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Abstract. A method is proposed for the classification of integrable embeddings
of (2 + 2)-dimensional supermanifolds V2\2 into an enveloping superspace
supplied with the structure of a Lie superalgebra. The approach is first applied
to the "even part" of the scheme, i.e. for the embeddings of 2-dimensional
manifolds V2 into Riemannian or non-Riemannian enveloping space. The
general consideration is also illustrated by the example of superspaces supplied
with the structure of the series sl(n, n +1), whose integrable supermanifolds are
described by supersymmetrical 2-dimensional Toda lattice type equations. In
particular, for n = 1 they are described by the supersymmetrical Liouville and
Sine-Gordon equations.

1.

This paper is mainly devoted to a construction for classifying integrable
embeddings of (2 + 2)-dimensional supermanifolds V2\2 into the enveloping
superspace VN\M supplied with the structure of a finite-dimensional Lie
superalgebra @ = © O Θ © Ϊ (with the product [,]), whose Z-grading

© = 0 ©w, [®m, © J C ©W+Λ is consistent with the Z2-grading, i.e. ©6 = θ©2m>
meZ J

I = Φ®2»+1
Henceforth we use the following definitions. Denote

9WZ; 3) = [d/dZ* + 3ΛZ), dldZ* + ̂ ( Z ) ] , (l.l)

1^9l<95^9rl + 9K, where 3^ = Σ dk(Z)Fκ

 a r e s o m efunctions of Z* taking

values in the Grassmann hull dΰ(A) of the superalgebra © with the basis
Fκ,3me(δ(Λ); ZΛ = yA, 1^A^% are usual Cartesian coordinates, ZΩ+* = ΘΩ,
1 ^Ω^SDΪ, are canonical generators of the Grassmann algebra Am.

By a grading spectrum of A± we understand the choice of a Z-grading of the
superalgebra © and the condition that for 9t = 2,501 = 0 the operators ^4+(z+,z_)
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= 3iO0±*'32(j;)9 z±—2ίy1 + iy2)> take the values in the subsuperspace
Φ ®+m w iΛ some fixed numbers m ± e Z Here as an integrable sector of the

0 ^m^m±

differential equation system, following from 9ti2Cv;3) = 0> i.e.

= 0, (1.2)

,4+ e 0 ©± M, one should understand a set of conditions for the functions

α+(z+,z_), which make the given system exactly integrable. This means that the
system is exactly integrable in the sense that it allows, under these conditions, a
complete solution of the Cauchy problem, or will become completely integrable (in
the sense of the inverse scattering problem) with the corresponding class of soliton-
type solutions.

Note representation (1.2) is form-invariant with respect to the gauge
transformation

A + ->£o ιA±g0 + go ld§oldz± , (1.3)

which conserves the grading spectrum of the operators A± at g0 e Go due to the
condition [®0, ©m] C ©m. (Here g0 is an element of the complex hull Go of the Lie
group Go with the Lie algebra ©0.)

To clarify the approach developed and, moreover, the statement of the
problem itself, we shall first discuss the "even part" of our construction announced
in [1]. Namely, we consider, first of all, the embeddings of 2-dimensional manifolds
into the conventional space (only with the Bose-type coordinates). This will allow
us to perform the corresponding generalizations for supermanifolds without
excessive concretization of the geometrical structures and, at the same time,
without prejudice to understanding.

A classical problem of geometry is a classification of manifolds embedded in
this or that fashion into enveloping space. According to the embedding theorems
of differential geometry [2-5] a manifold Vn is defined up to the motion in the
enveloping space VN as a whole by its fundamental tensors satisfying the Gauss,
Peterson-Codazzi, and Ricci equations (see Appendix A). Thus, one of the major
aspects of the constructive solution of the problem involved consists in the
investigation of these equations with a view to picking out their exactly and
completely integrable subclasses, classifying the latter and finding the solutions.
The characteristics of enveloping space (particularly its connections at the points
of Vn) enter in the equations for the tensors of Vn as "external" functions. For this
reason it appears to be convenient to consider the triple of embedded manifolds
Vn C VN C RM for the self-consistent justification of the problem where the curvature
tensor of RM has zero components.

From the technical point of view the problems encountered are concerned with
the following. The equations under consideration represent a very complicated
system of nonlinear partial differential equations with the arbitrary choice of the
(pseudo-) normals to the manifold Vn as well as the parameters on it. (In this
connection it is also important to reformulate the equations in question in terms of
the reduced functions, the latter possessing no arbitrariness mentioned above and
serving for the gauge invariant quantities.) Apart from that, even with adequate
methods for their solution, an approach is to be worked out to identify exactly or
completely integrable subclasses of manifolds.
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Quite similar to the geometrical problem discussed is the fully solved problem
of the classification of all semisimple subalgebras of simple Lie algebras. Thus it is
natural to expect the application of the algebraic notions and methods in this or
that form to be adequate to the solution of the embedding problem of differential
geometry. Recently it was established [6, 7] that the treatment of the classification
problem of simple Lie algebras © and the description of the embeddings of three-
dimensional subalgebras in © are closely linked with the problem of picking out
exactly and completely integrable two-dimensional nonlinear systems. This
relationship serves as a hint to the possibility of a constructive solution of the
differential geometry problem. (The concept in question in fact goes back to the
pioneering idea conceived by S. Lie to the effect that the continuous
transformation groups have a decisive significance for the integration of partial
differential equations and mean the same for the latter as the Galois groups for the
algebraic equations.)

