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Abstract. We discuss the discrete spectrum of the operator

K

fc=l

More specifically, we study 1) the behaviour of the eigenvalues when the
internuclear distances contract, 2) the existence of a c-independent lower
bound for Hκ(c) — mc2, 3) the nonrelativistic limit of the eigenvalues of
Hκ(c)-mc2.

1. Introduction

This paper deals with the operator

Hκ = (-ή2c2A+m2c4)112- Σ Zke
2\x-Rk\~ι (1)

k=l

describing a relativistic charged particle with mass m in the presence of K fixed
nuclei (Born-Oppenheimer approximation). The kinetic energy operator for the
charged particle is obtained by straightforward "quantization" of the relativistic
formula for the kinetic energy [p2c2 + m 2c 4] 1 / 2; (1) can be considered as an
alternative to the Klein-Gordon equation for a relativistic model neglecting spin
effects. In what follows we shall, with a slight abuse of terminology, use the name
"electron" for the charged particle described by (1).

For the case K = 1 the above operator has been studied in detail by Herbst [1]
and Weder [2]. One finds that

H1=(-ή2c2A+m2c4)1/2-Ze2\x\ ~1

is bounded below if and only if the nuclear charge Z is less than a critical value Zc r i t.
This phenomenon is typical for relativistic atom models; the value for Z c r i t in the
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present case, Zcrii = 2a~1/π [where α = e2//ίc«(137)~1], lies between the
corresponding critical values for the Dirac and Klein-Gordon theories (where
ZCrit = α ~ 1 and a'1/!, respectively). For Z<Zcrit the discrete spectrum of H1

consists of infinitely many eigenvalues between 0 and me2, accumulating at me2;
the remainder of the spectrum is purely absolutely continuous and consists of the
half line [me2, oo). Moreover [1], the eigenvalues of Hx are separated from 0 by a
gap increasing with Z — Zcrh:

σdisc(# i) C l(l-Z2/Z2

CTiy
2mc2, me2). (2)

In the nonrelativistic limit, this gives a lower bound on the difference between the
ground state energy Eo of H1 and the rest energy me2:

EoiHJ-mc2^ -(π2β)Z2e4rnή~2 + O(c~2). (3)

Up to terms of order c~2 this lower bound is independent of c; it has the same
dependence on Z, e, m, and h as the ground state of the true hydrogenic atom [the
coefficient π2/8 is larger than the true coefficient 1/2, but after all, (3) only gives a
lower bound].

For arbitrary values of K, a first study of Hκ was made in [3]. As in the case
K = 1, the operator Hκ is bounded below if and only if Zk ^ Z c r i t = 2α ~ Vπ? f° r aH ^
We shall always restrict ourselves to this case. Again one finds for Zk < Z c r i t , that

K

the essential spectrum of Hκis the half-line [me2, oo). If Σ Z f e >Z c r i t , negative
fc=l

eigenvalues occur [unlike the K= 1 case: see (2)], which may be made arbitrarily
negative by bringing the nuclei close enough together. This "collapsing" tendency
is, however, held in check by the electrostatic repulsion between the nuclei: it was
proved in [3] that the total energy (including the electrostatic repulsion between
the nuclei) for the ground state of the one electron - K nucleus - system is positive:

EO(HK)+ Σ ZtZfi^Rt-RΓ^O. (4)
k,l=ί

k<l

This means that the system is stable (see [3]).
In the present paper we want to address three further questions concerning the

spectrum of Hκ: 1) the behaviour of the energy levels when the internuclear
distances |jRfe — Rt\ tend to zero, 2) the existence of a lower bound analoguous to (2),
for the case K + l, and 3) the non-relativistic limit of the eigenvalues of Hκ.

When the electron mass is put equal to zero, m = 0, it is easy to see what
K

happens if the \Rk — Rt\ all shrink to zero. If Σ Zk>Zcriv one finds that hκ(R)

= Hκ(m = 0;R) has non-empty discrete spectrum (we use the notation R for the
set {Rk}k = i,...,κ) Since hκ(R) and λhκ(λR) are unitarily equivalent, the eigen-
values en(R) of hκ have the property

en(XR) = λ-χen(R). (5)

As λ tends to zero, the eigenvalues of hκ(λR) all tend to — oo. We prove in Sect. 2
that a similar phenomenon takes place if the electron mass is different from zero:
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Theorem 1. Let Hκ be defined as in (1), with 0 ^ Z f e ^ Z c r i t for all k. Suppose that
K

Σ Zk>Zcriv Then V£<0, ViVoeN: 3λ0 such that
fc=l

λ^λΌ => #{En;En eigenvalue of Hκ(λR), En<E}^N0.

