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Abstract. A new geometrical formalism is suggested for the non-minimal and
alternative minimal supergravities. This formalism connects the constrained
superspace formulations with the unconstrained ones and is based on the
notion of induced geometry. The relevant mathematical technique is that of
G-structures. A clear-cut geometrical content of the torsion and curvature
constraints is revealed on the basis of a general theorem about the necessary
and sufficient properties of induced geometry.

The N =1 supergravity can be formulated in superspace in a number of different
ways. There is a whole family of supergravity theories, parametrized conveniently
by a parameter { [ 1-3]. These superspace formulations correspond in components
to different sets of auxiliary fields, minimal ({= c0), non-minimal ({+1/3, 1, o),
and alternative minimal ({ = 1) sets, that were discovered respectively in [4-6]. At
the same time various geometrical approaches to superspace are known in all
mentioned cases.

In this paper we continue the study of the geometry of N=1 supergravities using
the framework of induced structures. (The general notion of the induced structure
has been introduced in [ 7]. It describes the internal geometry of a surface inherited
from the geometry of the ambient space). The case { = co was already investigated
by means of these methods [7]. Recently it has been shown [8] that completely
analogous constructions can be used in the description of N =1 super Yang-Mills
theory coupled to supergravity. Our aim in the present paper is to look at the
structure of supergravity from a general geometrical point of view. We shall show
that the links between prepotentials and constrained supervielbeins in N=1
supergravity can be understood on the basis of a theorem about the necessary and
sufficient properties of induced geometry. (The formulation and the proof of this
theorem are given in [22], which contains also, as a corollary, a derivation of
supergravity constraints.) The generality of the methods used allows us to expect
further applications. The construction of action functionals is also considered.
It is shown, in particular, that the “non-geometrical” action of the alternative
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minimal supergravity can be obtained from the “geometrical” actions of the non-
minimal supergravities by means of a properly defined limiting procedure for { —1.
Some of the main results of the present paper have been published previously
in [9].

1. Introduction

There exist at least two basic geometrical approaches to N =1 supergravities in
superspace. One of these approaches deals with the fields of tangent frames
(supervielbeins) defined in superspace up to local transformations of the Lorentz
group L or, sometimes, L x U(1). In order to get the right component content one
has to impose certain constraints on the curvature and/or the torsion tensors. The
action can be constructed (with some exceptions) as the integral over the volume
element defined by the vielbein field. For N =1 such superspace formulations have
been found in the minimal [ 1], non-minimal [2, 3] and alternative minimal [10]
cases. We will refer further to such formulations as the Wess-Zumino type ones.

The most elegant geometrical approach to N=1 supergravity is that of
Ogievetsky and Sokatchev [11, 12]%. In this approach the role of the fields of
supergravity is played by the real surface in a complex superspace. Ogievetsky and
Sokatchev have shown, for instance, that the real (4/4)-dimensional surface in the
superspace €2 can play the role of the field of minimal supergravity, provided the
symmetry group, %, of the theory is chosen appropriately. Specifically, % must
consist of all complex analytical transformations of C*? that preserve the
supervolume. The connection of such a group to Poincaré supersymmetry comes
from the following observation [11]. Let x§, 6% (a=1,...,4;0=1,2) be the
complex coordinates in €*%. Consider a surface, Qo, defined in C*? by the
equations x§ — X% = 2i07 0%;0%. Here X and 8y are related to x, and 6, by complex
conjugation, while ¢*=(1, 6) with ¢ being the Pauli matrices. This real (4|4)-
dimensional surface has a remarkable property that the subgroup of the group &%
which leaves it invariant coincides with the super Poincaré group of global
supersymmetry. This suggests that the surface Q, must play the role of the flat
N =1 superspace. The curved superspace corresponds then to an arbitrary real
(4|4)-dimensional surface in €*/2. The action can be found as a functional on the
space of these surfaces invariant under the group Z.

A natural generalization would be to consider an action functional on the
space of (p|q)-dimensional surfaces in the space R?!2. (In other words, a formalism
comes into play, which treats the field and space variables on an equal footing
[14].) Note that the space €*> can be considered as the real R®* with an
additional structure. This suggests that, in general, the space RF'¢ must be
endowed with some geometry. This geometry may be characterized by its
symmetry group, which will play the role of the group ¥ mentioned above. A
sufficiently broad class of such structures is provided by the groups I'(G) consisting
of transformations of the space IRF!? such that the Jacobian matrix of each
transformation at every point belongs to a group G [we assume, that
GCGL(P|Q,R)]. For example, the group .# can be identified with I'(G), where

1 An essentially equivalent formalism has been independently suggested by Siegel and Gates
[13,2,3]. However, the geometry is rather implicit in their approach
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G=SL(4]2,C)CGL(8|4,R) is the group of complex linear transformations with
unit Berezinian (superdeterminant). The surfaces, connected by a transformation
of the group I'(G), will be called (gauge) equivalent. Some surface Q, correspond-
ing to flat physics must still obey the property that the subgroup of I'(G) which
leaves it invariant contains the transformations of (possibly extended) Poincaré
supersymmetry.

It is worth noticing, however, that one may impose some restrictions on the
class of surfaces considered. Indeed, it is natural to require that in a small
neighborhood of every point these surfaces should be equivalent to Q,, up to higher
order terms. In other words, one may require that every surface should be
normalizable by means of allowed gauge transformations up to a fixed order, the
normal form being that of Q, at some given point. (Of course, it is necessary that
the surface Q, itself should satisfy this requirement. This is certainly so when the
subgroup which leaves Q, invariant acts on it transitively.) Such a requirement
implies, in particular, that the tangent subspace? of every surface at each point can
be connected with that of Q, at the marked point by means of a transformation of
the linear group G. The surfaces satisfying this first order normalizability
requirement will be called regular. In minimal supergravity almost all real (4|4)-
dimensional surfaces in €*/? are regular with respect to the group .#. Thus the
requirement of regularity is not a constraint in this case. The situation will be the
same in non-minimal supergravity. It differs, however, in alternative minimal
supergravity, as we shall see. This will be the origin of a first order constraint on the
“preportentials” H® H* for {=1. We shall see also, that for all {, except {=1/3,
almost all regular surfaces are normalizable even up to the second order.

A formalism, which uses the surfaces in an ambient space, can be called the
external formalism, as opposed to the internal one. The approach of Wess and
Zumino gives an example of the latter type. The external N =1 formalism has the
advantage of being unconstrained (for {41 at least). On the other hand, the
constrained Wess-Zumino type formalism yields immediately the action func-
tional, as we have already noticed. It was not very easy to write down the actions in
the external formalism. This task was accomplished [2, 12] essentially by means of
a lengthy derivation from the Wess-Zumino action for all { (except {=1/3, 1).
However, it must be pointed out that there exists as well a self-contained procedure
for constructing the actions, which invokes the external objects only. In particular,
it was shown [7, 15] that the action of minimal supergravity could be found in
terms of the so-called Levi form of the real surface in the complex space.
Nevertheless, the example of the Wess-Zumino action suggests that it is much
more easy to guess the action in the internal framework. Unfortunately, the
relation of the Wess-Zumino type formalism to the formalism of surfaces is rather
indirect (cf. [2, 12]). Therefore, in order to find an action in an external
(presumably unconstrained) formulation of the theory one may proceed as follows.
At first one has to construct an internal formalism, which is intimately connected
with the external one. Then one can employ it in searching for actions. This

2 Note that the translations always enter the group I'(G). Consequently we may identify the
tangent planes at arbitrary points of any surface with corresponding subspaces passing through
the origin
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formalism must respect the group I'(G), a would-be symmetry of the model.
Remember, that I'(G) is defined as the group of automorphisms of a fixed geometry
in the external space, in which the surfaces live. Hence we need a proper definition
of internal geometry of surfaces, and for each surface this geometry must be
determined completely by the structure of the external space. That is to say, we
have to define a geometry induced on the surface by the given geometry of the
ambient space.

