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Abstract. The one dimensional Bose gas is considered in the repulsive case. The
ground state of the system is the Dirac sea with a finite density. The correlation
function of the currents is presented in the form of the series, the nth term being
the contribution of n vacuum particles. In the strong coupling limit c -> oo the
nth term decreases as c~n. In the weak coupling limit c-*0 the series is also
essentially simplified. The decomposition gives the uniform approximation in
the distance between the currents. The arguments in favour of convergence of the
series are given.

1. Introduction

In the present paper we consider the one dimensional Bose gas, which is equivalent
to the quantum non-linear Schrodinger (NS) equation. We use the abbreviation NS
to denote the model. Its Hamiltonian is equal to

H = ]dx(dχψ
 + dχφ + cψ+ψ + ψψ - hψ + ψl [ψ(x\ ιA+(y)] = δ(x - y).

o

We use the approach of paper [1], where the problem was imbedded in the quantum
inverse scattering method (QISM) [2-4]. The notations and definitions of paper [1]
are exploited also. The formulae of this paper are cited as (number of the formula)
[1], The NS model was studied in the thermodynamic limit in [5-7], where the
ground state (the physical vacuum) was constructed. The system of transcendental
equations (s.t.e.) (1.5) [1] for this state looks like:

N/2

k=-Nf2
kfj

Φ(λj - λk\ Φ(λ) = iln ί^~ • (1.1)
\λ — lCJ

The integer number j takes all the values in the interval [ — N/2,N/2]. The number
(N + l)(odd) is the number of the particles in the vacuum. In the thermodynamic
limit L -• oo, N/L = const momenta λj—the solutions of the equations (1.1) fill the
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interval [ — q,q] with the density ρ(λk) = l/L(λk+ι — λk). It satisfies the equation

The integral operator K acts on p as follows

(Kp)(μ)= } K(μ,λ)p(λ)dx; K(λ,μ)= ]° (1.3)
-q C -vyλ. μ)

It should be noted that N/L= \p{λ)dλ. The eigenfunction of the Hamiltonian
corresponding to the physical vacuum will be denoted by \Ω}. There are two kinds
of excitations near the physical vacuum—the hole and the particle. Fermi
momentum q is defined by the condition that the energy of the excitations is zero on
the boundary of the Fermi zone. The energy density in the physical vacuum can be
written as an integral:

1 N/2 q

7 Σ <#/)- ί e(λ)p(λ)dλ. (1.4)
^ ; = - J V / 2 -q

Here ε(λ) is one-particle energy ε(λ) = λ2 — h.
The scattering matrix of these excitations can be calculated by the method of

paper [8]. Dressed scattering phase is calculated by means of bare scattering phase
Φ(l.l) and dressing equations. The scattering matrix of two holes Shh(λ2,λί) =
Qxp{iF(λ2,λ1)},q > λ2 > λx > — q is defined by the dressing equation

F{X2^)-~ ] K(λ29μ)F(μ9λ1)dμ = Φ(λ2-λ1).
zπ _9

Function F^λ^ can be extended out of the interval [ — q,q\ by means of this
equation. It permits us to calculate the particle-hole S matrix Sph(λp,λh) =
Qxp{ — ίF(λp,λh)},λp>q>λh> —q. To calculate the particle-particle S matrix
(λ2 >λt> q)Spp(λ2,λ1) = Qxp{ίF(λ2,λ1)}, one has to solve the equation for F and to
extend the phase F(λ2,λ1) out of the interval.

The method of the calculation of norms of the eigenstates was developed in [9].
It will be used in the present paper. In the thermodynamic limit the square of the
norm of the physical vacuum (1.6) [1] is equal to

= Γ Π 2πLp(λj) Jdet(l - K/2π); φ'jk = dφjdλk. (1.5)

The last factor in (1.5) is the determinant of the integral operator (1.2). It should be
noted that the norms of the Bethe wave functions for the XXX model were calculated
in the thermodynamic limit in paper [10]. The derivation of the formula (1.5) for the
generalized model is given in Appendix A. F. A. Smirnov and the author noted that
the ratio of the determinants det φ' of the excited state and the vacuum is generated
by the change of the entropy.