With the algebraic approach [6] to the construction of exactly and completely
integrable nonlinear systems the starting point is a Lie algebra ©, the
representation (1.2), and the choice of a grading spectrum of the operators A± in
the integrable sector. At the same time differential geometry starts with the Gauss,
Peterson-Codazzi, and Ricci equations themselves. Here the characteristics of VN

(to be more exact, the structure of a Lie group with which VN is supplied) play the
role of © introduction, while the choice of a grading spectrum provide the
conditions for the components of the fundamental tensors of Vn. To reveal the
geometrical implication of these conditions is of crucial importance; so are the
notions of the grading spectrum.

The algebraic approach is quite applicable to the study of the embedding
problem specifically for two-dimensional manifolds of differential geometry
because up to now it failed to be extended to the systems in spaces with more than
two dimensions. (The same is true for the other methods for integration of
nonlinear equations.)

The construction proposed is based on the reformulation of the Gauss,
Peterson-Codazzi, and Ricci equations for a manifold V2 with the coordinates
y1,};2 in the form of the Lax-type representation (1.2). Here the functions
α+(z+, z_) are expressed via the components of the basic fundamental tensors of
V2. Imposing definite conditions for the coefficients of the third fundamental form
of V2, we single out the so-called integrable class of the embeddings of V2 into the
flat space R^, which is described by the equations in an integrable sector. These
conditions follow as a consequence of setting a grading spectrum of the operators
A±. The choice of a grading spectrum allows us to select an integrable class of two-
dimensional nonlinear equations with the help of an algebraic approach [6], which
makes it possible to obtain their exact solutions. In particular, consider the
grading spectrum of the operators A± in the finite-dimensional simple Lie algebra
© over C, whose grading is consistent with an arbitrary integral embedding 3 of the
three-dimensional subalgebra si(2) in it2 [9] and m+ = l. Then each non-

1 The description of the embeddings of V2 into the enveloping space VN of a non-zero
curvature is provided by the consideration of the triple of spaces V2CVNCRN+P and the
subsequent reduction [8]
2 Note that the Cartan element H of si(2) realizes the grading of (5, [#, ©m] = 2m(5m
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equivalent 3 is associated with the definite type of the integrable manifold V2 (the
minimal, constant curvature manifolds, and the intermediate variants including;
for concrete examples see Appendix B) and it is described by the system of type
(1.4) with £ ± =0,(© = ®o).

To realize this programme in the case of the supermanifolds V2\2 it seems
natural to try to describe their embeddings in the framework of a similar scheme.
This means choosing a grading of the Lie superalgebra © (with which the
enveloping superspace is supplied), consistent with the embeddings of the
superalgebra sl(2) or osp(l,2), certainly if there is any in ©. Here, however, the
equations following from the Lax-type representation (1.2) do not always turn out
to be supersymmetric. (The latter is of an essential significance for physical
applications, particularly, e.g. for the supersymmetric gauge and string
approaches, and supergravity; see e.g. [10].)

Thus the construction proposed is as follows. We must formulate the problem
for embedding supermanifolds V2\2 as the representation (1.2) with the even
elements A+ taking values in the Grassmann hull ®(Λ) of the superalgebra ©, and
also to set their grading spectrum. This leads to the superalgebraic Gauss,
Peterson-Codazzi, and Ricci equations in an integrable sector. Here the evenness
of Λ+ ensures the possibility to apply the algebraic method for the integration of
nonlinear partial differential equations [6]. Note, that in the framework of this
method it is possible, in particular, to prove the exact integrability of the system
[11]:

d(9oίdβo/dz)/dz = [ J g o 1 J g o ] + [ ξ g o 1 ξ + g o ] ,

The latter is related to the grading spectrum of the elements A±(z+,z_) in the
subsuperspaces (©oθ©±2)oθ(®±i)ϊ of the Lie superalgebra ©, which is graded
by means of the Cartan element H of the subalgebra

s l ( 2 ) : { H , J ± ; [ H , J ± ] = ± 2 J ± , [ J + , J _ ] = fl}

in ©o Here go = expu(z+,z_)eGo(A) = exp(&o(Al ιι(z+,z_), and ξ±(z+,z_) are
the functions with the values in the even part of the Grassmann hull of ©0 and
© ± 1 , respectively.

The exhaustive classification of various types of supermanifolds V2l2 appearing
requires certainly the description of all possible embeddings of the superalgebras
sl(2)andosp(l,2)in©.

2.

