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Classical and Quantum Mechanical Systems
of Toda-Lattice Type
II. Solutions of the Classical Flows

Roe Goodman1 and Nolan R. Wallach2
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Abstract. Solutions to the classical periodic and non-periodic Toda lattice type
Hamiltonian systems are expressed in terms of an Iwasawa-type factorization
of a "large" Lie group. The scattering of these systems is determined in the non-
periodic case. For the generalized periodic Toda lattices a generalization of
Kostant's formula is obtained using standard representations of affine Lie
groups.
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0. Introduction

This paper is the second in a proposed series of three papers on classical and
quantum mechanical systems of Toda lattice type (cf. [G-W2]). The main purpose
of the present paper is to study the solutions of the classical periodic and non-
periodic Toda lattice type systems. The third paper (in preparation) studies the
solutions of the quantized systems. (The complete integrability of both classical
and quantized systems was proved in [G-W2], and the eigenfunctions for the
quantized non-periodic systems were constructed in [G-W1].)

The phase spaces for these Hamiltonian systems can all be realized as coadjoint
orbits for suitable finite-dimensional solvable Lie groups. The basic idea that we
exploit here is that the "Lax form" of the systems immediately points to the
solution in terms of an Iwasawa type factorization of a "large" Lie group. (This has
been also observed by various other investigators, e.g. [Syl, O-P, R-S1, G-S]; cf.
the review article [S-T-S].) For the non-periodic Toda systems this "large" Lie
group is a split finite-dimensional real semi-simple group G. Our main results in
this case can be phrased in the following form: The generic Hamiltonian systems of
non-periodic Toda type are linearly imbedded in the action of a vector group on
the real flag manifold for G. The scattering of these systems is then naturally
determined from the Bruhat decomposition of the flag manifold. We also obtain a
general method for constructing new completely integrable systems in terms of the
root system of G. (Special cases of this construction have been treated by Symes
[Syl, Sy2].)

In the case of the periodic Toda lattices, our results are more technical and less
explicit. This time for the "large" real Lie group we must take one of the infinite-
dimensional Banach Lie groups G constructed in [G-W3]. The Lie algebra of G is
the (completed) affine Lie algebra associated with a finite-dimensional real semi-
simple Lie algebra. The appropriate Iwasawa factorization of G was established in
[G-W3]. The preliminary form of the solution to the periodic Toda systems is then
given in terms of this factorization, as in the non-periodic case. We then express the
solution in terms of representative functions of the "standard" (infinite-
dimensional) modules for G. The formula we obtain is a generalization of
Kostant's formula [Ko] (which gives the solution of the non-periodic Toda lattices
in terms of matrix entries of finite-dimensional representations of G) to the
periodic case. To obtain explicit solutions, the next task is to calculate the
representative functions defined by highest weight vectors along certain one-
parameter subgroups of G. We derive a non-linear system of ordinary differential
equations satisfied by these functions. In the special case of SL(2,IR)/V, we can



Systems of Toda-Lattice Type. II 179

identify these functions with Jacobi theta functions. For general groups we find the
representative functions corresponding to the fixed points of the periodic Toda
lattices. We expect that for general initial values these functions are given in terms
of the restrictions of Riemann theta functions to an imbedding (corresponding to a
specific choice of a basis of holomorphic differentials) of a hyperelliptic curve into
its Jacobian variety. Evidence in this direction can be found in the papers [R-S2,
A-vM].

The detailed organization of the paper should be apparent from the table of
contents. The opening sections on Lax equations and Euler equations
(Sects. 1.1-2.1 and 3.1) apply to both the "periodic" and "non-periodic" systems.
(One of the main purposes of [G-W3] is to provide the necessary Banach-Lie
group results which permit such a unified treatment.)