A similar theorem for the Dirac operator with several Coulomb singularities,
where E can be chosen arbitrarily in ] — me2, mc\, was proved by Klaus [4]. Our
proof of the above theorem is inspired by the proofs given in [4]: the essential
ingredients are the use of the Birman-Schwinger-kernel, and an argument using
strong resolvent convergence.

In Sect. 3 we prove a lower bound for Hκ analogous to (2). The following
simple argument already gives such a lower bound. For fixed Z l 5 . . . , Z X , there

K

exists a value c 0 of c such that £ Zk^(2/π)ήc0/e2. The same argument used by
k=ί

Herbst in [1] to obtain (2) can then be applied in the present case, and we have

σdise(Hκ) C [(1 - Z2JZ2

ήιy
2mc2, me2) (6)

[where again Zcrit = (2/π)(e2βc)~1"]. This lower bound seems to be non-optimal
from two points of view:

1) It is only valid for large enough values of c; the lower limit c 0 depends on the
choice for the Zk. It would be rather surprising if this were the best one can do.

2) If the nuclei are widely enough separated, one would expect the electron to
settle around the nucleus with the largest charge without "seeing" the other nuclei.
This would be reflected by a dependence of the lower bound on
Z m a x = max{Zfc; k= 1, ...,K} rather than on Z t o t. Both these criticisms of (6) are
avoided by the following theorem, proved in Sect. 3:

Theorem 2. For any K, and any Z1 ... Zκ with

we have

K

Hκ+ Σ ZkZιe
2\Rk — Rt\~ιΞ^mc2[l — (maxZk)

2/Z2

rit']
1ί2. (7)

k,l=l

For max Zk < 6 we prove a weaker result (see Sect. 3). The proof of (7) uses a lower
k

bound similar to but stronger than (4), which was also proved in [3]. Note that (7)
contains the electrostatic repulsion between the nuclei: if the nuclei are far apart,
this term becomes negligible, and (7) is a much better bound than (6); if the nuclei
are very close however, the repulsion energy becomes rather large, and (6) may be
better than (7).

Finally, in Sect. 4, we study the nonrelativistic limit (i.e. c->oo) of the
eigenvalues of Hκ(c). The lower bounds (6) and (7) already imply a nonrelativistic
lower bound for the ground state energy EO(HK) — me2, similar to (3). As we noted
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above, these nonrelativistic lower bounds for the ground state energy are too
small by a factor π2/4 when compared with the expected limit. Moreover, these
lower bounds cannot give us any information concerning the excited states. We
prove in Sect. 4 that all the energy levels of Hκ tend to the corresponding
bound state energy levels of the nonrelativistic Hamiltonian when c-»oo:

Theorem 3. Define

H°κ= -{h2βm)Δ- Σ Zke
2\x-Rk\~K (8)

Let En(c), E® respectively be the nth eigenvalues (counting multiplicity) ofHκ(c), E%,
where Hκ(c) is given by (1). Then lim [En{c) — mc2~\=E®.

c->oo

To prove this, we show that there exists a oindependent z in (C such that the
resolvent (Hκ(c) — me2 — z)~1is norm continuous in c~1 around the nonrelativistic
limit c~1=0. The proof uses the fact that (7) implies the existence of a
oindependent lower bound for Hκ(c) — mc2.

2. The Behaviour of the Eigenvalues under Contractions

For this and the next section we shall use units such that h = c = 1. We can then
rewrite Hκ as

where p2= — A, and

VR(x) = Σ Zk(e2/ήc)\x-Rr1^(2/π) Σ μk\*~Rk\'\ (9)
fc=l fc=l

with μk = ZJZcrit. κ

We consider the situation in which M= Σ fa > ^ a s always we have μk ^ 1 for

all k, hence μ Ξ m a x ^ ^ l . k = 1

k

According to the Birman-Schwinger principle, we have, for £ < 0 ,

# {En En eigenvalue of Hκ, En < E}

= *{en;en eigenvalue of FR

1 / 2[(p2 + m 2 ) 1 / 2 + | E | ] - 1 F R

1 / 2 , ^ > 1} .