For the effective application of the algebraic approach in the investigation of the
embeddings of two-dimensional manifolds V2 C RN supplied with the structure of
Lie algebra © the indicial system of Eqs. (A.2) with n = 2 and RABCD = Q ( o r i t s

generalization in non-Riemannian case) should be reformulated in the form of
representation (1.2) with the help of the explicit realization of the operators A± in
the graded Lie algebra ©. Here the aforementioned arbitrariness in the choice of
(pseudo-) normals to V2 and the parameters on it is clearly related to
transformation (1.3). Evidently it is necessary to realize the operators A+ by the
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Cartan elements and the root vectors of (5 rather than with the help of the tensor
basis (like MAJB) to provide the possibility of considering the embeddings of
manifolds supplied with the structure of various Lie algebras ©. Here we illustrate
the afore-said by the example of the embeddings V2 C RN, i.e. for © ̂  O(N). Other
types of simple Lie algebras can be considered independently or by the reduction
over simple roots π of Όe or Be, for example, D 4 —^-> B3—~> G2. For these

algebras, as well as for the series B€ and D Λ there is a complete Dynkin's
classification of the embeddings of three-dimensional subalgebras. The study of
the embeddings of non-Riemannian manifolds follows the completely analogical
scheme and demands the use of non-compact real forms. In particular, non-
Riemannian generalization with non-zero tensor GfB

)C can be obtained in the basis
of the algebra SL(iV, IR), with the symmetrical parts of the connections y£B (A. 12)
being conjugated to the symmetrical tangent matrices of this algebra.

Consider an embedding of the two-dimensional Riemannian manifold V2 into
the flat Euclidean enveloping space RN and realize its representation (1.2) with the
help of the operators A± =^4+B(z+, z _ ) M A B ? taking the values in the orthogonal
Lie algebra of rank [iV/2] with the elements MAm = — MmA satisfying the
commutation relations

[ M A B , MC I D] = δA€MmΊD 4- δm]DMA€ - δm€MA]D - ί A D M I B C . (2.1)

(Note the consideration of pseudo-Euclidean enveloping spaces is carried out
quite analogically. The only difference being that the Kronecker symbols in (2.1)
are supplied with the factors ε A . The latter express the pseudo-Euclidean character
of the metric of RN and, correspondingly, the pseudo-orthogonality of the algebra.)

It would be convenient to come over to the complex structures

<f±j = # i ± nh, t± = ί ? ± i t ? , /±

v ΞΞyf ± iyμi , ej± EE ejl ± iej2,

in order to formulate the functions y4+B(z + ,z_) in terms of the coefficients of the
fundamental forms of a manifold V2 depending on the parameters xj = ίi~ίz+

+ ( — i) J- 1z_. Then using relations (2.1) one can easily verify by a direct check that
the substitution of the operators Λ± =A±m MAΊB with

i f = yμ±Xδf + qa

±je
jfίδfδf + tfδfδf (2.2)

in representation (1.2) leads to the Gauss, Peterson-Codazzi, and Ricci equations
(A.2) for an embedding V2 CRN. Here the d/dxl + ( l / 2 ) y f v M μ v Ξ ^ y ? 1 M 1 2 realizes
the covariant differentiation of the corresponding tensor quantities. [Note the
operator d/dyA-\-(i/2)y^m MAm plays the same role for the embeddings VN CRN+P

as the previous expression for V2 C RN."]

The operators A± can be equivalently expanded over the elements
EAB=-EBΛ,

(Eίj = e V v M μ v , Eia = eifίMμa, Eab = Mab),

of the Lie algebra satisfying commutation relations (2.1), where the symbols δAm

are replaced by
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Rewrite the expression for the operators A+ in terms of the Cartan-Weyl
invariant root basis. Due to the orthogonal algebras of even (N = It) and odd
(JV = 2^-fl) dimensions corresponding to different classical series (De and B^
respectively), consider first the even case following the notations of [12]. The series
Ώe are described by the extended Dynkin diagram

(2.3)

Here —M= — \π1+2 Σ πβ + πj-i + π<? M s the minimal root, πα are the simple
\ β=2 P )

roots. The Cartan generators ha and the root vectors X* corresponding to the
simple roots satisfy the commutation relations

-M

= 0, [Λβ, [Xα

+, X,"] = δaβha, (2.4)

with /c® = /c being the Cartan matrix of © = D .̂ Denote the root vectors of all
positive and negative roots of the algebra via X%, 1 <* Λ. ̂  ̂  -1) . Consider in the
root space ΊR/ the canonical basis (εα), where πα = εα —ε α + 1 , l ^ α ^ / — 1 ,

In these notations the operators Λ+ have the form

where the trace is calculated over the indices ij=l, 2 of the matrices

(2.5)

?αp — Λ<±ij = l

γ2a-l,2β-l r2a-l,2β

«2α, 2/5-1 y 2α,2/

r+ r±

v =

e=

Σ

V-i

Σi
7 = 1

]•
1 -i

(2.6)

y = l

., odd f
), even f.

The functions ra+ = - rj.a are

^,4^2Λ (2.7)

Here the 3d fundamental forms (A.4) are expressed via functions (2.7) or via
matrices (2.6) as

β ab — raA ^AbJγ A7 — (v~ 1 R ^ R ^ ί Λ . .(17 07
1 2 1 2 1 2 1 2 pφ

2, fc = 2/?+;-2; U = l , 2 .
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To single out the exactly integrable subclasses of system (A.2) resulting from the
substitution of operators (2.5) in representation (1.2), consider, in accordance with
the general construction of [6], the gradings of the algebra Ds that are consistent
with the integral embeddings of the three-dimensional subalgebra si (2). Since
Dynkin's procedure [9] for the description of all types of embeddings is uniform
for all finite-dimensional simple Lie algebras ©, we recall briefly the main steps of
the procedure for arbitrary ©.

