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Abstract. For the case of exact, area preserving, monotone twist
diffeomorphisms, we give formulas relating the amount of rotation about an
orbit and certain Morse indices.

1. Introduction

This paper continues the study of exact, area preserving, monotone twist
diffefomorphisms of the annulus which I have pursued in [14-19]. I should point
out that Aubry earlier found ideas similar to many of those in [ 14-197] (see [1]). See
[3] and the references therein for later developments in Aubry’s theory. See also
Katok [11, 12] for other recent developments.

Precise definitions of the terminology used in this introduction will be given in
Sects. 2—4.

An exact, area preserving, monotone twist diffeomorphism f (Sect. 2) admits a
definition in terms of a global generating function. It is then possible to give a
variational formulation (Sect. 3) of periodic orbits: periodic orbits of type (p, g) are
in one-one correspondence with critical points of an “energy” functional W4
defined on the space %, of “states” of type (p, g). Our first result relates the amount
of rotation g about a periodic orbit of type (p, g) and the Morse index I of W?at the
corresponding critical point x in %,

In order to state this result, we now give the definition of ¢ for the case of a C*
diffeomorphism f of T x R=(R/Z) xR, which is isotopic to the identity and a
fixed point P of f.

Definition of the Amount of Rotation of f About a Fixed Point P. Let 7, denote the
tangent space to T'x R at P. Each ray emanating from the origin in 7, intersects
the unit circle in 7, in exactly one point. Hence, we may identify the set Rp of such
rays with the unit circle, and provide R, with the topology which makes this
identification a homeomorphism. The derivative dfy:tp—1p, induces a
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homeomorphism of R, onto itself which we continue to denote by the same
symbol, i.e.

Since f is assumed to be isotopic to the identity, it is orientation preserving, and
consequently, so is dfp. It follows that the Poincaré rotation number of
dfp: Rp—Rp is defined as an element of T=IR/Z.

The amount of rotation g of f about P will be defined to be a real number which
is congruent (mod 1) to the Poincaré rotation number of df,. We further require
that ¢ depends continuously on f, with respect to the C!' topology, for
diffeomorphisms which leave P fixed, and that ¢=0 when f is the identity.

Itis an easy consequence of known results concerning the topology of the space
of diffecomorphisms of a surface that these conditions are consistent and uniquely
define o, as we will explain in Sect. 4.

Returning to the case of an exact, area-preserving, monotone twist
diffeomorphism f and a periodic point P of period g, we have the following
relation between the amount of rotation g of f? about a given orbit and the Morse
index I of W1 at the critical point x which corresponds to the orbit:

Theorem 1. If I is even, then ¢=1/2. If I is odd, then [I/2] << [I/2]+1, with
equality if and only if x is a degenerate critical point.

Here, we use the standard notation: [a] denotes the greatest integer <a. The
definition of W1 is given in Sect. 3.

The proof of Theorem 1 is based on a formula of MacKay and Meiss which
generalizes a formula of Bountis and Hellemann (see [9, 11, formulas (15) and (16)).
A similar formula is contained in [2, Appendix H]. Indeed, the formula of MacKay
and Meiss implies immediately that ¢ is an integer if and only if I is even or x is
a degenerate critical point of W4, so that all that is left for us to do is determine
which integer it is when I is even or x is a degenerate critical point of W4,
and which integers it lies between otherwise.

Our second result concerns any orbit, not necessarily periodic. Using a framing
of the tangent bundle of T x R, homotopic to the standard framing, we may still
define the amount of rotation g,(P) of f¥ about a point P in the annulus T x R.
While this has an invariant meaning when P is a periodic point of period g, it has
no invariant meaning in general, since it depends on the framing of the tangent
bundle of T x IR. Nonetheless, it will still be interesting to consider this quantity,
because ,111,12 g '9,(P) has an invariant meaning, when it exists and the orbit

through P is relatively compact (see Sect. 4).