We shall therefore make a study of the spectrum of

We shall show that on the one hand

σess(^R1/2[(P2 + mψ2 +1£|] " ' FR

1/2) = [0, μ], (10)

while on the other hand every point in [0, M] is an accumulation point of

U σ ( O ( p 2 + m2)1'2 +1£|] ~
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(see below). Since M > 1 ̂  μ, this will imply that the number of eigenvalues greater
than 1 of the operator FR

1

/(J

2[(/72 + m2)1 / 2 + |£|]~1FR

1/M

2 tends to infinity for n-^oo.
We first compute the spectrum of \x\~l!2\p\~~1\x\~112, where |p| = ( - J ) 1 / 2 .

Lemma. σ ( M - 1 / 2 | p Γ ^ x l ^ ^ ^ σ ^ M - ^ l p l ^ M ^ ^ ^ E C π ^ ] .

Proof. Since |x|"ι/2\p\~ι\x\~ 1 / 2 ^ 0 , and |||pΓ 1 / 2 |x|" 1 / 2 | | =(π/2)1/2 (see [1]), we
obviously have σ(|x|~1/2|p|~1|x|~1/2)C[0,π/2]. We prove that this inclusion is an
equality by explicit computation. On L2(R3), the operator |xΓ 1 / 2 |pΓ 1 |xΓ 1 / 2 has
integral kernel

Defining the unitary operator 17 from L2(R3) to L2(R x S2) by

(l7/)(ί,ω) = β^

one finds that on L2(R x S2) the operator

is given by the integral kernel

F(ί 1 , ί 2 ;ω 1 ,ω 2 )-(4π 2 )~ 1 [cosh(ί 1 -ί 2 )-ω 1 ω 2 ] ~ 1 .

Since F depends only on the difference tx — t2, we see that by a Fourier
transform |xΓ1 / 2 |/?Γ1 |xΓ1 / 2 is unitarily equivalent to the operator B on
L2(IRxS2) defined by

(Bf) (fc, ω) - 1 dω'b(k; ω, ωθ/(fc, ω')

with

b(k; ω, ωθ = ί dteίktF(t,0; ω, ωx)

[ l ( ω ω O ] T , Γ ?

smh/cπ
where we choose c o s " ^ ω'e [0, π].

Since the integral kernel b{k;ω, ωr) depends only on ω ω',B can be written as
oo I

a direct sum (Φ) ffi J5Zm, where each 5/ m acts on L2(R) and is given by an integral
i o ii = o m= -i

kernel too:

with

bim(k)= ί άωγ J dω2^m(ω1)ϊίT O(ω2)fc(fe; ω 1 ? ω 2 ) .
s2 s 2

One can check that each of these functions blm is continuous, tending to zero for
fc->oo. This implies that |x|~1/2| jp|~1|x|"1/2 has only absolutely continuous
spectrum. Moreover one finds

fcoo(0) = π/2, hence 600(R) = [0,π/2]? which implies

σ(|x|-ίl2\p\-ι\x\~ll2)Dσ(B00) = boo(R) = [0,π/2] . D

In the following proposition we prove how this implies (10).
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Proposition. Let VR be defined as in (9), with Rk + Rtfor fcφZ. Then

<rM<2i(p2 + mψ2 +1£|] " 1 FR

1'2)= ajW\\p\ + 1)"' VJ'2)

= (2/π)μ σess(\x\' 1 / 2 |pΓ ' M " 1 / 2 ) = [0, μ]

Proof. For B1,B2 bounded operators, we shall use the notation Bί =CB2 if Bt — B2

is compact. Choose a strictly positive δ such that 2δ < \Rk — Rt\ for all k + l. Define
fk(x)= 1 if \x-Rk\£δ,Λ(JC) = 0otherwise. Define/=ΣΛ Since(|p| + 1)"1 / 2FR

1 / 2 is
bounded, we have (n-lim = norm limit) k

Moreover

e~εp\\p\ + iy1V^/2 = nΛime'εp\\p\ + l)~1lf(x)V^

is a compact operator (as the norm limit of Hilbert-Schmidt operators), which
implies that (\p\ + l ) " 1 ! ^ 2 is compact. Since

we have therefore

1)"

this proves the first equality of the proposition (by WeyΓs theorem). Since
(1 — f)Vχ/2 is bounded, we have also

v^Qpi + iy^^jv^iipi + iy^2/. (ii)