Each embedding is unambiguously defined (up to equivalence) by the
decomposition structure of the Cartan element H of the subalgebra si (2) over the

ύ

generators ha of the algebra ©, H = Σ Caha, { = rank ©. In their turn the unknown
α = l

structure constants Cα of the embedding are determined by the following scheme.
Consider the extended Dynkin diagram for © and select its subset
P(IS)ΞΞ{P1? ...,ps;5^/} of any roots corresponding to some semisimple Lie
subalgebra ©(s) of rank fsi*t of the initial algebra ©. Then the unknown element
H= Σ CahD is found from the conditions [H9X*'] = ±2X± Here the

embedding of si(2) in ©, where [H.X^Ί = ±2X*, 1 gαrg/, plays a peculiar role.
The corresponding 3d-subalgebra is called the principal 3d-subalgebra. Really, the
description of all embeddings si (2) C © is reduced to consideration of the principal

3d-subalgebras in all algebras ©(s). ί The exceptions are —— embeddings for the

ΓV'—3~Ί \
series D^ and —-— for Er, £'=6,7,8. I Therefore the structure of H for other
embeddings (non-principal) is established from this condition written in the form

[if, * £ ] = ± 2Xj (2.9)

for l ^ s ^ / and from the subsequent reduction. Formula (2.9) leads to

α = l
(2.10)

where d^ are the decomposition coefficients of the root A over the simple roots,

Λ = Σ «̂ π« Thus, taking into account the relation

lH,Xn=±2( Σ di-dί

we come to the following structure of the local part © of the algebra © with the
grading H(s):
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Here it seems natural that the case 5 = 0 corresponds to the canonical grading [the
principal subalgebra si (2) of ©], i.e.,

©0 = {/jα,l^α^/}, <5±1 = { X β M ^ α ^ } . (2.112)

For the case of the series D^ under consideration formulae (2.11^ lead to

y = α γ=ί-a+ 1

γ
y = α y --: <f - α + 1

y = α y =C~ a

o, s = i ,

or

As can be easily seen after excluding the corresponding set of points in scheme (2.3),
some of these gradings are evidently equivalent.

Retain in expansion (2.5) only the terms with the elements of the subspaces
©o © © + ί and ©0 © © _! (for the operators A + and A _, respectively). Then taking
into account formulas (2.12) we obtain the required relations for the quantities ra+
from (2.7). Let us enumerate all nonequivalent possibilities. For the case of even Λ
we have

5 = 1 :

R <*β
+ 1 2 =

. = Ώ*β.

+ 22 — K+

7 = 2 ί213 ϊ

(2.132)

7 = 1
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According to the definition, the functions R^^ are constructed from R*f!tj via the
formula

R^^KRf)-1 detRf]fj. (2.14)

To consider the odd values of/ one has to make the replacement Rc±ji<±Rc±j2 in
(2.13) and (2.14).

The solution of the same problem for the orthogonal algebras of odd
dimensions is obtained by equating the simple roots π^ and π, _ x in the root system
of Ό€ + x. This procedure corresponds to the transition from (2.3) to the π-system for
the series B^

), (2.15)
τ u y E _ 1

where

or, in terms of the coefficient functions, to the equalities r2+ 1*Λ = 0.
Thus, in accordance with expression (2.8), the classification of exactly

integrable embeddings of V2 into RN is defined by the structure of the 3d
fundamental forms with nonzero coefficient functions (2.13) and (2.14). It is via
nonzero elements of the matrix Qf that system (1.4) with ξ+ =0 describing these
embeddings can be formulated. For this to be accomplished, one has to reduce
expansion (2.5) to the form [6]

A + =golj+go, A. = J_ +go1dg0/dz- (2.16)

by expressing the group parameters of the element g0 e Go through the coefficients
at the differentials (A.4). Here the form-invariance of (1.2) with respect to
transformation (1.3) with g0 e Go is applied. Then (2.16) leads to system (1.4) with
ξ± =0, which allows [6] an explicit solution of the Goursat problem characterized
by 2-dim©! arbitrary functions φ+a(z+) and φ_α(z_), l ^ α ^ d i m © ! .

The present approach to the completely integrable systems is connected with a
realization of the operators A± in the corresponding subspaces of the infinite-
dimensional Lie algebra © of finite growth [13]. Here the existence of finite-
dimensional representations of © provides the possibility of the nontrivial
introduction of a spectral parameter and construction of the soliton-type
solutions. In this situation the choice of a definite grading spectrum of the
operators A± in &, A+e 0 ©+mis equivalent in a certain sense to their

0 ^ m^m±

realization on the elements of the corresponding finite-dimensional Lie algebra ©,
which form a degenerate (finite-dimensional) representation of the generators of
©± m,
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3.

Consider supermanifold V2\2 with the coordinates

embedded into the superspace VN\M with the coordinates

(For the basic notions of supermanifolds, see e.g. [14].) Introduce with the help of
the components £ j = dZs&/dza of the repere, {d/dza = Efd/dZm\ the elements ya(x θ)
= E*Γm at the points z in V2l2, where Γm(Z) e fδ(A) is a connection of VN\M.

Then, if the components SH^Z; Γ) are equal to zero, for ya(z) έ ©(ΛΓ) one has

It follows that up to the gauge transformation
x g 0 e exp©0(Λ),

the even elements yt(z) from ©(Λ) completely define the odd γa(z). Hence, it is
sufficient to consider the relation <ϋ12(x;yi(x;θ)) = 0.

