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Abstract. The absence of the analytic continuation for the free energy near the
point of the first order phase transition in the d-dimensional Ising model is
proved. It is shown that thermodynamic functions in the metastable phase do
not have certain values and can be derived only with an uncertainty δ. The
asymptotic expansion near the point of the phase transition yields the values of
thermodynamic functions with the same uncertainty.

0. Introduction

The problem of existence of the analytic continuation for thermodynamic
functions beyond the point of the first order phase transition is closely connected
to the nature of metastable states. In the present work it will be shown that in the
d-dimensional (d ̂  2) ferromagnetic Ising model with nearest-neighbour interac-
tions and for low temperatures there is no analytic continuation near the zero
point of the magnetic field. Namely, let F(E, K) be the free energy for the model
where E = 2 I/T9h = 2 H/T, I is the energy of interaction, H is the magnetic field
and T is the temperature. Then the following equality is the main result of this
paper:

dkF -—
lim ^^τ=(k iγ-*(2(d -!)(£ + Cξj) <-* ,

Λ - > - O k on

where k>Ed, C — C(d) depends only on the dimension and \ξ\ ̂  1 for sufficiently
large E (see Sect. 3). The result will elucidate many features of the behaviour of the
lattice gas in the metastable state.

A modification of the cluster expansion for the partition function will be used
to obtain the main result. Two sets of terms with the same meaning will be defined.
One of them can describe a wide class of lattice models, whereas the second class
refers only to the Ising model with nearest-neighbour interactions. The question
can be raised whether this double definition is necessary since only one model is
considered. The fact is that the generalized partition function may refer both to the
partition function of the model and to mathematical expressions which are not
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connected to any real physical system. One may notice that the mathematical
induction applied in the theorems makes use of the nonphysical partition functions
in certain steps. Therefore it is necessary to use generalized terms during the proofs
of all theorems.

1. Contour Representation of the Partition Function

Let AN denote a set of N elements and α l 5 α2,... be some subsets of AN(aί CAN,
a2C4tf,...), which we call "contours." Each contour α has a complex weight WΛ9

and its order mα is the number of elements in α. Two contours are considered to be
joint if they have a common element (α1nα2Φ0).

The definition of the generalized partition function (GPF) is as follows:

zN=ι + ΣΠWΛ (i.i)
α

when the sum is taken over all sets of non-joint contours and each term of the sum
is the product of the weights in the set. GPF is a linear function of each weight Wa:

ZN = Z'N + WxZN.ma, (1.2)

where Z'N = ZN\Wa=0 and ZN_m<χ contains only contours not joint with α. In fact,
ZN_mχ is a GPF, based on N — raα elements and on the contours containing only
the elements of AN — α. The recurrent equation

Z W =Z W _ I + ΣW^N-«. (i 3)
α

is evident. Here an arbitrary element of AN is fixed and the summation goes over all
the contours containing the fixed element. Together with the condition Z0 = 1, Eq.
(1.3) may be considered as a definition of the GPF (1.1).

Concerning the Ising model, we first define the class of admissible volumes of
the system, i.e. all the possible forms that lattice volumes can assume. By a square
we mean a d-dimensional unit cube, by an edge we mean its (d— l)-dimensional
face, and by a vertex we mean its (d — 2)-dimensional face. Thus each square has 2d
edges and 2d(d—l) vertices; an edge has 2(d— 1) vertices and is joined to 2
squares; a vertex is joined to 4 squares and 4 edges. Two edges are connected, if
they have a common vertex.

Let the volume A be a finite set of squares and Γ be the boundary of A; it means
that all the edges of Γ separate A from the other squares in the lattice. A is defined
as admissible, if Γ is a connected set of edges. Only admissible volumes and
boundaries will be used later on. One can easily see that a volume can be
determined when its boundary is given.

Now we make a correspondence between the model and the generalized terms.
Namely, we identify the elements of a set with the vertices and the contours with
the boundaries of the admissible volumes. The boundary Γα (contour α) is
characterized by the following parameters: mα is the number of vertices in Γα (the
number of elements in the contour α), ία is the number of edges in Γα (the length of
Γα), sα is the number of squares in Λα, having the boundary Γα (the area of ΛJ and nΛ

is the number of vertices in Λα (except the mα vertices in Γα). For instance, contour α
(Fig. 1) has wιβ = 21, /β = 22, sβ=16, nΛ = 6.
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In the Ising model every square (spin variable) can be in two states +1. A
square is considered to be joint to the boundary if it contains one or more
boundary vertices. We shall distinguish two types of boundary conditions: " + "
and "-". In the first case all the internal squares, joint to Γ, have the fixed value
+ 1 and vice versa. Volume ΛΛ (Fig. 1) contains 14 boundary squares with fixed
values and 2 free squares, taking part in the statistics. The corresponding model
partition functions will be denoted as Z\ and Z^ .