A general notion of induced geometry was introduced in [7]. For the sake of
generality it had to involve another general notion, namely that of G-structure
[16]. G-structures serve to describe geometry in terms of tangent frames. A large
class of geometries can be described in this manner. Let .# be a manifold (or
supermanifold) and G be a matrix group, with the size of matrices being equal to
the dimension of .# [that is GCGL(dim.#, R)]. Consider two tangent frames at
some point of #, generated by the vectors €' and & respectively. Here the indices
run over the dimension of .#, with m being a world index, while a is a tangent space
one. These frames are called G-equivalent if they can be connected by a tangent
space transformation of the group G, that is if ¢ = g2 for a matrix (¢5) in G. When
there are two frame fields e/'(x) and é7(x), x € 4, they are called G-equivalent if
there is an x-dependent transformation connecting them, that is if ej(x)
=gb(x)éP(x) for a G-valued function (g5(x)) on .#. One says that a G-structure is
given in the manifold ./, if a G-equivalence class of tangent frame fields on .# is
fixed. In this case we have a class of G-equivalent frames fixed at each point. The
frames, or the frame fields belonging to the fixed equivalence class are called
admissible for this G-structure. The word “geometry,” used with an unspecified
meaning above, should have been understood as “G-structure” for some group G.
Various examples of G-structures and what in more usual terms they correspond
to can be found in [16]. Of course, the example of general relativity comes
immediately to one’s mind: the vierbeins, i.e. the pseudo-orthonormal frame fields
in spacetime constitute a Lorentz-group-structure there.

A G-structure is called trivial, if there is a frame field, e7(x), among the
admissible ones, that corresponds to a holonomic coordinate frame, i.e. 2(x) = 67
for some coordinates in the manifold®. It can be easily shown that the trivial
G-structure has the above group I'(G) as a group of automorphisms (see also
Appendix A). Given a space, say IRY, endowed with the trivial G-structure
(GCGL(N,R)) one is able to define the internal geometry of a surface in IR¥
by means of frame fields admissible for the G-structure in R" and adjusted in a
certain way to this surface [7]. Then some M-dimensional surfaces in R" receive
induced G’-structures, where G”is a subgroup of GL(M, R) related to G in a definite
way. The details of the definition of the induced G’-structure are recapitulated in
Sect. 3. It turns out that, in general, the induced G’-structure can not be defined on
every surface. For this to be possible the surface must satisfy certain regularity
conditions coherent with the above regularity up to some conventions.

3 Inthe mathematical literature such G-structures are commonly called flat, as they correspond
to the flat geometry; for example, a holonomic vielbein defines the flat metric. We prefer, however,
the term “trivial structure” to avoid confusion with the flat superspace, which is to be endowed
with a non-trivial structure
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In various mathematical problems as well as in dealing with the relations
between external and internal formulations of supergravity the following question
arises. Under what conditions can the given geometry (i.e. a G’-structure) on a
manifold be realized on some surface in RY as one induced by the trivial
G-structure in this ambient space ? In general such a G’-structure must satisfy some
constraints arising as integrability conditions for a certain system of nonlinear
partial differential equations. These conditions are imposed as differential
constraints on the frame fields corresponding to this G’-structure. In a subsequent
paper [22] we prove a theorem that describes in a convenient form these necessary
and sufficient constraints. In general, one has a finite chain of integrability
conditions of increasing orders. Among them the conditions of the first and second
orders can be rewritten as constraints on the torsion and the curvature. It may
happen that these torsion and curvature constraints are not only necessary, but
also sufficient (that is, no higher order conditions are needed). In [22] we prove
that this is just the case in N = 1 supergravity, and derive the torsion and curvature
constraints from the general theorem.

This paper is organized as follows. In Sect. 2 we describe the formalism of real
surfaces in the “non-minimal” superspace C*%, which is used for all members of the
family of non-minimal supergravities, parametrized by (. The minimal and
alternative minimal supergravities are included as special cases, { = co and {=1,
respectively. We point out, in particular, that the surfaces (i.e. the “prepotentials™)
are to be constrained if { = 1. The constraint for { =1 follows immediately from the
requirement of regularity described above. In Sect. 3 we give the definition of the
induced structure. As an application we consider in detail induced G’-structures
arising in supergravity. This discussion results in certain internal formulations
available for all members of the family of N=1 models. The role of the field is
played now by the internal geometry of the surfaces. These formulations are
related to the external ones via the notion of induced structure. It means that
considering the internal geometry we deal with G’-structures, which are not
arbitrary, but satisfy certain constraints. Establishing these, we make the internal
formulations self-contained. In Sect. 4 it is shown that the Wess-Zumino type
formulations (for any ¢) can be recovered from the induced structure formulations
by means of certain gauge conditions. These reduce the structure group, leaving
the Lorentz group L or, if { =1, L x U(1). The action functionals are constructed in
Sect. 5. In the gauge of Sect. 4 they assume the form of the Wess-Zumino action for
{=41/3,1. It turns out that the action for {=1 can be obtained taking {—1 by
means of a properly defined limiting procedure. The discussion of supergravity
actions is completed in Appendix B. It will be shown there that the geometrical
framework of induced structures yields a simple way to write down the
prepotential form of the action.

2. Real Surfaces in a Complex Superspace

Let us consider the complex superspace C*'* and real (4/4)-dimensional surfaces
therein. Let z4=(z% 6% ¢") be the complex coordinates in C**. Here z°
a=1,2,3,4, are the even (bosonic) coordinates, while 6% a=1,2, and ¢*, 1=1,2,
are the odd (fermionic) ones. To describe a supergravity model, corresponding to
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the parameter* {, we consider the following group of complex analytical
transformations of C*

0z°= 2%z, 0),
50" = 1%z, 0) ,
5(/-)1: = Q_ﬁ:(za 09 (/-)) >

C a/{a B a/{a B aén f (21)
0 00*) aq—)n if {#+o0,

oA 0A* .

oL _ o _ f (=00,

PR =

where the transformations are written in infinitesimal form. (This group is
borrowed from [2, 3, 19, 20].) One can observe immediately that this group (1)
coincides, in the notations of Sect. 1, with I'(G({)), where G({) is the group of
complex linear transformations of C**, generated by the Jacobian matrices of the
transformations (1). Thus the group G({) consists of the following transformations
[we use a notation z%¥ =(z% 6%)]

2 =z2U% =242+ 6° D4,
0*=z2U%=2B:+0°C4, (2.2
¢"*=2"E; +0°F} + ¢° G},

which satisfy a condition corresponding to the finite form of Eq. (1), namely,

[Ber(Ug)]*=det(G}) if (+oo,

Ber(Ug)=1 if {(=c0. @3)

We intend to assign the meaning of the field of supergravity to the real (4|4)-
dimensional surface in €*'*. In doing so, we will consider the space C*!* as carrying
a geometrical structure that corresponds to the symmetry group I'(G({)).
According to Sect. 1, first of all we have to specify a surface that corresponds to the
flat geometry. This surface can be given as

2= =2if%6%0,  0°=¢". (2.4

Here 2%, 0%, o™ are related respectively with z%, 6%, @* by complex conjugation. The
surface (4) has the symmetry properties with respect to I'(G({)) required for the flat
N =1 superspace (similar to the analogous quadric in the “minimal” space C*'?;
see Sect. 1).