It is easy to check that/FR

1/2 ~ Σ fk(x) (2μfc/π)1/2|x - .Rfc| ~
1 / 2 is bounded. Using the

k

fact that \p\ — 1 has integral kernel (2π2)~1\x — y\~2, one sees moreover that

is Hilbert-Schmidt for k φ /. Hence

ll2 ϊ\x-Rkr
mfk. (12)

Since the fk are the characteristic functions of disjoint balls, the sum in the right
hand member of (12) can be considered as a direct sum of unitarily equivalent
operators (up to the coefficients μk). Defining g(x) = 1 if |x| ̂  δ, g(x) = 0 otherwise,
we can therefore conclude from (11) and (12) that σ^V^Wpl + l)'^12) is
completely determined by

Again, we have that (1 — g) \x\~1/2 is bounded, while (\p\ + 1)~ 1 |x|~1/2 is compact,
which implies
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Hence

^ess(0M"1/2(lpl + l)" 1W" 1 / 20) = σ e s s(|xr1 / 2(|p| + l ) - 1 | x r 1 / 2 ) . (13)

One easily sees that all the operators |x|~1/2(|p| + /l)~1|x|~1/2, λ>0, are unitarily
equivalent under dilations. This implies that σ(|x|~1/2(|/?| + /l)~1|;c|~1/2) is
independent of A. On the other hand |x| ~ 1/2(|p| 4- λ)~ 1|x| ~1 / 2 converges strongly to
|x|~ 1/2\p\"1 |x|~1/2 for λ->0. This implies that every e e σ(|x|" 1/2\p\'1 |x|"1 / 2) can be
written as e = lim en, with

«—• oo

^eσdxl-^dpl + l /n)- 1 ^- 1 / 2 ) .

Combining these two facts gives

Since also

we find σ(|xΓ1/2(|p| + l)~1 |xΓ1 / 2) = [0,π/2], hence, by (13), and because

Together with (11) and (12) this implies (μ = maxμk
k

[0,μ]. •

With the help of this proposition we can now prove Theorem 1.

Proof of Theorem 1. We have (s-lim = strong limit)

s-lim *# 2 [(p 2 + mψ2 + \E\] ~J

= (2M/π)|xΓ1/2[(p2 + m2)1 / 2 + |£ | ]- 1 | xΓ 1 / 2 (14)

fall these operators are bounded, and VλR—^—>(2M/π)|x|~1 a.e., where

k J
For /l->0, we have

σess(V&2l(p2 + mψ2 +1£|] " ' V&2) = [0, μ],

while

σess((2M/π) \x\~ 1 ' 2[(p 2 + m2)1 '2 +1£|]^\χ\~"*) = [0, M] .

Since μ̂ Ξ 1 <M, the strong convergence (14) implies that every ee(l ,M] can be
written as e = lim en9 with en an eigenvalue larger than 1 of
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(see Theorem VIII.24 in [5]). One easily sees that this implies

lim # {e> 1 e eigenvalue of V^Kp2 + mψ2 +\E\] " 1 VR)/2} = oo .

n-> oo

By the Birman-Schwinger principle this implies (E < 0)

lim φ{e<E;e eigenvalue of (p2 + m 2 ) 1 / 2 - VRln} = oo . (15)
«-»oo

Since (p2 + m2)1/2 — VλR is unitarily equivalent with

the negative eigenvalues of (p2 + m2)1/2 — VλR decrease monotonically as λ\0.
Together with (15) this proves the theorem. D

Remarks. 1. Using the continuity in λ of the eigenvalues of (p2 + m 2 ) 1 / 2 — VλR (which
follows from the unitary equivalence of this operator with
λ~ 1[(p2 + λ2m2)1/2 — PR]), one can rewrite the conclusion of Theorem 1 as:

V£<0, Vλ0:Φ{λ<λ0;Eeσ((p2 + rn2)ll2-VλR)} = oo.

It is in this form that the analogous theorem for Dirac operators was stated in [4],
2. In order for the conclusion of Theorem 1 to hold, it is not really necessary

that all the internuclear distances shrink to zero, nor that the shrinking is an
orderly, simultaneous contraction. The argument of the proof also works in the
following situation. Let S be any subset of {1, ...9K} such that Σ μk> 1. Define

keS

d s = max{|l?k-jRI |;fc,/6S}.