Now we are going to recall the definition of partition functions corresponding
to different boundary conditions. The statistical weight of the state j (a
configuration of ± 1 for the free squares) with " + " boundary condition is defined
as exp( — ELj + hS^). Here Sj~ is the number of — 1, L7 is the number of pairs of
neighbouring squares with opposite values, E is real positive and h is a complex
number. The statistical weight for " — " boundary condition is defined as
exp( - ELj — ΛS/)9 where S/ is the number of" 4- "squares in j. Z% , Z^ are defined
as the sums over all possible states). The sums Z%9 Z^ differ from the generally
accepted partition functions by unimportant factors which do not alter the results
[3]. These definitions are used to get the following properties: 1) the weight of the
non-perturbed state (the values of all squares are equal to that of the boundary
squares) is 1, 2) Z^(h) = Z^(-h). For example, Z+ - 1 +2e-4E+h

Let M, L, S, N denote the parameters of the fixed boundary Γ0 of the volume
ΛQ. We identify the set of N internal vertices with the set AN and all the internal
boundaries Γi9 Γ2, . . . with the contours α l 9 α2, . . . . Here we emphasize that only mα

(but not nα) vertices are considered to belong to the contour α. Hence, the
admissible boundaries in Λ0 determine the subsets α l 5 α2, ... .

Now our aim is to define the weights of the contours (boundaries) in such a way
that ZΛO = ZN. The following two propositions are evident. Every state can be
represented by a set of boundaries, separating " + " and " — " squares. Every set of
boundaries without common vertices in all the pairs of boundaries represents a
certain state. The weights WΛl, W Λ 2 9 . . . for the case Λ = 0 may be defined as
Wa = Qxp( — £/α); then the equality Z^0 = ZN can be easily verified. In the more
difficult case /zφO, we shall distinguish between weights WΛ*9 W£9 ... and W^~,
W~2, ..., corresponding respectively to the " + " and " — " boundary conditions,
and ZjJ, Z# as well. If the boundaries Γ1? Γ2? ... are such that no boundary can
include any other boundary (as it happened in the example), their weights are
Wa

+ = exp ( — EIΛ + fosα), W~ = exp( — EIΛ — /ιsα). However, when a boundary
includes another one, the number of internal minuses or pluses depends on the
presence of internal boundaries.

In order to obtain an equation for Z 0̂ we fix one internal vertex in the
neighbourhood of the boundary Γ0 and enumerate the possible cases:

Γ- 1)+ Σβ-β"-fa"Z;o_yl.(JV-mβ-n<()Z;>(1) . (1.4)
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Here Z^0(N~ 1) differs from Z^o(ΛΓ) in the following way: it does not contain any
boundary Γα which includes the fixed vertex. The summation is taken over all such
boundaries, Z^o_Λχ(N -mα~rcα) is the partition function of the volume A0 — A^
Z^α(nα) is the partition function of the volume with the boundary Γα. The partition
function of two volumes is equal to the product of the partition functions.
Therefore

ZX-^(JV-mα-nα)ZX(nα) = zχ(N-mα). (1.5)

The definition

7 +
^Λα

allows us to rewrite (1.4) in the form of (1.3). Besides, Z^0(0)= 1, so
Thus we have

(1.6)

with the following properties: Z^(h) = Z^(-h\ W+(h) = W~(-h).
In the case of low temperatures (E is large) the phase transition exists in the

point h = Q, where the magnetization changes by a jump [2-5]. We shall suppose
that E>E0, E0 is fixed and sufficiently large. According to the Lee-Yang theory
[1-3] all zeroes of Z^ correspond to the complex values of h, but in the
thermodynamic limit some zeroes approach the point h = Q. Our next aim is to
obtain for any finite domain a circle \h\ ̂ r0, where the partition function has no
zeroes.

The letter C with a subscript will be used as an estimate for the upper bound of
a variable. It will be always assumed that 1) C > 0, 2) C = C(d) does not depend on
volume, £, h, etc. 3) if Cv , C2? . . . Ck have been already defined, we may increase Ck

(if necessary) in all expressions; 4) E0 may be defined only after all estimates Cl9

C2, ... have been introduced and it is sufficiently large in comparison with them.
For instance, the number of contours with a fixed vertex and the fixed length /α = /
is less than C\ [2]. That will be the definition of C t.