In agreement with the general considerations of the last section we have to
define the regular surfaces. These should be the surfaces that can be transformed at
each point to the “flat” form (4) up to the first order by means of the group I'(G({)).
The surface (4), considered up to the first order near some point, say z4 =0, is given
by the equations of its tangent plane at that point, namely,

=z 0*=¢°. (2.5)

4 For the sake of simplicity, we take { to be a real number throughout
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Almost every real (4/4)-dimensional surface in €*!* can be written in the following
form:

2=x"+iH%x,0,0), ¢*=0*+H%x,0,0), (2.6)

where x*=(z*+2z%)/2 and 6* can be considered as parameters. In Egs. (6) H* are
some real functions and H* are some complex ones (we shall use also the notation
H* for the conjugates of H%). To determine the regular surfaces we must consider
the tangent plane of a surface (6) at an arbitrary point, say (xo, 0o, 8,). It is
convenient to translate the tangent plane to the origin. The corresponding
subspace in €** is given by the following equations
2% = XxP(83 + iH%,) + 0%iH*, + 0%iH’, -

¢ =x"H%+ 0P HY + 0°(65+ HY) , @7
where the commas mean partial differentiations with respect to the
arguments at the point (x,, 0,, 8,). According to the definition, for a surface (6) to
be regular, its tangent subspace (7) must be connected with the fixed subspace (5)
by a linear transformation of the group G({) given in Egs. (2) and (3). Applying
such a transformation to Eq. (5) we obtain an arbitrary subspace in C** that can
be recovered from the standard one by means of the group G({):

zA+6D—zA—6D=0,

o _ (2.8)
zB+0C—zE—0F —pG=0,

where the indices have been omitted. The subspace (7) corresponds to a regular
surface if it coincides with (8) for some matrices 4, B, C, D, E, F, G obeying Eq. (3).
Let us substitute z and @ from (7) into (8) and equate the coefficients of x, 0, 8. For
the surface (6) to be regular, the resulting equations on A4,...,G should be
compatible with Eq. (3). Itis easy to see that this is always the case if { #1°. On the
other hand, if {=1 the following condition should be satisfied

Im {det (8¢ + iH") det (85 + H*; + iH?,(1 — iH); “H%)} =0, (2.9)

where (1—iH) ™' is the inverse of the matrix (65 —iH%,). Thus the requirement of
regularity implies a constraint on the surfaces considered for { =1, whereas for
{41 no restrictions arise.

It was known that the family of N =1 supergravities can be described in terms
of the surfaces (6), or, equivalently, in terms of the superfields H(x, 0, ). HX(x, 0, 6)
called the prepotentials, with the group I'(G({)) of Eq. (1) as a gauge group [2, 3,
11-13, 19-21]. We shall show this later on from a rather general point of view by
discussing the internal geometry of the surfaces. Here we notice only that the
general regularity condition suggests the constraint (9) on the first derivatives of
H® H* for {=1. (The case {=1 corresponds to the alternative minimal
supergravity, as we shall see.) The necessity of the constraint (9) was found in [20,
21] by means of completely different methods.

5 Infact, this is valid only for almost all surfaces. In what follows we will ignore the degenerate
surfaces in similar cases as well
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3. Supergravity and Induced Geometry

As we have already pointed out, to proceed the study of supergravity it will be
useful to have some internal formulations corresponding to the external ones. The
latter formulations were outlined above in terms of certain surfaces in the space
C*4. According to the general considerations of Sect. 1 we have to define the
internal geometry of the surfaces inherited from the geometry of the ambient space.
Now we are going to restore the definition of induced geometry suggested in [7].
At last we shall arrive at the internal formulations for all .

Let us consider the space R" provided with the trivial G-structure (see Sect. 1)
that corresponds in the standard coordinates, ", to the frame field &%
4,i=1,...,N. (In what follows the trivial G-structure in R is always understood
to be connected with the standard coordinate frame.) Any tangent frame field ea( ¥)
in RN admissible for the trivial G-structure satisfies l(y) = gb(y)d2 for some [¢2(y)]
in the group G. Suppose an M-dimensional surface .# in IR¥ obeys the condition
that at each point on .# one can choose such an admissible frame €2, that the first
M of its vectors are tangent to .#. Every such frame in R, called an adopted
frame, then also defines an M-dimensional tangent frame on the surface. For an
arbitrary surface the adopted frames may not exist. The surfaces on which the
adopted frames do exist at every point are to be called regular, as this condition
corresponds to the first order normalizability (cf. Sect. 1). Indeed, let e be an
adopted frame on the surface .. The vectors e, ..., ¢h, span the tangent space of
M, considered as a subspace in R”. Since the frame e is admissible for the trivial
G-structure in RY, it can be transformed into the standard coordinate frame by
means of the group G. Under this transformation the subspace spanned by

., ek, goes into the subspace V defined in RN by the equations

yMPl=yM*2-  =yN =0, (3.1)

Therefore the adopted frames exist at every point of a surface if and only if the
tangent subspace of this surface at each point can be connected with the fixed
subspace ¥ in R¥ by means of a transformation belonging to G. We observe that
the adopted frames on a regular surface are defined up to the group G, which is a
subgroup of G consisting of transformations that leave the subspace V invariant.
Consequently, the M-dimensional tangent frames, defined on the surface in terms
of different adopted frames, are connected by transformations constituting a
certain group G’. This group is a factor group of G; it consists of linear
transformations in the M-dimensional space ¥ that can be extended to transform-
ations of R” belonging to G. Thus every regular surface receives a G'-structure.
This is the structure induced on a regular surface by the trivial G-structure in RY
[71.