Then, for any E < 0,

Φ{e<E;e eigenvalue of (p2+ m2)1/2-VR}

tends to oo as ds tends to zero.
3. If we put m = 0, we find that \p\ — VλR and λ~ί(\p\ — VR) are unitarily

equivalent. The number of negative eigenvalues of |p| — VλR is therefore
independent of λ, which implies that |ρ| — VR has infinitely many negative

K

eigenvalues if

3. A Lower Bound on Hκ

Following the same strategy as in [3], we shall first prove (7) in the case where all
the Zk are equal, and then use a concavity argument to extend this result to
arbitrary Zfc.

Proposition. Take 6 ̂  Z ̂  Z c r i t = (2/π)α " ι . Then

i | \Rk-RιΓ^m[l -Z2/Z2

crity
2. (16)
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Proof. The following inequality [stronger than (4)] was proved in [3]:

K K

Σ \χ-Rk\~ι-6 Σ \Rk-Ri\~1

k=l k,l=l

This implies

2L l-*Nfc — **Ί\

With the notation

K K

k=ί k,l=ί

we have therefore

For Z = Z c r i t , (16) was already proved in [3]. We shall therefore assume Z<Zcήv

We now borrow an argument from [1] to prove (16). Fix λ e [0, m), and define
H0 = (p2+m2)ί/2. Then

This implies that 1 — B is invertible for λ<m[\ —Z2/Z^rh']
ίl2, hence that

( # 0 _ „ _ AΓ * = (H o - A)-1/2(1 _ β Γ i ( # o _ A)-1/2

is a bounded operator. We have therefore proved that

Since Ho - v ̂  0 by (4), this proves (16). D

By means of a concavity argument we can extend this to obtain the following
result:

Proposition. Fix Z, with 6 <; Z ^ Z c r i t . C/zooŝ  Z x , . . . , Zκ such that 0 ̂  Zfc ̂  Z/or all
k. Then

fcl k < ί

(17)

Proof. We use the notation Z for the set {Z1 ?..., Zκ}. Define for all Z e [0, Z ] κ ,

G(Z) -infspec | ( p 2 + m 2) ]/ 2 - ^ Σ Zkφ - R f c Γ 1 - r n ( l - Z2/Z2

ctid
1/2\

G(Z) is a jointly concave function in the Zfc. According to (16) we have at every
cornerpoint P of the cube [0, Z ] κ ,
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By concavity it follows that (see Lemma 2.3 in [3])

ΣZkZMRk-RiΓ1 f o r a 1 1 Z e [ 0 , Z f . D

Theorem 2, as it was stated in the introduction, is essentially a reformulation of
this last proposition: for given Z 1 ? . . . , Z X , with Z m a x = maxZ k ^6, we choose

Z = ZmSiX; the theorem then follows immediately.
If Z m a x < 6 , one can always choose Z = 6, which gives for Z l 5 ...,ZK<6:

If all the Zk are chosen equal, Zk = Z, and the limit Z-»0 is taken, one expects that
the ground state EO(HK) approaches m: lim EO(HK) = m, physically. This is not

reflected by the lower bound (18). Actually, we can do slightly better than (18). If we
define G(Z) as above, we obviously have

G(O)^m(l-a), G ( Q ^ O , where a = (l -36/Z 2

r i t)
1 / 2

(we assume Zk ^ 6, for all fc), and where O, Q7 are K-tuples defined as O = (0,..., 0)
(all entries zero), Q7 = (0,..., 0,6,0,..., 0) (all entries zero except the jth which equals
6). By concavity this implies (Zk fg 6)

G(Z) ̂  m(l — ά)(l — Σ Zk/6\ if
\ k J

hence

) ^ - Σ ZkZxu\Rk-Rx\-γ+m(\-a)max(l - ΣZJ6,0).
k<ι V ^

For Z l 5 . . . ,Z^<6, this can be rewritten as:

fc=l k < /

U j (19)
1 V * y

This lower bound has the advantage of tending to m when all the Zk are equal and
tend to zero. However, we strongly suspect that (19) is not optimal; physically one
would believe that Theorem 2 holds without restriction on maxZfe.