The letters θ (θ is complex, |0| ̂  1) and ξ ( — 1 ̂  ξ^ 1) will be used for writing
inequalities in a more convenient form. For instance, a — 1 ̂  b ̂  a + 1 and a = b + ξ
have the same meaning.

Further in all theorems Z^, Z^ will stand for GPF with weights Wa

+, W~
(1.7). GPF may be equal to the Ising partition function for a certain volume or to a
restricted partition function, where some contours are excluded (their weights are
equal to the zero).

Theorem 1. Let s0 be the upper bound of the area of all contours in Z£ : sα ̂  s0. Then,

-2 <E

<m£Γ2,

<2NE -2

(1.8)

(1.9)

(1.10)
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in the circle |/ι|^r0, where

The theorem is true for the negative boundary conditions as well.

Proof. The symmetry between " + " and " — " boundary conditions is evident. The
inequality Z^ΦO follows from (1.8): it can be easily proved by mathematical
induction on N. The inequalities (1.9) also can be obtained by using (1.8) m times.
Inequalities (1.10) are obtained by using (1.8) 2N times; besides, 1) Z^N=0 = ί, 2)
|/(z)—/(0)|^|z| max|/'(z0)| for an arbitrary analytic function /(z), 3)

β
ZH =Zχ\h=0 must be taken into account.

The proof of (1.8) will be obtained with the help of mathematical induction on
N, supposing that (1.8)-(1.10) are true for all N\ N'<N, particularly for Z^ which
are contained in the weights W^ for Z%. After dividing (1.3) by Z^-ί we have:

α

Now we are able to obtain the upper bounds for the terms (1.12) and their
derivatives with the help of (1.7), (1.9), (1.10):

— (
dh(

Tk]

7~2

d^+

and

Here

-jϊα ah,

(1.13)

(1.14)

(1.15)

We can rewrite (1.9), (1.10) as

and

(1.16)

B£-2). (1.17)

Note that n,<2d(d-ΐ)s,, m,<2(d-l)l,, l,^2d$-lvd^2ds.Solld, so that the
following bound may be obtained from (1.16), (1.17):

(1.18)^exp(-/α(£-2C2-l)/(C2
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and thus

l))<iE-2 (1.19)
l = 2d

is sufficiently large). The comparison of (1.12) and (1.15) gives

and the first inequality (1.8). The second inequality (1.8) (and the last in the proof)
follows from

d Z+
1 Z 7 - 2 -\-\E

2. Derivatives of Free Energy

Let Z+ stand for the GPF of the square volume Λp: Sp = pd, Lp = 2d pd~ί with
parameters Mp9 Lp, Sp, Np. Further on we shall write [/](/c) for the /cth derivative of
any analytic function f(h) at the point h = 0:

m(fe)_ ^
= ώ

Theorem 2.

(2.1)

L ) (2.2)

for arbitrary p, k with the restrictions k>Ed, and p>(k/E)1/(d~1).

Proof. We define the critical area S0 as

S0 = (k/2dE(l - Cί 1))d/(d~1}, (2.3)

and enumerate all contours in Λp with the area SΛ > S0: α1? α2, α 3 , . . . . The order of
the enumeration is arbitrary but it is required that Saί^SΛ2^SΛ3^.... Let Z*
stand for a restricted GPF: Z* contains only "small" contours with Sa^S0 and
contours α l s α2, ...α f; ZQ contains only "small" contours. It is evident that

i

where Ut is defined as Ui = \n(Z++1/Z+) (i = 0,1,2,...).
Our aim is to prove that [ί/J(fe) > 0 and |[lnZo ](fe)| is sufficiently small. In order

to examine [t/J(fc) we fix an arbitrary contour α/ + 1. Its parameters will be written
simply as M, L, S, AT. In this case Eq. (1.2) has the form

Here ZfR is a restriction of Zf

+ (Z^1* does not contain the M vertices belonging to
α ί+1 nor the contours joined to αί+1). Whence,

where Vt= WΛ*+ίZ+R/Z+. The bounds for \_V^\(k\ [l^2](fe)

?..., can be derived from
the following theorem.
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Theorem 3. Let f(z) stand for an analytic function in the circle \z\<R, where
\f'(z)\^A9 A<l/4 and f ( z ) is real for real z. In this case the coefficient ak

(#•(!— 2]/4)>fc>100) of the expansion ez +f(z} = a0 + a ̂ z + a2z
2 + ...satis-

fies the inequalities

where r is the unique positive (0<r<R) solution of the equation

r(\+f'(r)) = k. (2.8)