To be more explicit, if the subspace V is given by (1), the subgroup G, which
leaves it invariant, consists of linear transformations belonging to G, with matrices
(93) @ ., N, satisfying g5 =0 for a=1,...,M; =M +1,...,N. Then the
group G corresponds to M x M matrices (¢5) that can be extended to (¢%)in G with
ga = 0

In general a structure that can be obtained as an induced one on some surface is
not arbitrary. Let us consider now an M-dimensional manifold .# and a



Geometry of N =1 Supergravity 169

G’-structure with the above group G’ in it. Let x™, m=1,..., M, be some
coordinates in ./ and €J(x), a,m=1, ..., M, be an admissible frame field for this
G’-structure. If y* = y*(x) is some embedding of .# into R¥, the vectors e™(x) go
into the N-dimensional vectors é" = e™(x) [0y"(x)/0x™]. These vectors are tangent
to the surface y* = y*(x) in R" and define a frame representing a G’-structure on this
surface, equivalent to the original structure in .#. Suppose, the vectors &%(x) can be
supplemented at each x by some vectors &, . ;(x), ..., &4(x) so as to obtain a frame
é2(x) admissible for the trivial G-structure in R, In this case the structure on the
surface, descended from the given G’-structure in ./, coincides with the structure
induced on that surface by the trivial G-structure in R¥. Then the functions y°(x),
h=1,...,N, giving such an embedding, if they ever exist, must satisfy the equation

0y°(x)
ox™

en(x) = g%(x) (32)

foran M x N matrix function g}(x), which is the rectangular part of some G-valued
function g5(x) corresponding to d=a=1,..., M. We conclude, that the given
G’-structure in ./ is equivalent to the structure induced on some surface by the
trivial G-structure in IR" if and only if the partial differential equation (2) has a
solution. Here €}'(x) is an arbitrary chosen frame field representing the given
G’-structure, while y°(x) and g2(x) are considered as unknown functions, with g&(x)
still obeying the requirement specified above. For Eq. (2) to have a solution the
G’-structure in .4 must be subjected to certain constraints.

To proceed with supergravity, we notice first that the use of the subspace (1) in
the definitions of regular surfaces and induced structures is merely a convention.
Instead of this, one may consider an arbitrary fixed subspace V. Then the adopted
frames must be defined so that certain linear combinations of their vectors are
tangent to the surface, the number of independent combinations being equal to the
dimension of V. Their form is determined by the requirement that for the
coordinate frame in R" these combinations give the vectors belonging to the fixed
subspace V.

We are ready now to determine the internal geometry of those surfaces which
appeared in the description of supergravity in Sect. 2. We dealt there with the space
C*!* supplied with an additional geometrical structure. This geometry was being
specified by its symmetry group I'(G({)). Now we can identify this geometry as the
trivial G({)-structure in R8/8 ~C**, Indeed, as it is known, the group I'(G), for any
G, is just the group that preserves the trivial G-structure (see Appendix A).
Furthermore, the real (4/4)-dimensional surfaces in C*/* that we considered in the
last section were regular. One sees that the definition of regular surfaces, used
there, is consistent with what is required in the definition of induced structure,
provided the subspace Vis as follows. It is to be the real (4/4)-dimensional subspace
of €** given by Egs. (2.5). The subgroup, G(0), of the group G({), that leaves this
subspace Vinvariant, consists of transformations (2.2-3) which satisfy Aj = (A§)*,

2 =(Ep*, C3=(G)*, and Dj=F%=0. Now it is easy to find the group that
corresponds to the structure induced on regular surfaces by the trivial
G({)-structure in C*!* [that is the group G/, if G = G({)]. We use a special notation
for this group, namely SCR({), as we did earlier [7,9]. Let us take x*=(z"+z%)/2,
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a=1,...,4,and 0% a=1,2, as the coordinates in the subspace V given in Eq. (2.5).
(Note, that x* are real even coordinates, while §* are complex odd ones.) The group
SCR(() proves to consist of the following transformations:

x“=Agxt,  0°=Bix"+C50°, (3.3)
where Aj=(A4§)*, and

(detA)Y=(detC)'detC if (o0, 3.4)
detA=detC if {(=ow. 3

Thus every real (4/4)-dimensional regular surface in C*'* has a natural SCR({)-
structure induced on it by the trivial G({)-structure in the ambient space. This gives
us an internal formulation for every supergravity model in the family parametrized
by {. The role of the field is played by the internal geometry of surfaces, that is by
the induced SCR({)-structure, rather than by the surface itself. We see that the
notion of induced geometry yields a natural way to establish internal formulations
intimately connected with the external ones. The regular surfaces, used in an
external formulation, can be described in terms of the superfields H%(x, 0, 0),
H%x, 0, 0) as in Eq. (2.7); these are unconstrained if { & 1, and satisfy (2.9) if {=1.
An SCR({)-structure corresponding to the induced geometry on some of these
surfaces can be represented by an admissible frame field. Let x =(x™, 0*, %) be
some coordinates on a regular surface [for instance, they may be the parameters
appearing in Eq. (2.7)]. Then the internal geometry induced on this surface can be
described in terms of a frame field E¥(x, 6, 0), defined up to local transformations
of the group SCR({) acting on the index 4=(a,a,a). [Here M =(m, p, 1) is the
world index.] Given some superfields H%(x,6,8), H*(x,0,8), one can find an
explicit expression for a frame field E¥(x, 0, 8), admissible for the SCR ({)-structure
induced on the corresponding surface (see Appendix B). On the other hand, not
every arbitrary frame field E¥(x, 0, 0) can be expressed in this way in terms of some
Hx, 0, 8), H¥(x, 0, 0). Thatis to say, for an SCR ({)-structure to be equivalent to an
induced one on some surface, it must satisfy certain constraints (in agreement with
what we have pointed out above). The constraints corresponding to an induced
G’-structure can be imposed on the admissible frame fields. Generally there is
always a set of conditions on derivatives of admissible frame fields of increasing
order. In some cases it happens, however, that the conditions on the first and
second derivatives are not only necessary, but also sufficient.

In order to establish the internal formulations of supergravity in a self-
contained manner, the constraints corresponding to the induced SCR({)-
structures must be specified explicitly. In the general case the constraints of the first
and second order can always be rewritten in terms of torsion and curvature. For
the induced SCR({)-structure the resulting conditions on the torsion and
curvature tensors are listed below. This result will be derived from a general
theorem in a subsequent paper [22]. Moreover, it will be proved there that for
SCR ({)-structures no higher order conditions are required, that is the torsion and
curvature constraints are necessary and sufficient.

Let us consider an arbitrary connection in some SCR({)-structure defined on a
real (4/4)-dimensional manifold .#. In other words, for each admissible frame field
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E™ on ./ we have the connection coefficients w§ , corresponding to the Lie algebra
scr({) of the group SCR({). That is to say, w$, satisfy (apart from the obvious
reality conditions):

wj4=0, },=0,

{hs—f)—0f,=0 if (+oo, (3.5)
wp—wfh =0 if {=o0.

Now we may use the torsion, TS, and the curvature, Rjcp, of the connection o§,,
defined as usual.

We assert that if the SCR ({)-structure under consideration corresponds to the
induced geometry, then the torsion and the curvature of connections in this
structure satisfy the following constraints. Firstly, the torsion of an arbitrary
connection satisfies

T95=0, T}=0,

. 3.6
if (=oc0, also T;—T5=0. 3.6)

Secondly, if { & oo, the curvature satisfies certain constraints as well. [In the case
{ = o0, that will correspond to the minimal supergravity, no constraints beyond (6)
are needed.] To write down the curvature constraints it is convenient to restrict the
freedom in the connections. For this purpose, one imposes usually some
conditions on the torsion that reduce the choice of connections and imply no
additional constraints on the frame fields. It is easy to see that in an arbitrary
SCR({)-structure with { = oo one can always choose a connection so that only the
following torsion components may be non-zero: T, Ty, T, and, if {+1, also
T, =4 Th%, T)=4T50}, T4=T4,

Now for any connection, subjected to these “conventional” constraints, the
curvature in the induced SCR({)-structure satisfies

R, £57=0. (3.7)

The constraints (6), (7) are not only necessary, but also sufficient: if in an SCR({)-
structure there exists a connection obeying Eq.(6), the above conventional
constraints and Eq. (7), then this structure coincides certainly with the induced one
on some regular surface.