Definition of ¢,(P). We consider a fixed framing of the tangent bundle of T x IR,
homotopic to the standard framing. [By the standard framing, we mean the one
which corresponds to the product decomposition (T xIR)=1(T)x T(IR) of
the tangent bundle.] Given such a framing, we may think of df¢ as a linear
mapping of R? onto itself. Hence, we have an induced mapping

dff:R—-R

on the space of rays emanating from the origin, just as before. We require that ¢ (P)
be congruent (mod 1) to the Poincaré rotation number of df¢ : R—R. We further
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require that g,(P) depends continuously on f, and that ¢, (P)=0, when f is the
identity.
In Sect. 4, we will show that these conditions are consistent and uniquely define
0P). We will also show that limsupq 'g(P) and liminfq™ 'g (P) are
q—> 00 g

independent of the framing of the tangent bundle, as long as the orbit through P
lies in a compact set.

Definition of I,(P). Orbits of f are in one-one correspondence with equilibrium
states (see Sect. 3). Let x=(..., X;, ... ) denote the equilibrium state corresponding
to the orbit through P. By definition of equilibrium state, (x,, ..., x,) is a critical
point of an “energy” functional W, defined on the space %} ,(x,, x,] of truncated
states (xg, ...,x,) satisfying the boundary condition x,=x,, x;=x, (see the
end of Sect. 3). Let I,(P) denote the Morse index of W, on 7, 4(xo,X,) at

(X055 Xg)-
Our second result is the following:

Theorem 2. For an exact, area-preserving, monotone twist diffeomorphism, there is a
framing of the tangent bundle, which is homotopic to the standard framing, such that

[1,(P)/2]1= o (P)=[1,(P)/2]+1
holds for all P in the domain of f and all g2 1.

The precise framing for which these inequalities are valid is defined at the end of
Sect. 4.

Theorems 1 and 2 are easy consequences of appropriate results in linear
algebra, stated in Sect. 5 as Theorems 3 and 4, respectively. Theorem 3 is proved in
Sect. 6. Theorem 4 follows easily from Theorem 3 (see Sect. 5). We prove that
Theorem 3 implies Theorem 1 in Sect. 7 and that Theorem 4 implies Theorem 2 in
Sect. 8.

We have written this paper so that the results about linear algebra (Sects. 5 and
6) can be read independently of the rest of this paper.

We conclude this introduction by discussing some examples.

Example 1. Suppose P is a periodic point of period g. Clearly, ¢ ,(P) = lg,(P), so we
obtain from either Theorem 1 or Theorem 2 that

0,(P)=(g/2) lim N™*Ix(¢).

Note that df(P) has a positive eigenvalue if and only if ¢ (P)eZ; it has a
negative eigenvalue if and only if ¢ ,(P)=3(mod 1); and df%(P) has an imaginary
eigenvalue if and only if ¢ (P)¢2~'Z. In the last case i=exp(27ig,(P)) is an
eigenvalue of df(P).

Thus, the asymptotic Morse index I&l_r)n N ~!I(P) determines whether df %(P)

has a positive eigenvalue, a negative eigenvalue, or an imaginary eigenvalue, and in
the last case determines what the eigenvalues are.

Example 2. Consider an invariant circle I" in the annulus and let P € I". Suppose
that I' is not null-homotopic, so it goes once around the annulus.
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A theorem of G. D. Birkhoff asserts that I' is the graph of a Lipschitz function
T—RR (where the annulus =T x R). (See [4, Sect. 44], [5, Sect. 3], [6, VIII, Sect. 5],
[10, Chap. 1], [8], and [ 18, Sect. 7] for various discussions of this result.) It follows
that g, (P)<1/2, for all g = 1. From Theorem 2, it then follows that I ,(P) <1, for all
qz=1.

Aubry and Le Daeron have proved a stronger result [3]. Under the hypothesis
that I is not null-homotopic and P €T, they show that if x=(...,X;,...) is the
equilibrium state corresponding to the orbit through P, then (x,, ..., x,) is a strict
local minimum of W, on % ,(xo, X,). This beautiful theorem obviously implies
that 1,(P)=0.

Example 3. Again, consider an invariant circle I in the annulus and let P € I'. This
time suppose that I' is homotopically trivial, i.e. it bounds a disk. Under suitable
regularity hypothesis on I, it follows from Theorem 2 that the Poincaré rotation
number o of f|I" equals (1/2) hm N~I\(P). For instance, this holds when I is
C!. For, it is easy to see that

or= lim N™"on(P),

so the equation
or=3 lim N I(P)

then follows immediately from Theorem 2.

More generally, these assertions hold when I is locally Lipschitz, i.e., it may be
made linear in a neighborhood of a given point by a coordinate change which is
Lipschitz and whose inverse is Lipschitz.