The proof is given in the Appendix.
In order to use Theorem 3 in our case we consider z = nSh,

f ( z ) = n(ln(Z^/Z+) + ln(Z+«/Z+) - EL) , (2.9)

where n is a fixed positive integer (n=l,2, 3, ...). Taking into account the
definition of Vt and WΛ*+ί, we obtain exp(z + /(z))= V?. Since /(z) is an analytic
function inside the circle of radius R = n'S-r0, where r0 is given by

i) (2.10)

[cf. with Eq. (1.11)], Theorem 3 can be applied. Now

Therefore A can be defined as A = E~i. Choosing, for example E0>10, both
A>l/4 and fe> 100 will be satisfied. (Remember that k>Ed.) Besides,

) = nSr0(l-2E~1/2)

= fc(l-2£-1/2)/(l-C2-
2)>fc.

The requirements of Theorem 3 are fulfilled so that we can write the inequalities
(2.7) for ak = n-kS-k[Vn(k}/k\. From Eq. (2.8) one gets k/(l+E~l)<r
<k/(l-E~1)oτr = k/(l+ξ/E).

Now we rewrite (2.7) in a more convenient form, noting that a constant (such as

]/2π or λ: 1/12</1<1) can be written as exp(£fc/E), when k>Ed. We obtain
r-k = k~kexp(3ξk/2E) and λr'k-1/2 er = exp(3ξk/E)/kl. Besides, from Theorem 1
we get

9/V> 4/W^d~1)/d 9Λ/7 Γ
H^/'7-/'7 + M^ ° ^"^^ ^ ZiV^ . ^
llniZ^/Zjv)^ -g2~ = £^/1 + c-ix ^ £g^ + c-ι\ < y'

and

and hence exp/(r) = exp(n L (ξ — £)). Taking into account that

L^2dS("-1Vd>2dSlg-1)ld = k/E(l-Cϊί)>k/E, (2.12)

we finally obtain

ak = exp(nL(4ξ - E))/k!, \V^ = nkSk exp(nL(4ξ - £)). (2.13)
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In order to obtain similar estimates for [t/J(fe), we use the inequality

(notice that E L>k). From the expansion (2.6) we obtain

2 [7i](k) < \-UΛ(k} <2 [^](fe)> [^](k) = Sk exp(5Lξ - LE) . (2.14)

This formula enables us to get estimates for the kth derivative of the sum (2.4).
The function ιp(S,L) = Ske~L'E takes on its maximum for square contours
defined by S = qd, L=2dqd~ί. Now ψ(q) = qkdexp(-2dqd~1 E) is maximal for
q = qm, where

qm = (k/2(d-l)E)W-». (2.15)

Then
1>. (2.16)

Attention should be paid to the fact that qm is not natural, whereas q = 1 , 2, 3, . . . .
Hereafter we use tfm — [gw], i.e. the integer part of qm. The inequality
ψ'm

 = ψ((l'm)>ΨmQ*P( — 2dk/E) can be obtained after a simple calculation. The
square volume with p>(k/E)1/(d~1) contains not less than Sp/5 square contours
with the side q[m. Therefore, since Lm, ψm obey (2.15) and (2.16), we get

dk

The upper estimate for the sum (2.17) will be obtained when all the contours with
the fixed length /α = L will be collected. The weight of each class is defined as
UΣ

L= Σ Ui]lι=L. The number of contours in every class is less than Sp- C\ and

Sa^(L/2dYl(d-l\ Therefore,

[l/i](k) < SpC\(LI2d)άW ~ 1} e5L~EL . (2.18)

Summation of (2.18) over L yields

where we used the inequality

oo 9

Σ e~LqLp<-
L = I q

The bounds (2.17), (2.19) can be united in the equation
l > . (2.20)

Finally, it is necessary to show that |[lnZo ](k)| is less than half of the bound
(2.17); then, according to (2.4), the bounds (2.20) will remain true for [lnZ+](/c) with
C3 replaced by C4. Taking into account that InZ^" is an analytic function inside the
circle |Λ|<r0 (1.11) for S0, given by (2.3), we have

" 1 " 1 ^/^-1)
C.2D
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where the estimate |lnZ^"| <Sp is used. The comparison between (2.20) and (2.21)

together with /c!<3j/fc(fc/e) fc gives the necessary statement. Equation (2.2) is a
more convenient form of (2.20).