Thus we are led to the following self-contained internal formulation of each
N =1 supergravity model. The role of the field is played by the frame field defined
up to local SCR({)-transformations, provided this frame field satisfies the
constraints (6) and (7). The relation with the corresponding external formulation
can be readily restored by recalling that these constraints are necessary and
sufficient for the existence of a surface (i.e. of prepotentials H*, H%), in terms of
which the frame fields can be expressed in an explicit way offered by the definition
of induced geometry.

4. Lorentz Group Structures

In Sect. 3 we have shown that the description of N =1 supergravity in terms of real
surfaces in complex superspace leads to the description in terms of internal
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geometry of these surfaces. In the internal formalism the role of the field of
supergravity is played by the frame field E¥(x, 6, 6) in a (4|/4)-dimensional manifold
M satisfying the constraints, which ensure that the geometry determined by these
frames corresponds to an induced structure. (The coframes, E4;, may be used, of
course, instead of frame fields.) The gauge group consists of general coordinate
transformations and arbitrary tangent space transformations

E&—EBU4(x,0,0). 4.1)

with the position-dependent matrix Ujg, which belongs to the group SCR(),
described in Sect. 3°. The group SCR({) may be thought of as consisting of
matrices

A2 0 0
Up=|B: ¢ 0 4.2)
B 0 Cj

with A4j real and Bj, Cj being conjugates of B, C. According to the definition of
SCR({), other entries of Uz must be zero (i.e. Uj = Uj =0), while the matrices A and
C in (2) satisfy the {-dependent condition

(detA-detC~Y)=detC if (+o0,
detA=detC if {(=o0.

The Lie algebra scr({) of the group SCR({) consists of the matrices (2) with the
following condition imposed on the traces of blocks

(Ai=(+0C;,  Ci=C; if (#o,
A=C*=C% if (=0, 4.9
A2=C*+C¢ if (=1.

(4.3)

Each gauge equivalence class of frame fields, related by the transformations (1)-(3),
defines an SCR({)-structure. The constraints are to be imposed on torsions and
curvatures of connections in this SCR ({)-structure. These constraints correspond
to the induced geometry [see Sect. 3, in particular, Egs. (3.6), (3.7)].

Obviously, the approach of the induced SCR ({)-structures looks like the Wess-
Zumino type formalism in N=1 supergravities [1-3], but accounts for the
geometrical content of constraints. The only difference is that the group SCR({) is
larger than the commonly used Lorentz group L [or L x U(1)] and contains it as a
subgroup. Let us show that the equivalence of these two approaches can be
established merely by imposing certain gauge conditions on the frame fields. In
geometrical terms, we must define a subclass of frames, connected by transforma-
tions of the group L at each point, starting from the SCR({) equivalence class of
frames in the manifold M. In other words, we must reduce the structure group of
the given SCR ({)-structure to its subgroup L’. There exists sometimes a canonical

6  Until now we considered the kinematics only. We shall see in the next section that these gauge
transformations form the symmetry of the action as well

7  When {=1, which corresponds to the alternative minimal supergravity, the reduced group
will be L x U(1)
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procedure for such a reduction which uses the so-called structure function of the
G-structure. (The general case is described in detail in [16].)

Suppose that for a G-structure we can find a function c(EY) of the admissible
frames E’ at all points of .# such that this function takes values in a space € of
some representation of the group G’ and transforms according to this represen-
tation under the allowed changes of admissible frames. Thus, if E¥ runs over the
admissible frames at a fixed point £ = (x™)=(x", 6*, 0%) of 4, the function c(E¥)
takes values in some orbit of the action of G’ in the space €. It may happen that for
all points these orbits coincide. In such a case one can use the function ¢ to reduce
the structure group G’ to the subgroup G” which is the isotropy subgroup of G’
corresponding to a point ¢, in the orbit. Indeed, the frames of the G’-structure that
satisfy c(EY)=c, are connected at each point of .# by the transformations of the
group G” and thus define the reduced G”-structure. The reduction will be
canonical, that is it will not depend on the coordinate system, if the function
transforms as a scalar under the coordinate changes (or, equivalently, under the
diffeomorphisms of .#).

The function satisfying these requirements may be constructed for an arbitrary
G’-structure from the torsion tensor, T, which is defined, as usual, by the following
relation

Tie=(—)EE¢Eq
— (=M= )PECEREq,n

—[wég— (=) wicl, (4.5)

where E¥(%) is a frame field corresponding to the given G'-structure; Ef; is the
inverse of E¥, while wjc(X) are the coefficients of a connection in this G’-structure.
The torsion components T;t at each point depend on the choice of the frame and
the connection. The components T, are scalars with respect to the coordinate
changes and behave covariantly under the local transformations (1), with Ug(X) in
the group G’, provided wj are subjected to the corresponding gauge transform-
ation. If we fix the frame field E¥(X) and alter the connection, wi.— Wi. — yiac, then

7;3/10—’ 7};13: + ygB —(= )chgc s (4.6)

where the coefficients yz.(X) define, of course, a matrix in the Lie algebra g for
each fixed value of the index C. Suppressing any possible indices, let us define the
function c as the torsion Tmodulo (6). It is easy to see that such a function does not
depend on the connection and, moreover, it satisfies all the requirements specified
above. This function c is called the (first) structure function of the G’-structure®. If
the values of ¢ turn out to lie in a single orbit, it can be used to reduce the structure
group.

Let us return to the case of interest, when G’=SCR ({). The structure function of
an SCR({)-structure can be represented conveniently as follows. For a given

8 See [16]; an exposition suitable for the present purposes can be found in [7,9]
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admissible frame field E¥(X) the coefficients wp. in (5) can be chosen to satisfy

ap = Tgp="T3, = T3}, :Tvﬂ:()v

Ty=iT0, (T=T,),

5, _1r S% =T
Tp=3t.05 (t,=Ty), @.7)

This is always possible, as it can be seen, e.g. from (6), taking into account that yg.
corresponds to the algebra scr({), i.e. for any fixed index C, the matrix yp. satisfies
Egs. (2) and (4). Moreover, the conditions (7) exhaust the freedom (6).

The remaining torsion coefficients, or rather some linear combinations of
them, namely

acﬁ's acﬂs 7;}23 >

. 4.8
(Ti—(1+0T5 if (+1,00 “9
T4—T3 if {=o0
0 if (=1,

may be referred to as components of the structure function, since to take the
torsion modulo the connection is equivalent to eliminating the freedom (6) by
means of a condition like (7). The residual freedom, wic—®ac—7yac Wwith
vac=(—)¥¢p, is irrelevant, as it has no effect on the torsion®. In other words, the
torsion does not depend on connections, which satisfy (7)1°. Consequently, we may
consider the components (8) as functions of a point and a frame field at this point,
and denote these functions together by c¢(EY). The components (8) of the structure
function will be used now to reduce the structure group.