2. Monotone Twist Diffeomorphisms (Definition)

Throughout this paper, 4 will denote the cylinder, or annulus, T xR, and f a C*
diffeomorphism of 4 onto itself, which will be fixed throughout. We will assume
that f is orientation preserving and fixes each topological end of A. In addition, we
assume that f satisfies the following monotone twist condition:

0 SO )
oy 0.
everywhere, where 7, is the projection of T xR on its first factor.

We will assume that f is area preserving, in the sense that it preserves an area
form u=u(x, y)dxdy, where uis a positive C* function on 4, and x(mod 1) and y are
the standard coordinates on T and R. In addition, we will suppose that f is exact,
i.e. the flux of f (defined below) vanishes.

It is easy to see that there is a C* embedding e : A— 4 which commutes with the
projection of A=T xR on its first factor, which is orientation preserving, and
which satisfies e, u=dxdy. In fact, if we further require that e is the identity on the
circle y=0, then e is uniquely defined by the formulas

y
nle(x, y)=x > ”2e(x> y): £ U(X, y)dy >

where 7; denotes the projection of 4A=T xR on its i'" factor.
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Let F=efe™!:e(A)—e(A). Obviously, F satisfies the monotone twist condition

oy (F(x, ) -0
Oy '

Moreover, F preserves the area form dxdy. Consequently, d(F*(ydx)—ydx)=0
and the flux [ (F*(ydx)— ydx) is independent of y, as long as y is a closed curve

b
which winds once around T x IR.

Definition of the Domain B of the Generating Function h. Let A=R? denote the
universal covering space of 4. Let é: A—A4 and F:é&(A)—é(A) be liftings of
e and F. We set
B={(x,x’)eR?*: there exists ye R
satisfying (x, y) € é(4) and =, F(x, y)=x"},

where 7; denotes the projection of R? on its first factor.

The Generating Function h. We have assumed that f is exact, i.e. the flux of f
vanishes. Consequently, there exists a C* function H on e(A) such that f*(ydx)
—ydx=dH. Let ¢:éA)— B be defined by ¢(x, y)=(x, 7, F(x, y)). The monotone
twist condition on F implies that ¢ is a diffeomorphism. Let pr: é(A) —e(A) denote
the projection. We set
h=Hoprog¢~1,

The function h: B—R is what is called in classical mechanics a generating

function for f (or F). It satisfies

L y=—0h(x, x")/0x,
F(x’y)_(x’y,) <~ {y/:ah(x’x/)/ax/. (1)

Moreover, k is uniquely defined up to an additive constant by this condition. [

3. Variational Formulation

An area preserving mapping is an example of a “Hamiltonian system”. At least for
cxact, area preserving, monotone twist mappings, there is a corresponding
“Lagrangian formulation”. For the Lagrangian formulation, we need the notion of
“state”. A state will be a bi-infinite sequence of real numbers (..., X;, ...) such that
(x;, X; 1+ 1) € B. Let hy(x, x") = 0h(x, x")/0x and h,(x, x")=0h(x, x")/0x’, where h is the
generating function for f, defined in the previous section. A state x=(...,x;,...)
will be said to be an equilibrium state if

for all ic Z. ho(x; - 1, X))+ hy (X3 Xi4.4) =0,

In the Lagrangian formulation, one studies states; in the Hamiltonian
formulation, one studies orbits of F. This amounts to the same thing: there is a one-
one correspondence between equilibrium states and orbits of F, defined as follows:
Let x=(...,X;,...) be an equilibrium state. Let y,= —h (x;, x;1 1) =h,(x;_ 1, X;).
Since h is a generating function for f, ie. it satisfies (1), we see that F(x,,y;)
=(X;41> Vi1 1) In other words, O, =(...,(x;, y,),...) is an orbit. It follows easily
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from (1) that the correspondence x> 0, is a bijection of the set of equilibrium
states onto the set of orbits of F.

Orbits of Type (p, q). Periodic orbits of F do not lift in general to periodic orbits of
F. Instead, the lifting (...,(x;, ), ...) to &(4) of an orbit of F period g satisfies
Xi+q=X;+D, Yi+q,=1V: for some integer p. Such an orbit of F will be said to be of

type (p, q).
The corresponding equilibrium state obviously satisfies x;,,=x;+p.