For convenience we represent it in a component form by using the expansion

x). (3.1)

Here y\0) and y\2) are scalar functions taking values in ©, and y[υ = {γf} are the two-

( θ \
+ I. Because°-J

of the recurrent structure of the equations for yf\ 0 ̂  s ̂  2, they are defined by the
solution y\0)(x) = g~xdg/dxί of the equation 9l12(x',y\O)(x)) = 09 as well as by the
arbitrary spinor {φμ(x)} and the scalar f(x) taking values in ©. The latter are
related to y\s) by the formulas

tfOc) = g -' dφ\x)ldx*g, yf\x) = g~ι ίdf(x)/dxj - φdφ/dx*]g, (3.2)

where g(x) is a function with the values in the even part of the Grassmann hull of
the supergroup G with the super algebra ©.

Thus, the system ςRah{z\y) = Q is reduced to Eq. (1.2),

z± = l/2(xιTix2), with A±=y^(x)±iy2°\x)

being the even elements of the Grassmann hull of the superalgebra ©. [Here the
coefficients α+(z+, z_) at even Fκ (e ©5) in 4̂+ are scalar functions, whereas those
at the odd ones (e ©7) are anticommuting elements of the Grassmann algebra.] As
has already been said, in order to single out the exactly integrable subclass of
equations for α+, one should define a grading spectrum of A±.

The completely integrable supermanifolds are also contained in this
construction and are described by the equations [in particular of form (1.4)]
associated, in accordance with [6], with infinite-dimensional Lie superalgebras ©
of finite growth [15]. The enveloping superspace is still supplied with the structure
of the finite-dimensional Lie superalgebra ©, which realizes here the degenerate
representation of®. The elements A± have a corresponding spectrum over ©, but
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not with respect to ©. This consideration essentially differs from an analogous one
in the conventional space. We shall explain it in the following example.

It is well-known that in the case of the embedding of V2 into R3, the integrable
surfaces are described both by the Liouville equation (L) related to the algebra
^41(sl(2)), and the completely integrable Sine-Gordon equation (SG), cor-
responding to the infinite-dimensional simple Lie algebra Aί of finite growth (see
Appendix B). Here we have a minimal possible realization of Λί in the basis sl(2)
for both equations due to the presence of the degenerate representation of Aλ in
sl(2). But in the case of the integrable supersurfaces F 2 1 2 , corresponding to the
supersymmetry L-equations [finite-dimensional superalgebra osp(l, 2)] and to the
SG-one [infinite-dimensional superalgebra C(2)(2) of finite growth], this situation
does not occur. (Note that these equations (as in [16]) follow from (1.4) with

(3.3)

Here {Jf ;&+} and {^( = - f̂2 + ̂ );^± /} are the canonical generators of the
basis of the subsuperspaces {©0; ®± 1} of the superalgebras osp(l,2) and C(2)(2),
respectively; ρ(z+,z_) is a scalar function, ω±(z+,z_) are components of a
Majorana spinor with anticommuting values.)

The minimal possibility of their uniform description is connected with the
consideration of the superspace supplied with a structure of the finite-dimensional
superalgebra sl(l,2) with the scheme®—©.Through its generators (50 = {/ιι ;
i=l,2} and ® ± 1 = {Y^;i=l,2} the basis of the subsuperspaces ©0 and © + ί of
C(2)(2) in the degenerate representation is expressed by the relations

V, *r1 = -jr2=2(hϊ+h2), (3.4)

where ct and dt are non-zero constants, and Σ q d ^ O . One may also choose ®Jγ
i

and 2tfγ of the indicated form as the corresponding generators of osp(l,2).

4.

As is known, every finite-dimensional simple Lie algebra © over C in the canonical
grading may be associated with the corresponding two-dimensional Toda lattice
with the required invariance properties. Its random superalgebraic generalization,
which is equivalent to the replacement [in (1.2) with A+ έ©] of d/dz+ by the
supersymmetric covariant derivatives 2 + = ± d/dθ ++ίθτ d/dz+, and,
correspondingly, of A± by odd elements spanned over the root vectors of the
simple roots of a contragradient Lie superalgebra (for the latter see [17]). It is not
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always that this generalization turns out to be supersymmetric. [In particular,
under the condition of a positively defined kinetic energy of bosonic components
this only holds for the superalgebras osρ(l,2) and C(2)(2) [18]; see also [19].]

The above consideration shows that the construction of supersymmetric
equations, describing the integrable supermanifolds V2\2, is not possible for all
superalgebras and/or their gradings. For a supersymmetric generalization of the
two-dimensional Toda lattice one should describe the minimal (in the sense of [6])
embedding of osp(l,2) into the contragradient Lie superalgebras (5, which
contain them. As was shown by D. A. Leites, these are, in particular, the
superalgebras sl(π, n+\). For them Dynkin's scheme ®—®— ••••—®—® is
associated with the subsuperspaces v " " ^ '

The component form of the arising supersymmetric equations:

® + 0 _ φ ί = exp(fy>)j, (4.2)

coincides with system (1.4), with

go = expΣhiρi(z+,z^y, J + = V * i ; ξ+=ΣYrω±. (4.3)
ϊ = l α = l i=ί

In

Here(fcφ)ί=Ξ Σ ktjφp
7 = 1

is the multiplet of bosonic superfields and k is the Cartan matrix of

Appendix A

In this appendix following the classical monograph by Eisenhart [2] we briefly
give the necessary information from the theory of Riemannian manifolds as well as
certain definitions of non-Riemannian geometry [3,4].