First of all, remember that in N =1 supergravity we deal with the induced
SCR({)-structures, which satisfy the constraints

;ﬂ:’I;ib:O,
T4—T5=0 if (=00
5e’’=0 if (o0,

4.9)

where Rjc), is the curvature of some arbitrary connection obeying (7). It is no
surprise that these constraints are imposed on the torsion coefficients which

9  For the algebra scr (), the condition yfic = ( —)Z¢yds does not imply yz. = 0. Hence any torsion

constraints can never fix the connection. It is well known, that for the Lorentz algebra, for
instance, the opposite holds

10 It can be seen that an scr({) connection does not enter the explicit expressions for the linear
combinations (8) on account of Egs. (2), (4). Thus the particular linear combinations (8) do not
depend on scr({) connections without any reference to condition (7). See [7,97] for such a treatment
of structure functions in general
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correspond to the components of the structure function of the SCR({)-structure’?.
The reason is that the structure function depends only on the SCR ({)-structure, but
not on any additional structures like the connection. Moreover, the structure
function is related to the SCR (¢)-structure in a coordinate independent manner*2.

We shall consider now the torsion components which correspond to non-
vanishing components of the structure function of an induced SCR ({)-structure.
Let us look first at the components T3, which may survive after imposing the

. 1, o ;
constraints(7),(9). Let us define a 4 x 4 matrix I}’ = y oI, whichis real. Here 6}*
i

form a basis of Hermitian matricies, which is chosen to consist of the unit matrix
and three Pauli matricies. Suppose that

det(I¥) #0. (4.10)

This requirement is satisfied by generic surfaces (in fact, by almost all surfaces).
If the condition (10) holds and { +1/3, the function T,3(E}) takes values in a single
orbit of the group SCR((). In other words, any “matrix” T4(EY) can be connected
with some fixed matrix, say T; = 2ioy, by a transformation of the group SCR({).
Indeed, under the tangent space transformations (1)}+3) of the group SCR({) this
function transforms as follows

TG ASTSC, 1 Cp e (4.11)
In terms of I} = %05“ +j» this reads as
1
IF— AST20g|det C| 7 1, (4.12)

where the matrix Of belongs to the group SO(1, 3). From condition (3) it follows

that
1-3¢

det(AS- |detC|™1y=|det | *det A=|detC| ¢ .

If {+1/3, the matrix K§=A4detC| ! is quite arbitrary. Consequently for all {,
except {=1/3, we can satisfy the gauge condition on the frame fields: I} =45, or
equivalently

'I;ct; = 21'0';3 . (413)

In the case {=1/3, this condition must be imposed as a constraint, which
corresponds to a restriction on the second derivatives of the fields H*, H* 3. It can
be shown that condition (13) agrees with the requirement of the second order
normalizability of surfaces discussed in Sect. 2. This requirement is satisfied by
almost all surfaces, if { & 1/3. In what follows we shall not mention this peculiarity
of the {=1/3 case.

11 The constraint R;ave’”zo in (4.9) is, in fact, a condition on the second structure function.
The relevant definitions can be found in [16]

12 Analogous statements are valid, of course, for an arbitrary G'-structure

13 This was pointed out also in [21]
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Let us impose (13) as a gauge condition on frame fields. The structure group
SCR({) is then reduced to a subgroup G” which consists of transformations (1)~3)
preserving (13). By inspection of (11)~(13) one obtains easily that such transfor-
mations (1)+3) must satisfy

Ay=303400' CCE,
detC=1 if ¢+1/3,1
|detC|=1 it ¢=1
detC=detC if (=1/3.

(4.14)

This defines a group G” and reduces the SCR({)-structure to a G”-structure. The
latter has its own structure function which will be used to reduce the group further.

The conditions eliminating the freedom to change the torsion under the shifts
of connection may be chosen for a G”-structure to be as follows

To=Th=Th=To=Tj,
T5(00)j =0 [(a?),} =2 (" 00y —azaozﬁ-)] , 4.15)

t,=T4=0, if (=1/3,1.

Let us consider the transformations of the unconstrained components under the
group G”, which is given by (1)~(3) and (4). If A5 = 63, Cj = 63, we have, in particular,

Ty~ T+ BRisg;
e (4.16)
T,~ T, + BRioy;,

where T,=T2 as before. Equation (16) shows that we can impose a gauge
condition, for instance, as follows

{(1 WL=21-0t, if {400 win
T;z ==l if (=00,
which restricts the group G” to a subgroup G”. Thus we obtain a G”-structure,
where the group G” consists of the tangent space transformations E}— E5 A%,
2~ E%Cj, Ei—E4,Cj, with condition (14) imposed. We see that G”=L, for
{+1/3,1,and G” =L x U(1), for {=1, where L is the conventional Lorentz group,
while U(1) stands for the transformations of the form: x*—x% 0*—ei°0%
0% —e 0%, which correspond to local ys-rotations in the tangent space. That is
why the case {=1 will correspond to the alternative minimal supergravity (cf.
[10]). In the case {=1/3, according to Eq. (14), the group G" consists of Lorentz
transformations and dilatations. (The relevance of dilatations for {=1/3 was
pointed out also in [21].)
Let us show that the resulting geometry of G”-structures correspond to the
constrained superspace approach a la Wess-Zumino [1-3, 10] for various {. The
full list of the constraints on the torsion and the curvature in these G"'-structures is
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as follows
T;=0, Ti(6));=0, (4.18)
T3, =0 if (=
T =3l[(T,—t)0; + (T —1tp)d] if (Fo0,
t,=0 if (=1/3,1, (4.20)
T =2ioy;, 4.21)
{n:-ta if (=00 422)
(1-20T,=21-0t, if (+oo, ’
T,3=0, ’I?,,z s 4.23)

{n—tﬁo if (=00 w29

s e97=0 if (40,

where T, = T3, t,= TS5 One can observe immediatly that these constraints coincide
with those of [3]. The constraints (18)(20) serve to eliminate the freedom in the
connection corresponding to the groups G”, while the constraints (21), (22)
descend from the gauge conditions imposed under the reductions from
G’'=SCR({)to G” and from G” to G”. Finally, it can be shown by a straightforward
calculation that the induced structure constraints for SCR ({)-structures give just
the conditions (23), (24) after the described reduction to G”. Note also, that, in
principle, the constraints (18)—(22) may be chosen differently. (These constraints
are sometimes called “the conventional constraints”; for a classification of
supergravity constraints see, €.g. [3].) Another choice in Egs. (18)~+22) may change,
in particular, the form of the curvature constraint in Eq. (24), which corresponds to
an induced structure constraint. In this way one can get other equivalent sets of
G"”-constraints, for instance, those of [2] with {+1/3,1 and G" being the Lorentz
group.

Thus we have proved that the Wess-Zumino type formulations of N=1
supergravities for all { can be recovered from the formulations that use the induced
SCR ({)-structures, by imposing certain gauge conditions. On the other hand, the
Wess-Zumino type formulations are known to be equivalent to the external
formulations, i.e. to the formulations using surfaces in €*'*, or the prepotentials
H® H* (see [2, 3, 11-13, 20, 217]). Thus we obtain the equivalence of all three
approaches. The internal formulations can be derived from the external ones and
vice versa by invoking the notion of induced geometry, as we discussed in Sect. 3.