States of Type (p,q). We let Z,, denote the set of all states which satisfy
X;+4=X;+p; such states will be said to be of type (p, q). Clearly, Z,, is an open
subset of R%

The “Energy” Functional. We let W be the real valued function on %,,, defined by
qg—1
Wi(x) = .=Zo h(x;, X 41)-

Obviously, a state of type (p, q) is an equilibrium state if and only if it is a critical
point of W4 Hence, there is a one-one correspondence between critical points of
W4 and orbits of F of type (p, q).

Let x be a critical point of W4 By the Morse index of W at x (or the Morse
index of x), one means the number of negative eigenvalues of the Hessian matrix
(of second partial derivatives) of W?at x. By the nullity of W4 at x (or the nullity of
x), one means the number of zero eigenvalues of the Hessian matrix of W17 at x.

The “Energy” Functional on Truncated States. For m<n, and a,beR, we let
% im,m(a, b) denote the set of sequences (x,,, ..., x,) such that (x;, x;, ;) € B [so that
(Xp» --»X,) 18 @ “truncated state”] and x,=a, x,=b. We let
W= W, Zim,m(a, b)—IR be defined by

W)= % hxi %o ).

If Pee(4) and x=(..., x;, ...) is the equilibrium state associated to P, we let I,(P)
be the Morse index at (X, ..., X,) of Wo,: Zjo, 41(X0, X))~ R.

Amount of Rotation

Let g be a C* diffeomorphism of 4, isotopic to the identity, and let P be a fixed
point of g. In the introduction, we defined the amount g of rotation of g about P.
To show that this is a correct definition, we must show that there is an isotopy
connecting g to the identity and leaving P fixed, and that g is independent of the
isotopy chosen.

Let 2 denote the space of C* diffeomorphisms of 4 with the C* topology. Let
P e A. We see easily that the evaluation mapping ev, : 2 — A4, defined ev,(g) = g(P),
is alocally trivial fibration. Let 2, denote the connected component of the identity
in 9. It is easy to see that 9, is locally arcwise connected. Consequently, 9, is the
set of diffeomorphisms of A which are isotopic to the identity. It is also well known
to differential topologists that ev,: 9,— A4 is a homotopy equivalence. This fact is
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an easy consequence of the theorem proved by Smale in [20]. (For another proof of
Smale’s theorem, see [7].) Let Zop=ev, '(P)nZ,. From the above comments, it
follows that 9, is a contractible space.

It follows that for any g € 9 p, there is an isotopy to the identity which leaves P
fixed. Moreover, two such isotopies are homotopic (rel. endpoints) as curves in
PDop- The fact that ¢ is well defined follows immediately.

The proof that the definition of g (P) is consistent is similar. Again two
isotopies of g with the identity give the same value of g,(P), provided that they are
homotopic (rel. endpoints) as curves in &,. However, since &, is homotopy
equivalent to 4 and therefore to T, it is not true that two such isotopies are
homotopic (rel. endpoints). But it is true that for any two isotopies I,,I, of A
connecting g to the identity, there is a 1-parameter family R of rotations of A4,
beginning and ending at the identity, such that I, is homotopic (rel. endpoints) to
the juxtaposition R * I, in &,. Juxtaposing with R does not change ¢ (P), since the
given framing of the tangent bundle is homotopic to the standard one, so we obtain
that the definition of ¢ ,(P) is consistent.

Independence from the Framing. Let t and ¢ be two framings of the tangent
bundle of T x R, both homotopic to the identity. Let K be a compact setin T' x R.
It is easy to see that there is a constant C >0 such that if P and f9P are in K, then

lozP — e, PI=C,

where g P and ¢;P are the rotation numbers associated to the framings ¢ and ¢/,
respectively.
It follows immediately that

1qlgn info,(P)/q, 1{;}} supe,(P)/q,

are independent of the framing chosen, as long as the orbit of f through P lies in a
compact subset of A.

Linear Algebra. There is an alternative, but more specialized, definition of the
amount g of rotation about a periodic point P and of the number g,(P), which will
play an important role in the proofs.

Before stating the definition, we need some elementary remarks about linear
algebra.

Let GL(2,R)° denote the identity component of GL(2, R), i.e. the set of 2 x 2
matrices with real entries and positive determinant. Let R denote the set of rays
emanating from the origin in R? with its usual topology, so that R is
homeomorphic to the circle. An element L of GL(2,R)° induces an orientation
preserving homeomorphism of R. By the rotation number 9(L), we will mean the
Poincaré rotation number of the induced homeomorphism of R. Then g(L) is
defined (mod 1).

