives
us such a minimal U(a). Also the physically interesting case namely locality and
spectrum condition will lead to a minimal representation. But these questions
will be investigated in another paper.

V. Characterization of the Normal States

It remains to characterize the normal states of 4**- E( 17)

V.1. Definition. Let {4,R", o} be C*-dynamical system and V< R" a closed
convex proper cone with interior point. Let E(V) be the projection defined in the
last section (E(¥) belongs to the center of A**), then we denote:

(@) A*(V)={peA*;E(V)p = pE(V)= ¢}.

(b) AX(V)={@eA*(V) such that we can find peV with E({0,p))¢p =
E({0,p>) = ).

The aim of this section is to prove

V.2. Theorem. Let {A, R", a} be a C*-dynamical system (no continuity requirement
on o), and let V = R" be a proper, closed, convex cone with interior points. Then
with the notations obtained before we obtain:

(1) A¥(V) is norm dense in A*(V). A

(2) An element peA* belongs to AF(V), if and only if it fulfills the following
properties:

(a) a— @(xa(y)) is continuous on R

(B) @(xa,(y)) is the boundary value of an analytic function W(z) holomorphic
in the tube T(V) = {zeC";Im ze V°}. (V° = interior of V.)

(y) W(z) fulfills the estimate

(W@ = lol Ix]Iy]-exp {m|Imz]}

for some constant m and some norm on R".

(0) o* fulfills the same conditions.

(3) Let (m, #) be a representation of A. Then we can find a continuous unitary
representation p(a) acting on H# with

(@) pl@n(x)p*(a) = nlx,(x)),

(B) Spectrum p(a) <V,
if and only if the folium of m-normal states belongs to A*(V).

Proof. (1) From Lemma IV.2 we know E({0, p, %) — E(V) for a suitable chosen
sequence p, . From this we get (1) in the same manner as (i) of Proposition I1.2.

(2) Let peA¥(V)such that p E({0, p)) = ¢. Then it follows from Lemma IV.2.
that

suppZ ~lop(xa,(y)) = —p+ V.
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This implies that ¢(xa,(y)) has an analytic continuation W(z) into the tube T(V)
which fulfills the estimate

(Wl <ol x]ly]-exp{m|imz|}

with every m 2 | p . This shows ¢ fulfills the conditions (& <+ 6).

Conversely assume ¢ fulfills these conditions. Then ¢@(a (x)) = ¢(la (x)) =
¢(x,(x)1) has an analytic continuation as well into the tube T(V) as into the tube
T(— V). From this it follows by the edge of the wedge theorem [8] that oo (x))
can be extended to an entire analytic function W(z). We have the estimate | W(z)| <
@]||lx| exp{m|Imz|} for ze T(V) and for ze T(— V). But this estimate shows
that supp # ~ ' ¢(,(x)) is compact and consequently it follows the estimate

(W@ = ol lx]-exp{m |Imz]}

with an eventually different constant m’ (m’ depends only on ¥, and m but not
on ¢ and xeA**). Using now the n-dymensional Schwarz Lemma (see e.g. [3]
II1.6. Theorem 7) we obtain

lp(n,0) = o) < @ || x| |a] -2 expm’

for |a| < 1. This shows peA*.

Since ¥ is a cone with interior points there exist plef/ such that (0,p, > >
{peV;||p| <m}. Let W(z) be the analytic extension of ¢(xa (y). The estimate
(v) gives us W(z)e?*?) is bounded for ze T(V) and consequently:

supp F ~'op(xo(y)) = —p, + V.

From this it follows that ¢ annihilates the left ideal generated by R(t, (— oo, —
(p,-t)), and hence we get E(t, (p, -t)) = ¢. Since this holds for every 0 # teV we
obtain @E({0, p,>)= ¢. Since the same arguments hold for ¢* it follows that
peAFV).

(3) Let © be a representation of 4 such that the n-normal states belong to
A*(V). Then there exists a projection E_ in the center of A** with E_< E(V)
such that AE_and n(A) are quasi-equivalent. In this case n(U(a)) with U(a) the
unitary group representation in A**E(¥V) described in Theorem IV.5. has all the
desired properties.

Conversely let {x, p(a), #} be a covariant representation of A, where p(a)
is a continuous unitary representation of R" fulfilling the spectrum condition.
This means we have

p(@) =[ P dF(p).
v

Let A be a compact in ¥ and let e H with F(A)y = i then we obtain
o, (xa,(y)) = (W, Ux)p(@)m(y)p*(a) F(AW).

Since the spectrum of p is contained in ¥ we obtain for the Fourier-transform.
Supp & _‘ww(xoca(y)) c — A+ V. But from this it follows that o v fulfills the

conditiogs (o) (B) and (y) of statement (2). Since w v is self-adjoint we have by (2) that

w, € AF(V). Now the vectors for which we can find a compact 4 = V with F(4)y = ¢
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is dense in #. Since A*(V) is norm closed we get that every w eA*(V) for every
Ye#. Finally A*(V) is a normclosed linear space, and therefore every n normal
state belongs to A*(V).
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