Consider the Riemannian space VN of an arbitrary dimension N with
coordinates yA and metric GAB(y) = GBA (which is generally indefinite) consistent
with the symmetric connection ΓBC. An embedding of the Riemannian manifold Vn

with coordinates xι into VN is determined by an analytical dependence yA =fΛ(xi)
with matrix dfA/dxί = yA of rank n. Here3

GABE
Λ

CE
B

D = η C D , ηCDEA

cE
B

D = GAB,

EA

C = Ypl

c + niδl ηCD = gt/cδί + εaδabδ
a

cδ
b

D,

3 From now on the summation convention is used for all types of indices: i,j, k, έ(μ, v, ρ, τ)
= l , . . . , n ; A9B9C,D(A,B,<D,Ώ)=l,...,N; a,b,c,d = n + l, ...,N; Ξ,Λ,Ω,Ψ =



Graded Manifolds and Nonlinear Equations 211

where nA are components of the vector fields in VN normal to Vn at its points, g^x)
is the metric in Vn; the numbers εa are equal to + 1 or — 1. Then Vn is described by its
fundamental tensors gi3{x) = gji9 <fi£x) = q% tf(x) = - t\a with q"j and tf being the
components of the second quadratic forms and torsion vectors, respectively. These
functions satisfy the Gauss, Peterson-Codazzi, and Ricci equations,

kti A 2)

+ GAEREBCDn«An
Bbyc

jy

D

k = 0.

Here RABCD *S the Riemannian curvature tensor for the metric GAB defined at the
points of Vn; semicolon denotes covariant differentiation with respect to the metric
g{j. The equations represent the integrability conditions of the Gauss-Weingarten
derivative formulae for the vectors yA

t and nΛ in the moving frame,

-Γ^nξ. ( A ' 3 )

(In what follows the factors εα will be omitted for the sake of brevity.) It is obvious
that the corresponding equations for manifolds supplied with a structure of an
arbitrary Lie group (not only orthogonal) can be written down analogously.

In the classical theory of surfaces apart from the first and second fundamental
quadratic forms

Qai =-GAB DyΛ Dn* = }

DyA = dyA = y^dx1, DnA = nA

 {dxl,

the third fundamental form

Qf = GABDnADnB = (q°kg
k% - ήcφdxidx^, (A.4)

is sometimes applied. Similar to the two forms mentioned above the other one also
allows the direct geometrical interpretation and plays an important role in what
follows.

Equations (A.2) and (A.3) are very much simplified for the embeddings of the
manifold Vn into a flat space RN, N^n + p (p is a class index of Vn). They can be
completely formulated in terms of Vn and naturally do not contain the terms with
the Riemannian tensor and the connection of VN. For this reason it often appears to
be convenient to consider the triple of spaces Vn C VN C RN+p for the investigation of
properties of the embeddings of Vn into the Riemannian enveloping space VN (not
necessarily flat) and for the solution of their classification problem4. The
calculations for the investigation of the embeddings (V2CVN, in particular) are
provided by the following formulae on the base of the triple VncVNcRN+p. Let us

4 Apparently in algebraic terms the transition from VN to RN is equivalent to a contraction of
the corresponding algebra
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introduce the repere E^(y) in an enveloping space VN,

EA

AE
AB = GAB, GABE

A

AE
B

m = δAm, (A.5)

and thereby construct the "spin connections" 7 ^ B = — y™A,

= O. (A.6)

It is easy to show that the Riemannian tensor in VN is expressed via these
connections

°ΊΏ lύy —vΊc Ivy -JD 7C + ?C VD -KABCD& & ( A /J

Then the embeddings of Vn into VN allow the following reduction:

tiff = VtXδ? ~ (fifPδtSΪ + tfδtδf, (A.8)

which is equivalent to the derivative formulae (A.3) for VnC VN due to (A.6). Here
yfv(x) and e\(x) are analogous to y£m and E^ quantities, respectively, defined in Vn.

In the case of non-Riemannian spaces Vn C VN the derivative formulae for the
vectors yA

t and pseudo-normals nf are essentially complicated, as well as the
integrability equations resulting from them. The latter generalize Eqs. (A.2). They
contain three types of new tensors

<=^,B)d^; 4j=<B^A^ji e\^<Λy\, (A.9)

and are expressed by

B. \ ' V^
a ?

where the symbol " " denotes the covariant differentiation with respect to the
connection L^ i n ^ L^is the connection in VN, both being asymmetrical, generally
speaking. When the determinant of ω^ is not equal to zero and the pseudo-normals
can be chosen in such a way that ίb

ai = 0, the tensors gij (nondegenerate with
det^jc + 0) and gtj are defined from the relations gιjaήk = ίι

ak, gtjg
jk = <5*, gιjgjk = δι

k.
In this context the tensors gtj and gιj are used only for raising and lowering the
indices of the tensor quantities of Vn. Here a variant with LiCD = LiDC-Lic D

