
Communications in
Commun. Math. Phys. 94, 537-544 (1984) Mathematical

Physics
© Springer-Verlag 1984

Charges in Spacelike Cones
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Abstract. Starting from a conserved current, operators are defined which
measure the charge in certain unbounded stringlike regions which are possible
localization regions of charged fields in gauge theories.

1. Introduction

A fundamental feature of the structure of particle states is their division into
superselection sectors. In the conventional framework of quantum field theory,
these are described by unobservable fields connecting the different sectors. The
occurrence of superselection sectors can be understood within the framework of
algebraic quantum field theory [1]. Starting from the general structure of the
algebra of observables, exploiting essentially the locality principle, one obtains the
superselection sectors as equivalence classes of representations describing "situ-
ations of interest for particle physics" [2-4]. In [2] this is the class of
representations satisfying the spectrum condition, in [3] the class of represen-
tations which are equivalent to the vacuum representation on the spacelike
complement of bounded regions. The latter class does not contain representations
describing charged states in gauge theories. Therefore, in [4] the probably larger
class of representations which are equivalent to the vacuum on the spacelike
complement of spacelike cones is investigated. This class is known to contain, in
massive theories, all factorial representations with single particle states and is
supposed to contain all sectors in massive gauge theories which correspond to
charges measurable in the outside region of any bounded region by some sort of
electric flux (gauge charges).

The quantum numbers labeling the set of superselection sectors may be
considered as eigenvalues of charge operators Q. These operators are global
observables which do not belong to the quasilocal algebra. However, in
Lagrangian field theory, one has certain local observables which are supposed to
measure approximately the charges of the states. Recently Doplicher [5] and
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Doplicher and Longo [6] derived the existence of local charge operators from
general structural properties of the net of algebras of local fields in the case of
locally generated superselection sectors. These abstractly given local charge
operators behave essentially as the suitably regularized integrals of the 0th

component of a conserved local current. The main input needed for the
construction is the existence of interpolating type I factors for the local algebras, a
property which seems to be related to the particle content of the theory [7-9]. If
interpolating type I factors also exist for the von Neumann algebras associated to
spacelike cones, one can find operators measuring the charge in these cones, and
one may compare these operators to the integrals of local charge densities over a
spatial basis of the spacelike cone.

In this paper we investigate the following technical problem. Let j μ denote a
conserved current, and let S denote a spatial cone. Is it possible to give a precise
meaning to the integral

ί;°(0,x)d3x? (1.1)
s

That this problem is not trivial may be seen by looking at the problem of defining
the global charge as a limit of local charges. The local charge may be defined by

βB,/ = WV(/x), (1.2)
B

with B c R 3 open and bounded, fe D(R4), f /= 1 and/x(j/)=/(j;--(0,x)). QBtf is
localised in {0}xB + supp/and has the same commutation properties as the global
charge operator with fields which are localised in the spacelike complement of
{0}x(R3\B) + supp/. QB f is a closable densely defined operator, and one may
assume that it has local selfadjoint extensions with the same commutation
properties. It is well known (see e.g. [10]) that the operators QB f approach the
total charge operator Q in a very weak sense as B tends to R3, e.g.

lQB,f,F]Ω-+QFΩ, (1-3)

where Ω denotes the vacuum vector and F any local field operator. Requardt [11]
has shown that the convergence can be improved if one chooses an adapted
smearing function /B for each B, for instance

x). (1.4)

Then, in a massive theory

λ-oo, (1.5)

which implies strong convergence of (QλB / Λ B ) on a core for Q.
For unbounded regions which are not the whole space one has to find a

smearing procedure which preserves locality properties. In the case of a spacelike
cone S one may proceed as follows.