The middle sections (Sects. 2.2-3.6) analyze the systems of "non-periodic Toda
lattice type" in terms of the Riemannian symmetric space G/K and the coadjoint
orbits 0 of S (G = S - K split semi-simple as above, with K maximal compact and S
solvable.) The Hamiltonians for these systems come from K-invariant functions on
G/K via the Killing form of g, and mutually Poisson-commute on 0 (this is the
basic "involution theorem" for Toda-type systems). One has a distinguished
Hamiltonian, namely the function corresponding to the Killing form on g, and one
looks for other functionally independent such Hamiltonians. This naturally
suggests that 0 be considered "generic" if it has the property that we call
"J-regularity": independent sets of K-invariant functions on G/K give rise to
independent Hamiltonians on 0. Under this condition (which we show is satisfied
by the orbits associated with the generalized non-periodic Toda lattices), the
scattering for the flow corresponding to the Killing form is given by a specific
element of the Weyl group. When 0 is J-regular and has minimal dimension
(= 2 rank (G/K)), this flow is then completely integrable. We call such orbits "Toda
orbits," and set up a general root-system technique for obtaining them. A related
notion of Toda orbit was introduced by Symes in [Syl]; our work corrects an
error in [Syl] concerning the appropriate form of the regularity condition. Our
scattering results also yield information on the "ζλR" algorithm for diagonalizing a
real symmetric matrix. The technical machinery used in this part of the paper
consists of standard facts about the Bruhat decomposition of G, as in [He2, Wai,
War], together with some root system calculations [Bo2].

The last part of the paper (Sects. 4 and 5) treats a class of systems which include
the generalized periodic Toda lattices. These systems can be viewed as the geodesic
flows on certain (finite-dimensional) solvable Lie groups. The "explicit"
integration of the geodesic flow is then obtained via an Iwasawa factorization in a
suitable infinite-dimensional group G and the representation theory of this group,
as explained above. The paper [G-W3] provides the technical tools for much of
this part. For this explicit solutions in terms of Jacobi elliptic functions, we use the
classical work of Jacobi and his successors in the theory of elliptic functions [Han,
W-W].

The principal results of this paper were the subject of lectures by the authors at
the University of California, San Diego in the Spring of 1981 and at the
Oberwolfach Conference on Harmonic Analysis and Representation Theory, July
1981.
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1. Lie Group Factorizations and Lax Equations

7.7. Factorizations and Flows

Let G be a Lie group, with Lie algebra g. (We allow dimg = oo, in which case we
assume that G is a Banach-Lie group as in [Bol].) Suppose that there are closed
Lie subgroups S and K of G, with corresponding Lie algebras s and ϊ, such that

g = ϊθ* (Banach-space direct sum) (1)

the map S x K^>G given by s, fc->sk is an analytic manifold isomorphism. (2)

Let TΓj : g->I and πs : g->s be the projections corresponding to decomposition (1),
and let k : G->K, s : G->S be the analytic maps defined implicitly by (2). Thus for
g G G we have the factorization

g = 8(g).k(g). (3)

Consider the homogeneous space S\G with its natural right G-action. By the
decomposition (3) we may identify 5\G with K, thus making K a right G-space.
Explicitly, the action of g e G on k e K is given by fc 0 = k(fc#). In particular, an
element X e g defines a vector field X on K via the action of the one-parameter
group exptX on K:Xf(k) = (d/dt)f(k(kexptX))\t=0, for feC*>(K), kεK.We
may calculate X as follows:

Lemma. For X e g, /c e K, one has

Xk = L(π^ά(k)X)\. (4)

//ere L(7), /or y e ϊ, is the right-invariant vector field on K defined by Y: L(Y)f(k)

Proof. We can write

- exp [ίπ§

Hence if /e C°°(K) and ί is near 0, then by the Campbell-Hausdorff formula,
/(k(/cexpiZ))-/(exp[i^(Ad(k)X)]k) + 0(i2). This implies (4). D

1.2. Solution of Lax Equations

Suppose now that in addition to the decomposition Sect. 1.1 (1), we also have a
decomposition

g = I0p (Banach space direct sum), (1)

where p is a closed subspace of g such that Ad(7Γ)pCp.