3. Thermodynamic Limit

Theorem 2 shows the behaviour of the derivatives of the free energy Fp = S~ί InZ*
for arbitrarily large but finite systems. However, we cannot say at once that the

dkF
-o dhk

because we can say nothing about the change of order of limits p-»oo and Λ-> — 0.
In this section it will be shown that the limits exist and can be interchanged:
F(k) = lim [Fp]

(/c). In fact it is sufficient to find a region on the complex plane h

derivatives F(/c) = lim —^ of the free energy F = lim Fp obey the same estimates,

p-
having the boundary point h = 0, where Zp φ 0 and ̂ -̂  is uniformly bounded for

all p and h. The Lee-Yang circle theorem [1,2] yields a region \eh\ < 1, where ZΦO
dkF

but without any requirement imposed on / .

Let ΛQ be an arbitrary admissible volume with the parameters M, L, S, AT, and
let Zj be the corresponding partition function. We fix an arbitrary natural number
q (q=l,2,3,...), and among the contours in Λ0 we distinguish the "small"
contours, satisfying sa^qd. The subscript β will be used to label the "large"
contours (sβ>qd), and α is used for the small ones. Let Z^*, Z^* be restricted
partition functions containing only small contours. Thus Eqs. (1.3) will be

z* =zj_1 + Σ w+z^mχ+ Σ wβ

+z+_mβ (3.1)
« 0

and

α

Similar equations can be written for Z^ and Z#*, but a somewhat different
formulation will be used. Let j stand for a set of large external contours, i.e. having
the property that none of the contours in the set j contains (in its interior) or is
joined to any other contour of the set j. The corresponding parameters mp /,-, sj9

and nj are the sums of mβ, lβ, sβ9 and nβ respectively. With this notation we have

z~ — z~* + y
j

where the product is taken over all the contours β belonging to j.

Lemma 1. The number of setsj for the volume Λ0 with fixed /; = /0 and Sj = s0 is less
than exp(C5(L+/0 + /β)), where lq = d (S-So)/(q+\).

Proof. It is sufficient to show that for every j we need at most lq additional edges in
the volume Λ0 — Aj in order to connect all the internal large contours (belonging to
7) with the external contour Γ0 (the boundary of Λ0). Performing this, we have a
joined system of edges with a total length L +10 + lq, whereas the number of joint
systems of / edges is bounded by exp(/ C5).
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Fig. 2
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Let x l 9..., xd be the basic vectors of the lattice. The total length of the edges
(surface of hyperplanes in the d-dimensional case) normal to x1 in A0 — Aj is less
than S — sQ. Let us collect these edges (hypersquares) in straight lines (hyperplanes)
perpendicular to xί and draw the lines not with step 1 but with step q+l (the
others will be omitted). There are still q+l possibilities because of the translations
in the direction of x l 5 but we take the one for which the minimum of additional
edges is needed. This minimum is less than (S — So)/(q + 1). When this procedure is
repeated for the rest of d— I vectors x2,..., xd9 the number of additional edges will
be less than lq. Thus the volume A0 — Aj will be divided into square volumes. Every
contour β ej will be linked to the boundary Γ0 with the additional edges, because
sβ>qd (see Fig. 2, where q = 2).

Theorem 4. The inequalities

(3.4)

and

|W;+|<exp((C5-E)/a), \Wβ

+\<Qxp((C5-E)lβ) (3.5)

hold true in the sector D+: π/2 + C6/2E<zτgh<3π/2-C6/2E. Here fί = min(|λ|,

Proof. The proof is based on mathematical induction on N. At first, we prove (3.5)
and Z^ ΦO by assuming that (3.4) holds with N replaced by rcα and nβ. The second
step is to prove (3.4), when the weights for Z#, Z#* can be estimated by (3.5).

Let us notice that the parameter q = q(h) is chosen so that the point h(heD+)
belongs to the circle \h\ <r0, given in Theorem 1, when s0 = qd. It means that for
every fixed h(heD+)we classify the contours as small and large and define Z#*
(sα ̂  qd) so that the requirements of Theorem 1 are satisfied. Thus, Z^ * φ 0,
Z^*! φO, and the inequality Z^ φO is derived from (3.4) and from Z^_{ φO by
induction on N.

Dividing the Eq. (3.3) by Z^ we have

Z- ^-
N _ ^N ,

'
(3.6)

where we used

On the other hand inequality (3.4) can be written as

(3.7)
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and iterating (3.7) m times and N times, respectively, one gets

According to Theorem 1,

m = emθ'E2 and Z

therefore we find

ZZ-JZZ=e2aβlEl and Z^ */

This enables us to obtain upper bound for (3.6):

le^Ztf /Zjf I < exp(3JVif/E2 + S ReΛ)

= e3NHβ/E2 .