If L has a positive eigenvalue, then g(L)=0(mod 1); if it has a negative
eigenvalue, then @(L)=3(mod1); if its eigenvalues are imaginary, then
A=(detL)'? exp(2mig(L)) is one of them.

Set G=GL(2,R)° and let G be its universal covering group. Let ¢ be the unique
continuous, real valued function on G such that o(1)=0and g > 7= ¢ (mod 1), where
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7 denotes the projection G—G. If Le G, the number o(L) will be called the rotation
number of L.

Alternative Definition of the Amount of Rotation. Now we give an alternative
definition for the amount of rotation about a point for f. This is more specialized
than our previous definition, since it applies only to monotone twist
diffeomorphisms and only for framings of the tangent bundle for which one of the
basis vectors points in the vertical, upward direction. We will call such a framing
special. This alternative definition is the definition which we will use in the proof of
Theorems 1 and 2. When it applies, it is equivalent to our previous definition.

We suppose given a special framing of the tangent bundle of T x R. For
P € e(A), the derivative dFp : 1p—Tpp) may be thought of as an element of G, since
p and 7y, are identified with R?. Since F satisfies the monotone twist condition
and an upper vertical vector is one of the basis vectors at any point, it follows that
0(dFp) € [0,3)(mod 1).

We let df,, be the unique lift of df, to G which satisfies 0 < o(dfp) < 1/2.

If g> 1, we let dFg=dpe-1pF ... dFp. Then dF§ is a lift to G of dFE, for all g>1.

Itis easy to see that g (e~ 1~ P) = o(df#), where the left side is the quantity defined
in the introduction, and ¢ : G—R is the rotation number defined earlier in this
section. Indeed, we could have defined dFg by requiring it to be a lift of dFg,
continuous in F, and equal to 1 when F=id. Of course, to have the formula
Qq(e_lP)zg(cTFg), we must use the same framing for both sides, and it must be
special in order for the right side to be defined.

The Framing. The inequalities which appear in Theorem 2 depend on a particular
framing of the tangent bundle of A. This framing may be defined as follows: We
may pull back the standard framing of IR? to a framing of A via ¢-é, since
¢-&: A—IR?is a diffeomorphism of 4 onto the open subset B of R2. Let (x, y) € 4.
We have ¢é(x,y)=(x,x"), for a suitable x'eIR. Moreover, ¢é(x+1,y)
=(x+1,x"+1). Consequently, the framing of the tangent bundle of A4 is invariant
under the Deck transformations of 4 over 4, and so it can be pushed down to a
framing ¢ of the tangent bundle of A. It is easily seen that ¢ is homotopic to the
standard framing of A.

We will show in Sect. 8 that the inequalities of Theorem 2 are valid for the
framing ¢ of the tangent bundle of A.

5. The Mappings @ and ¥

Welet 2, denote the set of sequences «=(ay, ..., a,, by, ..., b,) of real numbers such
that b; <0, for all i. To any such sequence, we associate certain matrices, ¥(«),
(), ..., Dy(x), D(a), as follows.

We let ¥(«) be the g x g symmetric matrix [c;;] with real entries, defined as
follows. If g=1, we let ¢;; =a, +2b,. If g=2, we let

(‘311 C12>=< a; b1+b2>
Ca1 Ca2 b, +b, a,

If =3, we let ¢;=a;, ¢; ;1 =¢;41,;=b;, ¢y =¢1,=b,, and ¢;;=0, otherwise.
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For 1<i<q, we set

0 1
€§i(°‘)= __bi—l G
b b

where we set by=b,. We set &(o)=P,(0) ... $,(«). It is clear that &(x) e G and

o(P(0)€[0,5)(mod 1), i=1,....q.
We let () be the unique lift of &,() to G such that
0Z0(P(x) <, i=1,...,q.
We let
D) =Py(®) ... Dy(er).

It is clear that &(«) is a lift of &(a) to G.
Here is the result in linear algebra which leads to the other results in this paper:

Theorem 3. Let o€ X,. Let I=1(x) be the number of negative eigenvalues of ¥()
(with multiplicities counted), and let Z=Z(o) be the multiplicity of zero as an
eigenvalue of V(). If I is even, then Z<1 and o®(0)=1/2. If I is odd, then Z <2,
and [1/2] <o®(a) <[1/2]+ 1, with equality if and only if Z=1.