Let S1 be a spacelike cone such that LScS1 for all Poincare transformations L
in some neighbourhood of the identity. Candidates for charge operators Qs which
measure the charge in S and are localised in Sx are the means of the formal charge
operators

Qiformal) = ^ μ V ρ τ j d ( L 6 )

Σ

where Σ runs over spacelike surfaces in S1 whose causal shadow Σ" contains S.
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We shall show that Qs exists on Ω under a condition on the 2-point function of
j μ which is satisfied in theories with a mass gap as well as for the electric current in
quantum electrodynamics, but not in the case of the massless free scalar field. The
existence of Qs on Ω implies the existence of Qs as a hermitian operator on a dense
domain under some natural conditions. Moreover, Qs is essentially self-adjoint in
the case of a free massive scalar field.

The last result can be used to prove the existence of interpolating type I factors
for spacelike cones in the case of the neutral free field by the method of [12]. (A
direct proof generalizing the argument in [13] is also possible [14].) On the other
hand, the non-existence of interpolating type I factors for algebras of spacelike
cones in a dilation invariant theory implies the non-existence of a reasonable
charge operator Qs in the theory of a free massless scalar field.

This negative result suggests that our conditions for the existence of charge
operators associated to spacelike cones are in a certain sense optimal. On the other
hand, the positive result for quantum electrodynamics supports the heuristic
picture that charge carrying fields may exist which are localised in spacelike cones,
in analogy to the case of massive gauge theories1.

2. Construction of Charge Operators

Let j μ denote a conserved Poincare covariant local current in a Wightman field
theory with a unique vacuum Ω. The 2-point function of j μ is given by

(ΩJμ(x)jv(y)Ω) = f dρ(m2) J ̂  (pμPv - m%y«x-»(p0 = (|p|2 + m2)1'2)
Po

(2.1)

with a positive tempered measure ρ. We assume that ρ is of the form
2 (2.2)

with a measure ρ'. This assumption is clearly fulfilled in theories with a mass gap,
but also the electric current in quantum electrodynamics satisfies this condition.
The property (2.2) of ρ guarantees that the local charge operators regularized by
the method of [11] converge strongly on a dense set to the global charge [11,15].

We try to find an analogous method for the case of spacelike cones. Let ScSί

denote spacelike cones centered around the x^axis, with opening angles 2ε and 2δ
and apices 0 and (0, — a, 0,0), respectively, 0<ε<(5<§,α>0, i.e. (x± = (x2, x3)),

4, |xo| 4- |x±| cosε <x x sinε},

S1 = {x e R4, |xo| + |x_J cos(5 <(x t -f a) sinε} .

Consider the family of spacelike surfaces (0<b<α, &<y <<5),
4 (2.4)

1 In the framework of perturbation theory, Steinmann [19] has shown that such fields exist and
can be used for a formulation of quantum electrodynamics in terms of gauge invariant quantities
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with yelR4 and λeR. It is straightforward to check that for y and λ sufficiently
small ΣyfλcSί and Σy\λDS. Hence for these values of y and λ,

1 ί d3x[j0(x), A], if A is localised in S

0, if 4 is localised m S{

(2.5)

Here 4̂ denotes a polynomial of Wightman fields smeared with test functions,
and A is said to be localised in a region & if the support of all these test functions is
contained in 3&.

Equation (2.5) suggests the definition of a charge operator Qs which is localised
in S1 by the formula

) f εrv*°dxμdxvdxjσ(x)9 (2.6)

where h e ̂ ( R 4 x R), J d4y J ̂ ft(y, /I) = 1, and

The right-hand side of Eq. (2.6) is not well defined since it corresponds to the
smearing of the Wightman field j μ with the function /zg,

ε^°dxvdxρdxσh(x-y,λ), (2.7)

which is not strongly decreasing. Therefore we consider the cutoff functions

dxσh(x-y,λ). (2.8)

For each local operator A one can choose R large enough such that the

commutator [βSjR,>4] does not depend on R,Qs,R=j(hs,id-

Proposition 2.1. The sequence (QS,RΏ) converges strongly as R tends to infinity,

provided the spectral measure ρ fulfills condition (2.2).