5. Supergravity Action Functionals

As was already discussed in Sects. 1 and 2, the action of supergravity must be an
invariant functional on a space of surfaces. In the particular case of N=1
supergravity, we considered real surfaces in complex superspace C** and the
group I'(G(0)), acting in C** and, hence, on the space of real (4|4)-dimensional
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regular surfaces'* in €**. Thus the action of N=1 supergravity must be a
functional on this space of surfaces, invariant with respect to I'(G({)). Such
functionals can be defined conveniently in terms of internal geometry of the
surfaces. It is worth mentioning that the group I'(G({)) is essentially the group of
transformations of C** which preserve the trivial G({)-structure in this space (see
Appendix A). In Sect. 3 we have shown that there is a natural internal object on a
regular surface, which is determined completely by the surface and the trivial G({)-
structure in C**. This object is the SCR({)-structure, induced on that surface.

Given a coframe field E4(X) representing the induced SCR ({)-structure on the
surface, the action can be constructed as an integral | #dv over the surface with the
volume element

dv=Ber(E{)d*xd*04*0,

where X = (x™)=(x", 0*, 0*) are the coordinates in this (4/4)-dimensional surface
and Ber denotes the Berezinian (superdeterminant). Thus we have to look for the
functional

| P(EAR)) Ber (E4(%))d*xd?0d20 (5.1)

which satisfies the following requirements: (i) It must be invariant under the
coordinate changes, (ii) it must be independent of the particular choice of the
admissible coframe field corresponding to the SCR({)-structure. These require-
ments mean that the functional (1) depends only on the SCR ({)-structure, induced
on the surface by the trivial G({)-structure in C*'*. Consequently, such a functional
will b? invariant with respect to the group I'(G({)), which preserves that structure
in C*4,

The requirement (i) could be satisfied, if £ (Ef) was a world scalar. To satisfy
(ii) the function £ (E4) must transform in an obvious way under the tangent space
transformations of the group SCR ({), acting on E#;. Therefore it is natural to try to
construct the Lagrangian Z(Ej) in terms of the components of the structure
function of the induced SCR({)-structure. For those who have not entered into
details of the last section, this can be put somewhat differently.

Consider the torsions of the connections in the SCR ({)-structure. In particular,
consider the components of the torsion tensor represented in the tangent space
basis generated by an admissible frame. It may happen that among them there are
such components that do not depend on the choice of the connection. Whether or
not depends, generally, on the group considered. For the group SCR(() this is the
case, in particular, for the components T;;. Indeed, Tyj; involves the components
wj; and wj, of an scr({) connection, but these vanish, according to the definition of
the Lie algebra scr({). Consequently, the connection does not enter the expression
for T;5. These torsion components are the world scalars and transform covariantly
under the SCR({)-transformations in the tangent space. Since T;; may be now
considered as a function of the point X and the admissible coframe E4; at that point,
it can be used to construct the Lagrangian.

14 Remember (Sect. 2), that the requirement of regularity implies no considerable restrictions on
the set of these surfaces for all {, except (=1
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Thus we are led naturally to the following expression for the action of
supergravity
=k [ |I'"Ber(Es)d*xd*0d*0, (5.2)

where kis a constant, n=(1—{)/(3{ —1)*>,and I' = det(I}") with I} = al—i—ag“ o The

functional (2) satisfies the requirements (i) and (ii) specified above. Indeed (i) is
obvious, while (ii) is ensured by the choice n=(1—-{)/(3(—1). It can be easily
verified using Egs. (4.11) or (4.12), that the integrand of (2) does not change under
the tangent space transformations (4.1)4.3) of the group SCR({). We remark that
the expression (2) makes no sense if { =1/3, while other values of { are allowed,
including { = oo, when n= — 1/3 (minimal supergravity). It turns out, however, that
the integral in Eq. (1) vanishes identically, if { =1 (n =0). In this case the integral on
the right-hand-side of Eq. (2) is reduced merely to § dv. However, it was proved in
[10] that | dv=0 in alternative minimal supergravity, due to { =1 constraints. To
apply this result, we have to remind the reader that the constraints on the
“U(1)-superspace” of [10] differ from the induced structure constraints only by a
gauge condition (see Sect. 4).

It is easy to see for an arbitrary { as well, how the Wess-Zumino action,
o/ ={ dv [1], may come out in our approach. For this purpose, let us consider the
gauge conditions on the frame fields, which reduce the structure group SCR({) to
its subgroup G", as discussed in Sect. 4. (Remember that G" is the Lorentz group L,
if (£1,1/3, and G”"=Lx U(1), if {=1.) In this gauge we have I'=1, due to the
requirement T; = 2ioy;, cf. (4.13). This reduces the action (2) to

oAy =k | Ber(Ef)d*xd*0d*0=k | dv, (5.3)

where the coframe field represents the reduced G”-structure. This is just the
familiar action of Wess and Zumino.

By the way, we have obtained the equivalence of the induced SCR ({)-structure
approach and the Lorentz group picture on the dynamical level for minimal
({=o0) and non-minimal ({#1/3,1, c0) supergravities. The expression for the
action of alternative minimal supergravity ({ = 1), different from { dv =0, has been
found in [10]. In the rest of the section we show that this “non-geometrical” action
for {=1 can be obtained as a limit {—1 of the “geometrical” actions of non-
minimal supergravities (2) [or (3), when I'=1], if one sets k=1/n.

For this purpose, let us take a one-parameter family of coframe fields,
corresponding to such a family of structures, that for each value of { there is an
induced SCR({)-structure. Then we must substitute this family of coframe fields
into the expression (2) and consider the behaviour of ./, near the point {=1. It is
convenient to use the above parameter » related to { via n=(1-{)/(3(—1), or
{=(n+1)/(3n+1). Thus we have to consider the family E4(£|n), and impose at
each value of n the constraints ensuring that the coframe field E4,(%|n) defines an
induced SCR({)-structure with { =(n+1)/(3n+ 1). Such constraints are given by
Egs. (3.6),(3.7). Moreover, we require that the coframe fields E4;(%|n) at all values of

15 One may use n instead of { to parametrize the various formulations of supergravity. It
coincides with the parameter n of [3]
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n define one and the same CR-structure. Here CR denotes the group of linear
transformations (4.2) without any further conditions like (4.3)°. In other words,
Ei(%|n,) and E4,(%|n,), for arbitrary n,, n, must be connected by a transformation
(4.1), (4.2). Using such coframe fields let us pass in expression (2) with k=1/n,
to the limit n—0, which corresponds to {— 1. In order to do this we expand the
functions E4(%|n) up to the first order in the small parameter n:

Ef(%In) = E4,(X10) + nE3(X10) V() . (54)

The above requirement of the CR-equivalence implies that the matrix (63 + nV3')
must represent an infinitesimal transformation of the group CR [Eq.(4.2)].
Therefore we set

Vi=vf=0, Vr=vr=0.
After the substitution of the expansion (4), the integrand in Eq. (2) becomes
I (X[n)|" Ber (E4;(£|n) = (1 +nIn|T(%]0)] +nV (X)) Ber (E4(%/0)),

where V=V{=V#—Vi—V{ Since Eji(x|0) satisfies the constraints corresponding
to alternative minimal supergravity ({ = 1), one has | Ber(Ef(%]0))d*xd?0d*0=0.
Consequently the limit n—0 of the expression (1/n) | |I'(n)|"dv(n) makes sense. Thus
we obtain

olp— = (In|l'|+ V) Ber(E§)d*xd*0d*8, (5.5)

where I is determined as before by the coframe field E4(X) corresponding to the
induced SCR(1)-structure.