By the definition of @(a), det #(a) = 1. Consequently, o@(x) is an integer if and
only if trace #(x)=2. We have the following formula for trace ®(x), due to
R. MacKay and J. Meiss, which generalizes a formula due to J. Greene. D. Goroff
has pointed out to me that similar formulas have been obtained by Aubry et al. [2,
Appendix HJ:

Lemma 1. trace &(x) — 2 =det V() / ]1[ (=b)).
i=1

Note that Lemma 1 immediately implies this much of Theorem 3: o®(x) is an
integer ifand only if I iseven or Z = 1. All that is left to do to prove Theorem 3is to
determine which integer it is if I is even or Z = 1, and which integers it lies between
otherwise. This will be done in Sect. 6.

Let ¥/(o) be the (g — 1) x (¢ — 1) symmetric matrix obtained by omitting the last
row and last column in ¥(«). The following is an easy consequence of Theorem 3.

Theorem 4. Let w€ 2. Let I'=1'() be the number of negative eigenvalues of ¥'(«)
(with multiplicities counted). Then

2] seP(w) =[17/2]+1.

Proof. In view of the definitions of ¥(x) and ¥(«), we haveeither [=I"or I=1"+1.
There are four cases, according to whether I”is odd or even and whether I =1" or
I=TI"+1. The proof of the theorem then reduces to checking these four cases, and
each of them follows trivially from Theorem 3. [
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6. Proof of Theorem 3

Let 20 denote the set of o€ X, for which detP(a)+0. We provide Z7 with the
topology induced from the standard topology on R4

It is obvious that there exists C,>0 (depending only on g) such that if
a=(ay,...,dp —1,..., —1) and |a;| = C,, for each i, then a e Z7.

Lemma 2. Let C=C,. Each connected component of XY contains an element
o=(ay,...,a, —1,..., — 1) such that |la|=C fori=1,...,q

Proof. Consider o=(dy,...,d,by,...,b,)€Zy. First, consider the case when
C=la), for all i. Choose one i satisfying 1=<i<q and Ilet
o=y, ..., @1, @+ 1a¥, a; s q, ..., a4 by, ..., by), for some real number a. Then

q’

detW(o,)=A+tA'a¥,

where 4 is the determinant of ¥(«) and 4”is the (— 1) x (¢ — 1) minor determinant
of A obtained by deleting the i'" row and i'® column. If we choose a} so that 4’a}¥
vanishes or has the same sign as 4, then «, € X7 for all > 0. Consequently, we may
deform o in 29 to make |a;| = C, without changing the b;’s or a;’s for j#i. Since we
may do this for each i, there is o’=(aj, ..., a;, by, ..., b,) in the same connected
component of 22 as o, for which |aj]=C for 1<i<gq.

If C is large enough (in relation to a), the above argument applies. Moreover,
we may deform o to o” =(a, ..., aj, —1, ..., — 1) in X9. This shows that for C large
enough, we have the conclusion of Lemma 2. By the definition of C,, this
conclusion then follows for all C=C,,.

Proof of Theorem 3. By Lemma 1, it is enough to prove Theorem 3 for a single
element of a given component of XJ in order to prove it for all elements in that
component. By Lemma 2, if C=C,, each component of X contains an element
oa=(ay,...,a, —1,..., —1) for which |a;| = C. For such «, we have

)= (—(1) +é>

It follows easily that for C large enough o®() is very near to 4 x (the number of
negative diagonal entries of ¥()). Clearly, if C is large enough, then the number of
negative diagonal entries of ¥(«) equals I(x). Therefore, o®(x) is very near to I(e)/2.
We then obtain Theorem 3 when I is odd. By Lemma 1, o®(«) is an integer if I is
even, so we obtain Theorem 3 for such «, too.