Proposition. Given X0 and Γ0ep, set fct = k(expίy0), X(f) = λd(kt) Jf0, and Y(t)
= Ad(kt) - Y0. Then the pair X(t\ Y(t) satisfy the "Lax equation"

(2)
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Proof. By Sect. 1.1, Lemma, we can write Ad(fcί+s) = Ad(exp(5Zί)/cf) + 0(5
where Zt = πl((Y(tJ). Hence

(3)

which yields (2). D

Corollary. Assume that there is a non-degenerate continuous K-invariant bilinear
form B on p. Suppose φ e C£(p)κ has a gradient Vφ relative to B. Then the Lax
equation

dX/dt = [_πl(Vφ(X)\ XI X(G) = X0 (4)

on p has as solution

X(i) = Ad(k(expί^(Jr0))) - X0 . (5)

Remark. Here C£(p)κ denotes the real-valued smooth Ad(K)-invariant functions
on p. The gradient hypothesis means that there is a smooth map Vφ : p->p such
that dφx(Ύ) = B(Vφ(X), 7), for X, Yep. This is automatic, of course, when
dimp < oo, since φ is assumed to be smooth. The existence of B is also automatic
when K is compact.

Proof of Corollary. By the K-invariance of B and φ we have F^(Ad(fc) X)
= M(k) Vφ(X}. Hence taking Y0=yφ(X0) in the Proposition gives Y(t)
= Ad(/c,) Vφ(XQ} = 7φ(λd(kt) *0) = 7φ(X(t)). Π

2. Solution of Lax Equations on p

2.1. Lax Equations on Riemannian Symmetric Spaces

Let G be a finite-dimensional linear, connected semi-simple Lie group. Fix an
Iwasawa decomposition G = NAK (g = n + α + ϊ) and a Cartan decomposition
G = exp(p)K (g = ϊ + p), where K is a maximal compact subgroup. Let Δ =Δ(§, α)
be the roots of α on cj, and Δ + the set of positive roots defining N. Set S = NA,
s = n + α, and let B be the Killing form on p. The assumptions of Sects. 1.1-1.2 are
satisfied here, so we can solve the Lax equation Sect. 1.2 (4) via the K-component of
the one-parameter group generated by Vφ(XQ). Let us consider this family of one-
parameter subgroups for varying φ and fixed X0 e p.

Let α+ be the open positive Weyl chamber associated with n. By the polar-
coordinate decomposition of p, there exists k0eK and H0 in the closure of α+ such
that X0 = Ad(/c0) H0. When X is regular, the element k0 is uniquely determined
modM, where as usual M is the centralizer of A in K. If p' denotes the set of regular
elements of p, then the map K/Mxα+->p', given by /cM, H-^Δd(k)Ή is an
analytic manifold isomorphism [He2, Chap. IX].

Suppose φeC£(p)κ. If #eα then P^(#)eα [G-W2, Lemma 8.1].
Furthermore, if H is regular, then α = { V φ ( H ) : φ e S(p)x}, where S(p) denotes the
real-valued polynomial functions on p. Indeed, the differentials of a set of / = dimα
basic polynomial invariants are linearly independent at H [Bo2, Chap. V, Sect. 5,
Proposition 5].
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Suppose X0 = Ad(ko)ΉQ as above, and φeC£(p)κ. The solution X(t) in
Sect. 1.2, Corollary, to the Lax equation Sect. 1.2 (4) is then given as

X(f) = Ad(k(/c0 expf F0(ff o))) - H0 . (1)

To interpret this formula geometrically, observe that the right action of A on K
(Sect. 1.1) gives rise to a right action, call it η, of A on K/M: (kM) η(a) = k(kά)M.
Hold ξ0 = k0M and HQ fixed, and define y(φ) = ξ0 η(Qxp7φ(HQ)). Then {y(φ):φ
εC£(p)κ}Cξ0'η(A), with equality when H0 is regular. Furthermore, X(t)
= Ad(y(tφJ) H0. Thus it is evident that the flows on p defined by the Lax equations
Sect. 1.2 (4) correspond to the right action of A on K/M. We shall make this
correspondence more precise at the end of Sect. 2.2.