Now, by using the estimates of Lemma 1 we have

\eShZΰ /Z$ I < exp(S(6d(d - 1) \h\/E2 + Re A))

where s' = S-Sj and l^S-s'^lβd)™*'1). Besides, we used
N-mj-nj<2d(d-\y and mj<2(d- 1)/7 . The choice of g yields
<|/z|/£. Region Z)+ possesses the following property:

-ReΛ/|Λ|>C6/3E, where C6 is not fixed yet.
Let us put C6 = 1 + 3C5. In this case, 6d(d-l)|/z|/E2

and

437

(3.8)

(3.9)

(3.10)

1)<0

A comparison with the definition (1.7) of the weights results the inequality (3.5).
It remained to prove (3.4), assuming that (3.5) holds for the weights Wa

+, Wβ

+,
appearing in Z£ and Z^*. Equations (3.1) and (3.2) give

Then, from (3.5), (3.8), (3.9) and 2mβ/E2<lβ, it follows that

\Wβ

+Zt_mf/Zt_

and

(3.12)

5 + 2-E)
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The number of contours with 1Λ = 1 is bounded by Cl

ί9 therefore, the first sum in
(3.11) is less than H/4E2 and the second sum is less than ί/4E2lβ min, where lβ min is
the minimum of the length of the large contours for a given q. It is easy to show that
with the particular choice of q lβ^in < H : if H = 1 we have lβ^in < H, because Iβ>l9

and when H = \h\ < 1 we obtain, that q > E/\h\9 lβ min > q and /^in < H. In this way,

(3.13)

The identity

Z +
N

-w-i

together with Theorem 1 gives

l-eE~Ή/2E2< <l+eE~2H/2E2 (3.14)
7+ 7+*
-/jy — j_ ̂ jv

and (3.4) follows from (3.14).

Corollary 1. Lei Λn be an increasing sequence of admissible volumes and assume that
the corresponding free energies FΛn(h) converge for real negative h. Then FΛn

converges to an analytic function F(h) in the region D +.

The Lee-Yang theorem gives the same result, but without the restrictions (3.4),
(3.5).

Corollary 2. The results of Theorem 4 remain valid for negative boundary conditions
in the region D ~:

- π/2 + C6/2E < arg/z < π/2 - C6/2E.

Let DI stand for the region π/2 + C6/£<arg/z<3π/2-C6/E. Thus, Dϊ is
contained in D+ (Df CD+).

Theorem 5.
. dkF

is valid for arbitrary k (k = 1,2,3,...) and h e D f .

Proof. At first, we prove that the derivative / is uniformly bounded for all p and

h e D f . We consider Λp with the parameters Mp, Lp, Sp, Np and use the definitions
of Sect. 2 for ZQ, Zj", Z2,..., Ui = ln(Z*+1/Zf\ Ui = \n(l + V^ and
V{ = W*i + ̂ Z^R/Z^. The only difference is that now we put S0 = 0, and thus all the
contours are numbered. Whence, ZQ = 1 and Z+ = Σ Ut. For a fixed contour cti + 1

with the parameters M, L, S, N we have l

|^|<exp(-L(E-2C2-l)/(C2 + l))

in the circle (2.10), according to (1.18). Theorem 4 gives the inequality (3.12)
I Vt\ < exp(- L(E - C5 -1)) for h e D +. Therefore, |U t\ < exp(- LE/2C2) if h e D0

+,
where DQ =D + vD0 and D 0: |ft|<r0. One can easily see that Df CD^, and the
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distance between the boundaries of DQ and Df is not less than δ = r0C6/3E. The
Cauchy formula for the feth derivative on the complex plane gives

dkut
<Uik9dhk

for arbitrary h e D f . We define Uf = Σ Uik, when the summation is taken over all
i

the translationally non-equivalent contours on the infinite lattice. It is evident that
the series Σ Uίk converges. Each contour in the volume Λp has less than Sp

translations in AP9 so we conclude that <[/£ for fteDί . Notice that I7f
dhk

does not depend on p and ft (but it depends on fc).
The following proposition will help us to finish the proof. Let the functions

/ι(X)> ΛW? /sW? have the second derivatives uniformly bounded for all n and

\fή'(x)\^A9 and suppose that fn(x)-+f(x) In this case /(x) has a continuous
derivative and lim f'(a)= lim/Yx).

H-+OO x-+a

All the derivatives of Fp are bounded and thus we obtain (3.15).

Corollary.

1 dkF

where hεDΪ,k>Ed, and therefore the series F+(h) ~AQ + Aίh + A2h
2 + . . . does not

converge for any ftΦO. Hence, h = Q is a non-analytic point of F(h).