+ L^DI4c — LIjίiCL4D = 0 represents an analogue of a flat enveloping space of
Riemannian geometry. In what follows we shall call, in brief, the spaces VN with
zero RABCD flat I n terms of the tensor GΛB and connections L^c and LBC realizing
the covariant differentiation of co- and contravariant tensors, respectively, the
Weyl and Schouten generalizations of Riemannian spaces can be expressed by the
introduction of three tensors in VN

riAB—fiAB jA r A _ nA jA r /A — nA

equal to zero in the Riemannian case. Here, defining in VN the repere and spin
connections by formulae (A.5) and (A.6), one gets convinced that the symmetrical
parts of these connections are expressed by the formula
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Appendix B

Let us illustrate the general conclusions by the examples of non-trivial embeddings
of V2 into the enveloping spaces R3 and R5 related to the algebras Bt (~ Ax) and B2

and then trace the reduction to the case of the enveloping space supplied with the
structure of the algebra G2.

Bx\ For this case formula (2.5) is reduced to the form

A±=u±H+f±X+ +/_±X~ , (B.I)

where f+=q±je
j~, f-=q±fij+, u±={iβ)y1^. (Here and in what follows the

inessential normalizing factors at the root vectors will be omitted for the sake of
brevity.) The condition that the coefficients at X~ in A+ and at X+ in A_ be equal
to zero, i.e. fl =f+ = 0, leads to

Hence, fe^-7^*}1 det(g -e) In the invariant form this condition is written as

qikdk'qίj = δij'expρ or Q3 = expρ (dxj)2. (B.2)

Putting (B.I) with/J^ =f+ =0 into representation (1.2), we come to the system of
equations

<z. -u;z+ =/:/- , (ln/+

+),2_ = - 2 M - , (ln/Γ),z+ =2u+ .

As a consequence of the latter the function ρ satisfies the Liouville equation
Q,z+z- =2expρ. With the conformally-flat metric, gkf = λ~2δkjGxpρ, A = const,
condition (B.2) in terms of the tensor b{=bi

j = qikg
kj takes the form bkbk

j = λ2δij.
Then it follows that the exactly integrable embedding described by the Liouville
equation corresponds either to the minimal surface with Σbj = 0 or to the

constant curvature surface with bj = λδ{.
For the Tchebycheff metric the constant curvature surface is well known to be

described by the (completely integrable) Sine-Gordon equation ρ,2+z_ =2expρ
— 2exp( — ρ). To obtain this equation in the framework of the given construction
conditions f+f*=λ, fSf+=λ~1. The latter correspond to the canonical
grading of the infinite-dimensional Lie algebra Aγ of finite growth [13] in its
degenerated representation (with X\ =X±, X2 =λ±1X+; h1 = —h2 = H) and
they are equivalent to

-1)]

or

β 3 = expρ - (dxΎ+iexpρ -1) (dx2)2. (B.3)

B2: Here the operators A± have the form

A± =M±h1 +U$h2+f?1Xt +/Λ*Γ + / + W +/-±2*2

+ /Λ2*l+2 +f±llXΪ2 +/+

±122*l+22 +/?!22^1^2 ? (B.4)
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5

q±
12
± ->

_«.12 .34
—y± ~~τ±

The indices at the root vectors denote the number of the corresponding simple
roots πί and π 2 over which the given root is expanded. For the case under
consideration we obtain two nonequivalent gradings consistent with the integral
embeddings of Aγ in B2. The local parts for these gradings are written (up to the
Weyl transformations) as

i)

ϋ)

(B.5t)

(B 52)

In the former case corresponding to the exactly integrable system (the Toda
lattice for B2)

2 - 2

- 1 2

the conditions for the grading spectrum of A+,

/+122 =J~122 =f+l2 =J-12 ~f+ 1 = / + 2 = / ~ 1 = / - 2 = 0 ,

lead to

ύ^ύj = δij expρi = ώ / ^

Ϊ = 3,4,5; (B.6)

0 1

- 1 0

In the latter case corresponding to the string-type exactly integrable system [20],

sinh[(ρ jL-ρ2)/2]

the conditions for the grading spectrum of A±,

/-I —f+l =/-12=/+12=/-122=/+122=0,

lead to

(B.7)
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Here the functions ρ(α)(z+9z_) are related to the solutions of the string-type
equations given above.

G2: The operators A± realizing the embedding of 2-dimensional surface into
the flat space supplied with the structure of the group G2 can be constructed with
the corresponding operators for V2CRΊ by equating the roots in π-system of B3

(π3 = π1). This procedure is equivalent to the conditions

( ς ± J +i0 ί -±yy ( " f l ) = ί9

±"
β 7 + iβί8

±-β 7 ; « = 3,5; θ=±;

iθqlje^^tf-tf-iθitf + tt5); t? + t?=^, ( ' }

and leads to the following expression

A± = - iγ2

±% - iV y

+ [ί3

±

5 -1? + iθ(t3

±

6 + t\5y\X\ 1 2 . (B.9)

[Here we use the same notations as in formula (B.4) for the indices of the simple
roots of G2 ] The subsequent singling out of exactly integrable embeddings follows
completely the general scheme described above.

Acknowledgements. The author gratefully thanks A. T. Fomenko, D. A. Leites, A. N. Leznov, Yu. I.
Manin, and A. V. Razumov for fruitful discussions.