2.2. Asymptotic Behavior of Solutions and the QR Algorithm

Continuing in the context of a Riemannian symmetric space G/K of non-compact
type, we recall the Bruhat decomposition of G, in the following form [He2,
Chap. IX]: Let M' = Noτmκ(A), and set W = M'/M, the Weyl group of G/K. For
each w e W , denote by Mw the coset w viewed as a subset of M'. Let Δ*
= {aeΔ+ : — w αezl + }, and set

αe Jvv

Then the Bruhat decomposition may be written as

G- U SN~MW (disjoint union) (1)
weW

[He2, Chap. IX, Sect. 1]. Since G = SK, we obtain from (1) a corresponding
decomposition of X, in the following form:

Lemma. For w e W, define a map βw: N~ x MW->K by n, wh-»k(π)m. Then βw is a
regular analytic imbedding, and

K= U k(AΓ~)Mw (disjoint union). (2)
weW

Here the analytic manifold structure on Mw is obtained from that of M by
translation.

Proof. Obviously (2) is just a restatement of (1). The map βw is an immersion
because this is true for the map S x N~ x MW-»G given by multiplication [Wai,
Corollary 7.5.20]. Under the identification of K with S\G, the set k(N~)Mw

corresponds to the orbit SwNM of JVM. Since there are only \W\ such orbits, each
orbit is open in its closure, hence regularly imbedded [War, Lemma 5.2.4.1]. D

Now we combine the Bruhat decomposition (2) of K and the polar-coordinate
decomposition of p. Letting Cl(£) denote the closure of a set E, we have

l(α+)= U Ad(k(ΛQ).Cl(w α+). (3)
weW

Thus X e p can be written as

X = Ad(fc) H = Ad(k(w))w H, (4)
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where HeCl(α+) is unique, ήeN~, and w i s unique modP^ = {re W:r H = H}.
(Here w H denotes the action of W on α.) In any event, the elements H and w H
are uniquely determined by X.

Theorem. // X e p is given by (4), then

lim k(expίJSQ = Jkc ok(n)-1, (5)
f-> + oo

where k^ e K and AdfTc^) w - H = w - H. In particular,

lim Ad(k(expίX)) X = w #. (6)
f-> + 00

Proof. By (4) we have exp tX = i(n) exp(ίw H) k(n) ~ l . But k(s#fc) = k(0) k for 5 e S
and fceK. Since k(ή) = s(ή)~1ή, it follows that

k(exp tX) = k(n exp ίw H) k(n) ~ *

= k(exp( — ίw H)ή exp(ίw H)) k(n)~ x .

The eigenvalues of ad(w H) on ήw are non-negative (and strictly positive if Jί is
regular), so that

lim
ί-> + oo

where G! = {̂  e G : Ad(0) w H = w H}. Note that if Jf is regular, then ήao = l.
From the root-space structure of the Lie algebra of G1 one sees easily that

/CQO = kζήoo) e G! also, which gives (5). Since Ad(k(n) ~ *) X = w H9 we obtain (6)
from (5). D

Remarks. 1. If X is regular, then k^^l and limί_> + 00k(expί-X') = k(ή)~1. In this
case the theorem has the following geometric interpretation: If H e α+ and ξ is in
the set k(ΛΓ-)MwC&/M, then

lim
t-> + oo

(where A acts on the right on K/M as in Sect. 2. 1, and we view w as a point in K/M).
2. The relation (6) is a continuous time version of the "QR algorithm" for

diagonalizing a symmetric matrix [Ru, Satz 12.6]. To verify this, define βn, Rn, Tn

by the recursive algorithm

Tn + 1 = Qn + ι&n + 1 (note reversal of order) .

It then follows inductively that

Hence Qn...Q1=k(expnX).> and so by (5),
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exists. Furthermore, by (6),

lim Tn = exp Ad(k)X = exp w - H . D
«-» oo

Now we introduce the following decomposition of the set of regular elements in
p : For w e W7, define

pXw)+=Ad(k(JV;))w α + . (7)

By the theorem we have p'(w) + = Ad(k(ΛΓ~))w α+. From the lemma above and
the polar coordinate decomposition of p', we see that p'(w) + is an imbedded
analytic submanifold of p' of dimension equal dim(nw) + dim(α). Furthermore,

p' = U p'(w) + (disjoint union). (8)
weW

In particular, if vv0 denotes the unique element of W which sends Δ + to — Δ +, then
dimp/ = dimp/(w0)+ >dimp/(w)+, if wφw 0 . Thus when we solve the Lax equation
dX/dt = [πl(X),X'] with "generic" initial data Z(0)ep'(w0) + , then the solution
tends to the negative Weyl chamber w0 α+ as ί-> + oo. Thus the same behavior
occurs in the discrete time QR algorithm in Remark 2 (cf. remarks after Satz 12.6 in
[Ru]).