Proof Let Pε denote the projection on spectral values of the squared mass operator
M2 in the interval [0,ε]. We show

(i) II^CQS.ΛΩ 11-̂ 0 a s ε ~ > 0

? uniformly in R.
(ii) ((1 —PE)QS,R&) is a Cauchy sequence for each ε>0.
The Fourier transforms of the functions hξiR, are

h°s,R(p)= I dxt j d^^^^^h
-b \xχ\<(x\+b)t&ny

6 | | < ( + & ) t

For p o ^ ε > 0 the functions fίξtR converge in each Schwartz space norm for
»oo. So the temperedness of ρ implies (ii). To prove (i) we use the estimates
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-bpΌ |xi|<(xi+ft)tany
Ί

3

\hs,R(p)\UPo

<,po 3 sup
qeR4

Hence

Po

ε oo ε dpίγγι2Λ
^ j dρ(m2) J dpoPo 3 c o n s t ^ 2 c o n s t ί \ ,

o m o m

where the constant does neither depend on ε nor on #, so (ii) follows from
(2.2). q.e.d.

The convergence of the sequence (QS,R) on the vacuum implies the convergence
on a dense set if there are sufficiently many bounded operators which map the
invariant domain of the field operators in itself and commute with sufficiently far
spacelike separated fields. Without an assumption on the existence of local
bounded operators, in the general framework of Wightman field theory, we do not
know whether (QS,R) converges always on a dense set. But in a theory with a mass
gap one finds the following result.

Proposition 2.2. Let A denote a local polynomial in Wightman fields. Then the
sequence (Qs RAΩ) converges strongly.

Proof. Let R'>R,R sufficiently large. Then by locality and the cluster theorem [9],

S(Ω,A*AΩ)(Ω,(Qs,R,-Qs,R)2Ω)+f(R)\\A*AΩ\\ \\(QS,R>-QS,R)2Ω\\ , (*)

where /is a function which depends on the mass gap and on the localisation region
of A and decreases faster than any power of JR as R tends to infinity. Now the
squares of the norms \\(QS,R' — QS,R)2Ω\\ arise from the 4-point function of the
current j μ by smearing with the test functions

H^y\xu ..., x4) = (/zg>-ftgjΛ) (Xl)... (Λg?Λ, -ΛgfΛ) (x4),

whose Schwartz space norms are bounded by polynomials in R. Since the 4-point
function is a tempered distribution, \\(QR' — QR)2Ω\\ is also bounded by a
polynomial in R. Hence the second term in the second line of relation (*) vanishes
in the limit R-+oo, whereas the first term vanishes because of
Proposition 2.1. q.e.d.

For a physical interpretation, however, Qs should be not only densely defined
but self-adjoint. We study this problem in the case of the free charged scalar
massive field.

Let Φ(x) = 2'ί/2(Φ1(x) + iΦ2(x)), xeR 4 , denote the free charged field, where
Φp j= 1,2, denote independent neutral fields. A conserved current is defined by

jμ(x) = Φx(x)dμΦ2(x) - Φ2{x)dμΦx(x). (2.9)
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In terms of annihilation and creation operators α/p), af(p),j=\,2, normalized
such that

<53(p-q); (2.10)

Qs can be written in the form

Qs = J d3 p J rf3q{α1(p)α2(q) W(p, q) + α1(p)α|(q)F(p, q) + h.c.}, (2.11)

where W and V denote the distributions

1/2Irfx1 ί d2x±
— b JJCJ.1 <: (JCI + b ) t a n y

[μ(p) - μ(q) - i ^ - q^slKMp) + M«l). P + Q. WP) + Ml)) (* i + b)),

~b \xi_\<(xi+b)tanγ

= (|p|2 + m2) ̂  ί(p, λ) = ί rf4j;β - *yh(y, λ\ fϋ(p9 β)

= ίdλe-ιH(p, λ)9 d5h(p, β) = jpK(p9 β)^j . (2.12)

Equation (2.11) has to be understood as a relation between sesquilinear forms
on the domain 2 of vectors with finite particle number and wave functions from
the Schwartz class.