The matrix function V() in the expansion (4) is not fixed completely in terms
of E4(%) = E#(x]0). However, it cannot be quite arbitrary, due to the torsion and
curvature constraints on the frame fields E¢(£|n). A straightforward, but still fairly
tedious calculation shows that the supertrace V of V3' can be represented as
V=U + U, where the function U may be an arbitrary solution of the following
equation

2%D,U —wl,)=0. (5.6)
Here we have assumed the following notations:
D,=Ef(®)0u, 9°=eDy+2}),  of=(t+1)3,

where 155 is determined by the frame field E¥(%) through the relation [D, Dg}
=195Dc. As it was already mentioned, we have I'=1 when reducing to the
conventional L x U(1) superspace. A quick comparison with [10] shows that the
functional (5) coincides with the action of alternative minimal supergravity up to

| X Ber(Ef)d*xd*0d?0,

16 In mathematics the CR-structures (Cauchy-Riemann structures) appear in the study of
geometry of real surfaces in complex space. In our case these structures correspond to conformal
supergravity
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where X is an arbitrary function obeying 2*D, X =0. However, it was proved by
Frolov (private communication) that such a term does not affect the field
equations.

Finally, it is shown in Appendix B that the geometrical framework of this paper
makes the task of finding the prepotential form of the actions straightforward.

Appendix A. The Automorphisms of the Trivial G-Structure

Let us find out the transformations that leave the trivial G-structure in the space
IRY invariant (the case of a superspace, say IR?!¢, may be included by setting
N = P|Q). The trivial G-structure (GCGL(N,R)) in R" can be represented by the
coordinate frame e¢.=6%, a, n=1,..., N, corresponding to the standard coordi-
nates y" in that space. Other admissible frame fields are connected with the
coordinate one by means of y-dependent transformations of the group G; for
example, &%(y) = g2(y)or with g5(y) in G. Let us consider a transformation, ¢, of the
space R¥, that is y"—J"=¢"(y). This transformation acts on the tangent vectors
and, hence, on the tangent frames. Under the action of ¢ an arbitrary frame field
e'(y) goes into &%) = e%(y)04"(y)/dy’. One says that a transformation leaves the
G-structure invariant if it transforms the admissible frames into the admissible
ones. It is easy to describe such transformations (i.e. automorphisms) for the
trivial G-structure. For the transformation ¢ to be an automorphism, it must give
an admissible frame, &7(y) = g2(y)d%, when applied, for example, to the coordinate

frame el(y)=0%; thus
8204"(y)/0y” = gi($(y))3} -

GA)]
0y’
All the transformations obeying this condition constitute the group I'(G) referred
to in Sect. 1 and 3. Thus I'(G) is indeed the group of automorphisms of the trivial

G-structure. ‘

That is to say, at each y the Jacobian matrix [ ] must belong to the group G.

Appendix B. Actions in the Prepotential Form

In order to write down the actions directly in terms of the superfields H%(x, 6, 0),
H%(x,0,0), we have to find an explicit expression for the frame fields via the
prepotentials H®, H* Then we shall be able to obtain the desired result by
substituting this expression into the action functionals (5.2). Remember, that the
frame fields in the internal formulations of supergravity correspond to induced
geometry. According to Sects. 2 and 3 we must consider a regular surface of real
dimension (4/4) in the space €*'*. Such a surface can be given by Eq. (2.6), where the
fields H®, H* giving a regular surface are constrained by (2.9)if { = 1. Let us look for
the frame fields on the surface (2.6) that correspond to the SCR({)-structure
induced on this surface by the trivial G({)-structure in C*%. First of all we have the
coordinate frame in C**, which consists of the vectors &,=0/0z°, &,=0/06°
F,=0/0¢", and their conjugates &, &, and %, An arbitrary frame field,
admissible for the trivial G({)-structure in €C** is connected with the coordinate
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one by means of a local transformation &, =U2&;, where &,=(&,, 6,, %;) and
similarly for &,, while [U2] belongs to G({). In the case under consideration the
definition of regular surfaces and SCR({)-structures induced on them uses a
subspace V defined in C** by means of the equations z°=2z", §*= ¢?, §*=p*. We
see that for the above coordinate frame the vectors &,+ &, &, + Z,, &, + F, belong
to V and define a frame in this real (4/4)-dimensional subspace of C**. Therefore,
according to Sect. 3, the SCR({)-structure induced on a surface can be defined by
means of a frame field (E o) = (E,, E,, E,) if the vectors E , are tangent to this surface
and can be represented as E,=&,+&,, E,=&,+%,, E,=&,+ %, with &,, &, %,
being the vectors of some frame in (E‘”“ adm1851ble for the trivial G({)-structure. All
such frames (E ;) are connected by means of the group SCR({). For a surface (2.6) it
is easy to verify that the following frame field on it does correspond to the induced
SCR ({)-structure: P

E=-"
“ox

(B.1)

0
E,=¢ [ 5?9“ +iH(1—iH), ' 6x‘] ,

where the vectors tangent to the surface (2.6) are expressed in terms of the
coordinates x*=(z*+2%)/2, 6%, 6 on it. The field ¢(x, 0, ) in Eq. (1) is determined
by the following equation:

[4~2det(8+iH )] =(4)> det[6f + H',—iH?,(1 +iH); “H].  (B.2)

Note, that this definition of ¢ is consistent if for { =1 the fields H*, H* satisfy (2.9).
This agrees with the fact that for the induced structure to be defined on a surface,
this surface must be regular.

As we have already discussed, the action of supergravity must be a functional
on a space of surfaces. In Sect. 5 we considered the actions written in terms of the
internal geometry of surfaces [Eq. (5.2)]. Given a surface, the value of the action
functional was determined by the induced SCR({)-structure on that surface and
did not depend on the particular choice of an admissible frame field. Substituting
the frame field (1) into the functional (5.2) we find the following expression in terms
of the fields H*, H* corresponding to a regular surface

A=k [ A" B~ " V| "d*xd*0d*0, (B.3)
where B ¢
kT

A=det(5f+iH%),
B=det[§4+ H*;—iH";(1+iH); “H%],
~ o ]
F:detl—;’c, F 4 Fﬂo-b B
I—vc a_+ a eC,+ a +ebi ec
=g+ g 9+ G 95 )

ez=ina(1 '_lH)c_ 1 ’ €Z= _lea(l +lH)’~'_ ®,
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Note, that I} =|¢| ~ 2T, where T are the torsion components entering Eq. (5.2).
As a matter of fact, I';; are the coefficients of the Levi form of the real surface z* = x*
+iH%x,0,0) in C*? [cf. [15]; one obtains this surface from Eq.(2.6) by a
projection of C** onto C*/?, when (z, 0, 3)—(z, 0)]. Equation (3) gives the actions
for {#1/3,1. According to Sect. 5 the action for { =1 can be obtained from (3) by
taking k=1/nand n—0. For the fields H%, H* satisfying the constraint (2.9), we find
in this way

oly-1=[|A-B~!|-In|4-B~3- [|d*xd*0d*. (B.4)

Thus we get the prepotential form of the actions for the minimal, non-minimal
[Eq. (3) with {=+1/3,1] and alternative minimal [Eq. (4)] supergravities; this
agrees with [3,12,20].
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