Under suitable regularity assumptions on the initial data, we can obtain the
asymptotic behavior of the solutions to the general Lax equations Sect. 1.2 (4) from
the theorem above, as follows:

Corollary. Let Xep',ψε C£(p)x, and assume that Vφ(X) e p'. Write X = Ad(fc) H,
withkeKandH G Q + . Choose\vi e Wsothatw1 Vφ(H)ea+ , and choose w 2 e W so
that fewΓ1 eSN~2MW2. Then

lim Ad(k(expίF^CT))) - X = \v2\v1 Ή. (9)
ί-> + 00

Proof. There exist representatives w feMW ι, for z=l ,2 , and n2<=N~2 such that

1. Hence

- Ad(fc) - Vφ(H} = Ad(k(ή2)) w2 H! ,

where H j = v^ Vφ(H). Since 7ί1 e α+, we obtain from (5) that

lim
f-> + oo

Thus the limit in (9) is Ad(k(ή2)"*) X = w2w1 H. D

Remarks on "Linearization." With the Bruhat decomposition oϊK/M at hand, we
can be more precise about the nature of the simultaneous isospectral flows on p
associated with all the K-invariant polynomials on p. Suppose X0ep'. Write
X0 = Ad(k(w0)) H0, where n0 e N ~, H0 e w - α+, and w e W. As noted at the end of
Sect. 2.1, the flows passing through X0 are parametrized by the subgroup A via the
formula

l)) #0. (10)
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We may view (10) as the composite of two maps: the linear action of A on nw:

α-»Ad(α) Z0, Z0 = logή0? (11)

followed by the non-linear map

Z-+Ad(k(expZ)) H0, Z e nw . (12)

By the Bruhat decomposition the map (12) is injective and regular. Thus the
dimension of the "isospectral leaf through XG is dirndl — dim Cent^(Z0), and the
maximal leaves occur when Cent^(Z0) = {!}. We shall study this case in detail in
Sect. 3.2.

2.3. Scattering

We continue in the context of Sect. 2.2. If X e p, set

φ+(X)= lim Ad(k(expίX)) X. (1)
t-» + 00

We note that replacing X by — X in (1) gives

-φ+(-X)= lim Ad(k(expuQ)-X. (2)
ί-> - 00

Calling the limit on the right side of (2) φ-(X), we thus have

-φ+(-X) = φ-(X). (3)

The "scattering transformation" associated with the Lax equation
d X/dt = [πt(X)9 X] is then the map φ_(X)-^φ + (X) from α to α. We shall calculate it
for the regular trajectories of the system, i.e. when X e p'.

There are elements k+εK such that φ±(X) = λd(k±) X. Thus φ+(X)
= Ad(fe + fcl *) φ-(X). But if two elements of α are conjugate under K, then they
are conjugate under W [He2, Chap. VII, Proposition 2.2]. Hence we obtain
the following:

Lemma. There exists w = w(X) e W such that φ+(X) = w φ-(X).

Remark. lϊX e p', then φ±(X) e αnpx. In this case fc+fel x e M' so that the element w
in the lemma is /c+fcl^M.

To calculate the element w(X), let px(w)+ be defined by Sect. 2.2 (7), and set
+}. (4)

Taking into account the relations (3) and ww0 α+ = — w α+, we have

p'(w)_ = -p'(w)+. (5)

Thus from Sect. 2.2 we know that p/(w)± are imbedded submanifolds of p' of
dimension equal dim (11̂ ) + dim (α). Also from Sect. 2.2 (8) and relation (5) we have

. (6)