Proposition 2.3. There exists a unique essentially self-adjoint operator Qs on D(N)
(the domain of the particle number operator) which fulfills Eq. (2.11) in the sense of
sesquilinear forms on 3).

Proof It is sufficient to show that We <$?2(R3 x R3) and that Fis the kernel of a
bounded operator in J?2(R3) (see e.g. [16]). Since || W\\2 = ||βsΩ|| < oo, according
to Proposition 2.1, we only need to investigate V. This investigation turns out to be
rather delicate since there is no damping factor in the integration over xx in (2.12).
The idea of the proof is to relate the kernel Fby suitable operations to the kernels

Λ,A(p,q) = (2πΓ3 ϊ dxx f d 2 x ^ - ^ = χCflϊ(p-q),
-c \x±\<η(xι+c)

χcη denoting the characteristic function of a certain spatial cone Scφ which clearly
are kernels of operators with norm 1.

The first step consists in smearing Acη with a space-time function φ eS^R4).
Let P = (P 1 ? P 2 9 P3^denote the momentum operator in if 2(R3)? (PJ) (p) = Pf/(p),
i= 1,2,3, and let P = (μ(P),P). The operator

(the integral is understood in the weak sense) has a norm which is bounded by
I d4x\φ(x)\ and the kernel

- Mq)? p - q)
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Using i[μ(P),B^] = M?Γ) a n d IIMPΓΊ = m~\ one finds

Furthermore, by complex interpolation [17] the same estimate holds for

The final step now consists in a suitable smearing over Lorentz boosts in the
q-direction. Let Λ-+JJ(A) denote the unitary representation of Lj in J2?2(R3)

given by
(U(Λ)f) ( p ) = ( ^ ί l 2 *

(Λ ~' p is the spatial part of /I ~ 1(μ(p), p.) Kernels of operators transform according
to

*] (p, q) = (μ(Λ- ^

Let the boosts in the x1 -direction be parametrized by

ί\ ;2\- l/2 1/1 i2\- l/2
^i A j Ayi A ) j-

Then
o

• (2π) - s(4ιi(p)rtq)r " 2 ( M P ) + M q ) - *
00

J dχ χ J
-cίl-A2)"1/2 |xi|<tϊ(l-λ2)1/2(xi+c(l-λ2)-1/2)

Comparison with F gives

F(p, q) = I dλ[U(Λ(λ))C^lU(Λ(λ)) ~ ̂  (p, q),

with φλ(x) = h(Λ(λ)x,λ), cλ = b(\-λ2)ί/2, ηλ = {l-λ2y1/2t2inγ. Thus

q.e.d.

The explicit dependence of some of the estimates used in the proof of
Proposition 2.3 on the mass m raises doubts whether a similar result may hold in
the massless case. Actually, one can show that it is impossible, in the massless
theory, to find a self-adjoint operator Qs affiliated to 2ί(SΊ)2 such that

eiaQsΦ(f)e -ίaQs - eiaΦ(f) (2.13)

for αeIR and supp/cS. The reasoning is as follows.
Suppose that an operator Qs with the above properties exists. Then, by the

method of [12], one can prove the existence of a type I factor Jί in the theory of the
free neutral field with 2I0(SiK^C2i0('S'i)2- But from an argument of Driessler

2 tyί(β) and 5ίo(^X f° r a region ^ c I R 4 , denote the von Neuman algebras generated by all
bounded functions of the field Φ and the neutral field Φo, respectively, smeared with test functions
with support in ̂
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[18] one knows that such a type I factor Jί cannot exist in a dilation invariant
theory.

By the same reasoning, one can also exclude the possibility, in the massive free
field, that Qs can be defined such that it is affiliated with SlfSJ, where S± has the
same opening angle as S, i.e. SίcS + x for some x.
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