4. Discussion

The Ising model can be interpreted as a model of a lattice gas with the chemical
potential h and interaction E, where each negative square corresponds to a

dF
molecule. In this case F(h, E) is the pressure and — is the density. The gaseous

phase corresponds to the negative values of h and the liquid phase corresponds to
h > 0. The zero value of ft is the point of the first order phase transition [2-5], when
the density changes by a jump.

The results of Theorems 1, 2, and 5 enable us to make some conclusions about
the nature of the metastable states. The metastable phase is usually interpreted by
supposing the existence of the analytic continuation of the pressure through the
phase transition point and all thermodynamic functions in the metastable phase
are defined with the help of this analytic continuation. According to this
interpretation, the behaviour of the thermodynamic functions does not make it
possible to remark that the system approaches the point of a phase transition until
we pass it. Only the partition function has some peculiar behaviour near this point.

The absence of the analytic continuation for the Ising model makes it necessary
to investigate the problem of the definition of the thermodynamic functions in the
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metastable phase. We fix a sufficiently large square volume Λp with " + " boundary
conditions, h being positive and h <ξ E. Positive values of h correspond to a liquid
phase, whereas the " + " boundary condition compels the system to remain in the
gaseous state. "Sufficiently large volume" means that the main contribution to the
partition function is given by the configurations corresponding to the liquid phase.
All these configurations may be represented with the help of a large contour
containing almost all the volume and a few small contours within this large one.

The partition function for the gaseous metastable phase may be defined as a
restricted sum over configurations, when all configurations with large contours are
excluded. Now it is necessary to define a difference between large and small
contours. The weight of the configuration with only one contour α is
Pα = exp( — E/α + /zsα). We assume that the area sα can increase in such a way that
sα = s0g

d and Zα^/o^"1, where q is a parameter and s0, 10 are constants. The
function P(X = Poc(q) first decreases (Q<q<qm, qm = (d—l)l0E/ds0h) and then
increases (q > qm). If this contour is interpreted as a (liquid) drop, then we may
say that the contour a\q=qm is a critical droplet which realizes a transition
from the metastable gaseous phase to the stable liquid one. The critical weight
Pm=:Pα(gJ depends on the ratio s0//0 and reaches its maximum for square
contours, where sa = qd, l^2dqd~\ qmm = 2(d-l)E/h and Pmm = Pa(qnJ
= Qxp( — 2dEd((d—l)/h)d *). At the same time the critical area sm = soc(qm) is
minimal for square contours. Thus, all configurations containing contours with
s« = smm = (}mm should be excluded, because they do not correspond to the
metastable state but describe a stable or a decaying state.

The restricted partition function Z* *, containing all the contours with sα < smm

(smm is now arbitrary fixed) has the following properties. The pressure
F* = Sp*^Zp* has the thermodynamic limit F*->F* for ft<0, because
F* is bounded and increases, when p-+ oo. According to Theorem 1, Z^ * φ 0 in the
circle \h\<rm = 2dEs~^ldl(\ + C^1), and thus F* has a thermodynamic limit F*
in this circle. The point h0 corresponding to smm is h0 = 2(d — l)Es^/d. Therefore
h0 is in this circle and F* can be calculated with the help of the expansion
F*(A0) = F*(0) + [F*](1)Λ0/l! + [ F*](2)Λo/2!+ ... (this series converges).

In fact the picture is more complicated. We cannot separate all the contours
strictly into two classes, containing respectively large and small contours. A group
of intermediate nearly-critical contours with sα ~ smm, 1Λ ~ lmm exists. Now two
different results are possible when such contours appear: the system can pass into
the stable state or remain in the metastable one. As a consequence, we can calculate
F*(h, E) only with an uncertainty δ = δ(h, E). A lower bound for δ may be derived if
we consider that the group of intermediate contours contains only one square
contour with soc = qd

mm. In this case δmin = Pmm(h,E). An upper bound is
<Smax = Pmm(h, E — In CΊ), because the number of contours in the intermediate group
is less than Cimm.