References

1. Saveliev, M.V.: Classification problem for exactly integrable embeddings of two-dimensional
manifolds and coefficients of the third fundamental forms. Report at the workshop on
nonlinear and turbulent processes in physics. (Kiev, October, 1983)

2. Eisenhart, L.P.: Riemannian Geometry. Princeton, NJ: University Press 1926
3. Eisenhart, L.P.: Non-Riemannian geometry. Am. Math. Soc. Colloquium Publ., Vol. VIII,

1927
4. Kagan, V.F.: Riemann's geometric ideas and their modern development. Moscow, 1933 (in

Russian)
5. Rashewsky, P.K.: Riemannian geometry and the tensor analysis. Moscow: Nauka 1964 (in

Russian)
Dubrovin, B.A., Novikov, S.P., Fomenko, A.T.: Modern geometry. Moscow: Nauka
1979 (in Russian)
Kobayashi, S., Nomizu, K.: Foundations of differential geometry. New York: Interscience
1963
Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. New York: Academic
Press 1978

6. Leznov, A.N., Saveliev, M.V.: Nonlinear equations and graded Lie algebras. Sov. Prob. Mat.
Mat. Anal. 22 (1984) (in Russian)
Representation theory and integration of nonlinear spherically symmetric equations to gauge
theories. Commun. Math. Phys. 74, 111-118 (1980)
Two-dimensional exactly and completely integrable systems. Commun. Math. Phys. 89,
59-75 (1983)

7. Leznov, A.N., Shabat, A.B., Smirnov, V.G.: Internal symmetry group and integrability
conditions for two-dimensional dynamical systems. Sov. J. Theor. Math. Phys. 51, 10-18
(1982) (in Russian)
Shabat, A.B., Yamilov, R.I.: Exponential systems. Preprint UFA. 23 (1981) (in Russian)



216 M. V. Saveliev

8. Gabeskiria, M.A., Saveliev, M.V.: Lax-type representation for embeddings of Riemannian
manifold. Preprint IHEP 83-58, Serpukhov (1983)

9. Dynkin, E.B.: Semisimple subalgebras of semisimple Lie algebras. Mat. Sb. 30,349-462 (1952)
(in Russian)
Maximal subgroups of the classical groups. Trudi MMO 1 (1952) (in Russian)

10. Geometrical ideas in physics. Manin, Yu.I. (ed.). Moscow: Mir 1983 (in Russian)
11. Leznov, A.N.: Exactly integrable two-dimensional dynamical systems related with

supersymmetric algebras. Preprint IHEP 83-7, Serpukhov (1983) (in Russian)
12. Bourbaki, N.: Groupes et algebres de Lie. Paris: Herman 1968
13. Kac, V.G.: Simple irreducible graded Lie algebras of finite growth. Math. USSR - Izv. 2,

1271-1311 (1968) (in Russian)
14. Kostant, B.: Graded manifolds, graded Lie theory, and prequantization. In: Lecture Notes in

Mathematics, Vol. 570, pp. 177-306. Berlin, Heidelberg, New York: Springer 1977
Berezin, FA.: Introduction in algebra and analysis with anticommuting variables. Moscow:
MGU (1983) (in Russian)
Leites, D.A.: Theory of supermanifolds. Petrozavodsk (1983) (in Russian)

15. Kac, V.G.: Adv. Math. 30, 85-136 (1978)
Leites, D.A., Serganova, V.V., Feigin, B.L.: Kac-Moody superalgebras. Report at the Intern.
Seminar on Group theoretical methods in physics (Zvenigorod, November, 1982). Moscow:
Nauka 1983 (in Russian)

16. Chaichian, M., Kulish, P.P.: On the method of inverse scattering problem and Backhand
transformations for supersymmetry equations. Phys. Lett. B 78, 413-416 (1978)

17. Kac, V.G.: Lie superalgebras. Adv. Math. 26, 8-96 (1977)
18. Olshanetsky, M.A.: Supersymmetric two-dimensional Toda lattice. Commun. Math. Phys.

88, 63-76 (1983)
19. Kirillova, R.Ya.: Explicit solutions for generalized Toda lattices related to classical Lie

superalgebras. Trudi LOMI 123, 98-111 (1983) (in Russian)
20. Barbashov, B.M., Nesterenko, V.V., Cherviakov, A.M.: General solutions of nonlinear

equations in the geometric theory of the relativistic string. Commun. Math. Phys. 84,471-486
(1982)

Communicated by Ya. G. Sinai

Received January 18, 1984; in revised form March 6, 1984

Note added in proof. Consider an arbitrary finite-dimensional Lie superalgebra g, which is
graded by means of the Cartan element H of its osp(l,2) subsuperalgebra with the basis H, Y±,
J± = γ± (LH> Y±l- = ± γ±i E7+, Y-]+=H). Then the construction given in Sects. 3 and 4 leads
to the following system of supersymmetric equations

with Eqs. (4.2) as a particular case. Here g(z±,θ±) is the function of the Grassmann hull of the
group Go with the algebra g0. This result has been recently obtained in our paper with Prof.
A. N. Leznov "Two-Dimensional Supersymmetric Nonlinear Equations Associated with the
Embeddings of the Superalgebra osp(l,2) into the Lie Superalgebras" (Preprint IHEP 84-59,
Serpukhov, 1984; to appear in Sov. J. Theor. Math. Phys.).