It remains to consider the case a=(ay, ..., a, by, ...,b) € Z\X7, ie. the case
Z>1. We will say that a minor of V() is symmetric if the set of rows which occurs
in that minor is the same as the set of columns which occurs. We let r be the size of a
largest symmetric minor of ¥(«) with non-vanishing determinant and let 4’ be the
corresponding determinant. We let i; < ... <i,_, be the indices of the rows (or
columns) which are deleted in order to obtain this minor. For t=(t,,...,1,_,), we
let o, =(ay;, ..., Gy by, ..., by), Where ay=a;ifj¢ {ij, ..., i,—,} and a,=a; + 1, if j=1ij.
For 0§k§q—r let ¥(,), denote the (r+k) x (r + k) minor of ¥(«,) obtained by
deleting rows and columns [ PREIRY P We let 4, denote the determinant of
¥(o,),- From the fact that ¥(a), is a largest symmetric minor of ¥(x) with non-

q>
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vanishing determinant, it follows easily that
Atk=tl tkA/.
For t; +0, ...,t,_, %0, we have that ¥(«,), is non-singular for k=0, ...,g—r, and
index ¥(o,),—index P(o,), -, =1, if t,<0,
= 0 N lf tk > O .
For, the parity of the index of ¥(«,), is determined by the sign of 4, and the
difference of the above two indices is clearly either O or 1.

These observations and the fact that I=index ¥(x)=index ¥(«), have the
following consequence: Let I SI*<I+q—r. If we choose I* —1I of the t;’s to be
negative and the remaining ones to be positive, then the index of ¥(«,) =I*. On the
other hand, lim 00(0,) = 00(0). ©
In particular, if I* is an even integer in [I, I + g —r], then we may choose I* —I of

the ¢;’s to be negative. For all 1>0, we have «;, € 27 and the index of ¥(a,,) is I*.

Since o, € 2, Theorem 3 applies to it, and we have o®(x;,)=1*/2. Then,
0P(ar) = }iff(l) 0P(orz)=1%/2.

It follows that [I,I+g—r] contains at most one even integer, namely, 20P(«).
Hence, g—r<1ifIiseven and g—r <2 if I is odd. Consequently, Z <1if I is even
and Z £2if I is odd. The other conclusions of Theorem 3 can be obtained from (2),
the fact that they have already been proved for «,€ X, and Lemma 1. [J

7. Proof that Theorem 3 Implies Theorem 1

Let P be a periodic point of type (p, g9) and x=(..., X;, ...) € Z,, the corresponding
state. By definition, the quantity I which appears in Theorem 1 is the number of
negative eigenvalues of the Hessian matrix of W4:%,,—R at x. This Hessian
matrix is Y(«), where a=[ay,...,a, by, ..., b,],

a;=(0*W/Ox?)(x) = hy (X, X4 1) +hoa(Xi - 15 %) 5
by =(0*W/0x;0%; 4+ 1)(X) = hy 5(Xis X;41) -
If we choose a framing of the tangent bundle of T x R, then df, may be thought

of as an isomorphism of R?, and hence as a 2 x 2 matrix for any Q € T x IR. For the
framing which we defined at the end of Sect. 4, we have

df i, =P0). ©)
For, since x is an equilibrium state, we have
(i - 15 X)dX; g+ (hap(X; - 1, X3) + Ry (X5 X4 )X+ Byo(Xs, X4 )dX; 4 1 =0,
or dx;=dx;
b;_

1
dxppy=———dx;_; —

b

g
b_,' dxi s

from which (3) follows.
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Let ¢ be the quantity which appears in Theorem 1. By the alternative definition
of the amount of rotation g, described in Sect. 4, it follows that ¢ =o®(x). To see
this, compare the definition of &(a) to the definition of dFg given in the discussion of
the alternative direction of the amount of rotation.

It is then clear that Theorem 1 is a special case of Theorem 3. [

8. Proof that Theorem 4 Implies Theorem 2

We claim that the inequality [I,(P)/2]<¢,(P)<[I,(P)/2]+1 is valid for the
framing of the tangent bundle which we defined at the end of Sect. 4. This is the
same framing as we used in the proof of Sect. 7. The proof that Theorem 4 implies
Theorem 2 is like the proof that Theorem 3 implies Theorem 1, with appropriate
notational changes.

By definition, the quantity I ,(P) which appears in Theorem 2 is the number of
negative eigenvalues of the Hessian matrix of Wy, : £ ;1(X0, X,) =R at (x, ..., X,).
This Hessian matrix is ¥/(x), where « is as in Sect. 7. Hence I (P)=1'(x). The
argument given in Sect. 7 that ¢ = o®(«) now shows ¢, (I)=¢®(). [
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