Concerning the main result, we have already remarked that the expansion
F+(h)~A0 + A1h + A2h

2 + ... does not converge. We can try to calculate F(K)
using this asymptotic expansion, but the values of F(h) will be obtained with the
uncertainty ε = ε(/ι) common for all asymptotic expansions. The sequence Akh

k

attains its minimum for k = km, km = (2(d—\)(E + ξC))d/hd~1, and simple calcu-
lations give ε = Qxp(-2d(E + ξCY((d-l)/hY~1) (we suppose that ε = Akmhkrn).
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Thus, 8 = Pmm(h,E + ξC) so that ε is equal to the physical uncertainty δ and we
cannot consider this result as an accidental one. We conclude that the system,
being in the stable state, feels both the transition and the instability in the
metastable phase since the coefficients Ak have been obtained from the stable phase

Finally one may suppose that the main properties of the first order phase
transition proved for the Ising model remain true for a wider class of lattice and
continuous models. Namely, the point of the phase transition is a point of non-
analyticity of the thermodynamic functions. The asymptotic expansion gives a
correct result for the metastable phase with the uncertainty ε equal to the physical
uncertainty δ. Analytic continuation in the point of the phase transition becomes
possible as soon as we forbid the decay of the system into the stable phase by means
of some mathematical restrictions or by any external physical forces.

Appendix

Proof of Theorem 3. The coefficient ak can be calculated by using the Cauchy
formula:

ak= —j- ]ercosφ+Ref(z}cosιp(φ)dφ, (A.I)
nr o

when the contour of integration is the circle z = reiφ (0<r<R). Here
ψ(φ) = r sin φ + Im/(z) — kφ, and the equality /*(z) = /(z*) is used. The parameter
r will be fixed later. The derivatives of /(z)

j/> 72r J3^

dφ ' dφ2

dz
. = ίz I enable us to obtain

dφ

(A.2)

: φ). (A.3)
υ Uψ'\φ = φ'

The point z = reiφ for an arbitrary φ is situated at a distance R — r from the circle
|z| = JR, inside which /(z) is an analytic function. Thus we get

\f'(z)\<A, \f"(z)\<A/(R-r), \f'"(z)\<2A/(R-r)2.

Upper bounds for the last terms in (A.2) and (A.3) are then obtained:

Re
dφ

d2f

dφ:

Im
dφ*

(A.4)
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Moreover,

v(φ) = rφ + rf(r)φ-kφ+^-(^^-+r}ξ, (A.6)
o \ ^A — r) j

where we have used sinφ = φ + φ^ξjβ, ( — 1 ̂  ξ1 ̂  1).
Equation (2.8) has a solution for 0 < r < R, because, when r changes from 0 to R,

the left side of the equation changes from 0 to R(l+f'(R)) and R(l+f'(R))

>R(l-A)>R(l-2]/A)>k, (\f\^A<l/4). Taking r as a solution of
Eq. (2.8), the first three terms vanish in (A.6).

From the conditions R(l-2]/A)>k, r(l+/'(r)) = fc and \f'\^A we obtain

R(l-2γA)>r(l-A) and δ<(l-2]/A)/(l-A), where δ = r/R. Then the
inequatilies

AR/(R-r)< A(l - A)/(2]/A-A)< 1/4, (A.7)

r)l(R-r)2<(2-2}fA-A)(\-A)l(2-γA)2<\ (A.8)

lead to the estimates Re
d2f

<r/4,
'dφ2

Now we derive the upper bound for ak. From Eq. (A.I) we get

(A.9)

(costp<l, Re/(z)</(r) + φ2r/8). Inequality r>80 follows from (l+/'(r)) = fc,

k> 100 and |/'| < 1/4. The integral in (A.9) has a limit |/2π/3r when r->oo, and

simple calculations for r > 80 show that the integral is less than π/|/r. Thus the
upper bound (2.7) is proved.

To prove the lower bound we divide the region 0<φ<π into two parts:
0<φ<7 and y<φ<π, where y = (3/r)1/3. The corresponding integrals will be
denoted by I± and /2:

J1= \ercosφ+Refcosψdφ.
o

It is easy to see that ψ < 1 and cosψ > 1/2 for 0 < φ < y. Thus we have

i / 5 r 0 6|/r

Here we used x = |/5r/87-r1/6(5/8)1/231/3 and cosφ^l-φ2/2, Re/
>/(r) —φ2r/8. Now it is sufficient to obtain an upper bound for I2:

\I2\<er+f(r)]exp(-r(l-cosφ-φ2/8))dφ.
y

The last integral is of the order of exp( — r1/3) for large r, because y is of the order of

r~1 / 3. Calculations for r>80 give the estimate |/2 |<πer+/(r)/12j/r. The first
inequality in (2.7) follows from this estimate and (A.10).
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Finally we prove the uniqueness of the solution r. If r is a solution of Eq. (2.8),

the derivative j-r(\+ /'(r)) is positive: (r(l + /'(r)))' - 1 + /'(r) + rf"(r)

> 1 — A — rA/(R — r) = 1 — A/(I — δ) > 0. That makes the existence of two or more
solutions impossible.
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