Remark. Note that (17) implies the existence of a oindependent lower bound for
Hκ(c) — mc2. Re-introducing c, we see from (17) that

(p2c2 + m2c4)1/2-mc2- Σ Zke
2\x-Rk\~x

k=l

( l- f l 2 c~ 2 ) 1 / 2 - l ]> (20)
k<l

with α = cmax(6, {Zfc})/Zcrit = (e2π/2^)max(6, {Zfc}). Expression (20) implies

Hκ(c)-mc2^ - Σ ZkZxe
2\Rk-Rx\-ι-ma2= -fe(Z,R). (21)
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4. The Nonrelativistic Limit

The naive way of obtaining the nonrelativistic limit of Hκ{c) — me2 would be to
write

(p2c2 + m2cy/2-mc2 = p2/2m + 0(c-2), (22)

and to apply perturbation theory. This is actually what the Foldy-Wouthuysen
approach [5] does for the more complicated Dirac case. One readily sees however
that the next term in the development (22) is (p4/8m3)c~2, which is far too
singular to be considered as a "perturbation" of the zeroth order term p2βm. The
same problem occurs in the Foldy-Wouthuysen derivation of the nonrelativistic
limit of the Dirac Hamiltonian. Recently Gesztesy, Grosse, and Thaller showed
that the proper way of looking at the nonrelativistic limit of a Dirac Hamiltonian is
to study the resolvent. They showed that the Dirac resolvent is holomorphic in c ~x

around its nonrelativistic limit c~ί = 0 [7], and obtained powerful results
concerning the analyticity of the eigenvalues in c " 2, and an explicit formula, for the
first order relativistic correction term to the nonrelativistic eigenvalues [8]
(simpler than Foldy-Wouthuysen!). The same clue (i.e. studying the resolvent
instead of the Hamiltonian itself) works in our present case. We have

Proposition. Let Hκ(c), H°κ be defined as in (1), (8) respectively. Then for all Z,R,
one can find z e C , c0, and /c^O such that c^.c0 => z is in the resolvent sets of
Hκ(c) — mc2 and //£, and

. (23)

Proof. Define T° = p2/2m, T(c) = (p2cz + m 2 c 4 ) 1 / 2 -me 2 , Vz(x) =ΣZke
2\x-Rk\~1.

k

Obviously VλZ = λVz. Fix Z, R. Choose λ>l, and define c0 = (πe2/2ή)λ max Zk. We
have, using (21),

T(c)-λVz= T(c)-VλΊ^-b(λZ,R).

[The value of c 0 was chosen so as to ensure that VλZ is still T(c)-formbounded.] Put
b = λ~1b(λZ,R). Then0

λ~1b(λZ,R). Then

This implies that
12 is invertible (V=VZ),

with \\[i-(τ(c)+iίrίi2(v-b)(τ(c)+tyll2y1\\sλ/(λ~ί).
Choose β e 1R large enough so that

hence



534 I. Daubechies

Put now z = -φ+l+iβ). Then

= [T(c) -V+b+l+iβy

Hence

| | [Hz(c)-me 2

We have

p

pel3

• [p 2 /2m-(p 2 c 2 + m 2 c 4 ) 1 / 2 + me2] [1 + fβm\

= sup {{\+tyljl(t2/2mc2)(\+t + t2/2ίelϊU

^ sup
ίeIR +

This proves (23), with k = (8my1/2λ2/(λ- I ) 2 . D

As a consequence of (23), the eigenvalues of (Hκ(c) — me2 — zy1 tend to the
eigenvalues of {H% — z)'1 for c->oo, with a difference of order c " 1 (or less). Since
the eigenvalues of H correspond to the eigenvalues of the resolvent (H — z)~1, this
implies that the eigenvalues En(c) — me2 of Hκ(c) — me2 tend to the eigenvalues £°
of # £ , with again \En(c) — me2 —E®\^knc~ι. This proves Theorem 3, formulated in
the introduction.

Remark. It is clear that our estimate (21) is weak when compared with the results
for the Dirac operator in [7,8]. We have little doubt that stronger results also exist
for our present operator Hκ(c). It seems improbable that the resolvent of Hκ(c)
— me2 would still be holomorphic in c " 1 , because of the presence of the square
root, but it is possible that the eigenvalues still are holomorphic. We have
nothing to say about this.

Acknowledgement. I would like to thank Elliott Lieb for suggesting problems 1) and 2) to me, and
for several interesting discussions.
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