The correlation function of the fields was studied in this model in the strong
coupling limit in papers [11-15]. The long-wave asymptotics of these correlation
functions can be calculated at any coupling constant [16].
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In the present paper the correlation function of currents /(x) = ιl/+{x)ιl/(x) is

calculated. In the strong coupling limit it is the elementary function:

It should be noted that the asymptotics of the correlation function at \xt — x2\ -• oo
can be elementary calculated at any c

We shall construct the consistent perturbation theory for the correlation function of
the currents, which gives, for example, the improved version of the \jc expansion.
The nίh term of the series, constructed below, gives the contribution of n particles,
which are present in the physical vacuum. In this sense our approach is different
from the bootstrap program [17], where the nth term of the series gives the
contribution of n excitations near the physical vacuum. In our paper the generalized
model of the paper [1] is used, it is characterized by the arbitrary function £(X). By
means of the method of the paper [9] we can explicitly evaluate the dependence of
the correlation function on £(X).

The plan of the paper is the following. In Sect. 2 the main result of the paper is
presented. The perturbation theory for the correlation function of the currents is
described. In the rest of the paper the formulae of Sect. 2 are proved. In Sect. 3 the
algebraic questions are considered. In the case of the finite number of the particles in
the vacuum, the formulae generating correlation function by its irreducible part are
derived. In Sect. 4 the dressing equations are constructed. It should be noted that in
this case the dressing equations are non-linear. They are similar to the Liouville
equation. In Sect. 5 all the formulae of Sect. 2 are proved. Section 6 is the conclusion.

2. The Correlation Function of the Currents

To construct the decomposition of the correlation function, it is useful to consider
the mean value of the product of two currents with respect to λ -particle
eigenfunction of the Hamiltonian < Ψky(xι)^(x2)\Ψk}. All the information about
this mean value, which we need here, can be extracted from Sect. 1 of paper [ 1 ]. As this
mean value depends only on | xt — x2 | it is sufficient to consider < Ψk \j{x)j (0) \Ψk),
x>0. This mean value can be expressed in terms of Q 1 —the operator of number
of particles on the interval [0, xj :

The mean value of the operator Qj with respect to /c-particle eigenfunction can be
uniquely represented in the form of a "polynomial":

y = L-x.
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Here L is the length of the box, the coefficients J{k)

m are rational functions of λj and
Qxp{ixλj}. The most important is J(

o^, which is called the irreducible part Ik = J(Q}

0.
In the next sect, we shall see that all the coefficients J^m in (2.2) can be
expressed in terms of irreducible parts / ί ? where ί^L The properties of the
irreducible part, which will be used below are as follows. It can be written in the form

W;})= Σ e-*Σ^-^(μ+},{i-},μ°}). (2.3)
{λj}={λ + }u{λ~}u{λ°} ' 1

Here the sum is taken over all the partitions of the set {λj}J = 1,... ,fc into three
disjoint subsets {λ + },{λ~},{λ0}, the number of the elements in the subsets being
equal to: card {λ+} = card {λ~} = w, card {λ0} =k-2n,n^ [fc/2]. The Fourier coef-
ficients of the irreducible part J / £ are rational functions of momenta λj. They are
simply changed under the complex conjugation jtf*({λ + },{λ~},{λ0}) =
jtf({λ~},{λ + },{λ0}). If λj are real, then Ik({λj}) is a real, bounded, symmetric
function of all the λj. It is small in the limit of the weak coupling c -> 0, and in the limit
of the strong coupling c -» 00: Ik->ck~2 at c -> 0; Ik -+c2~k at c-> 00. Note that
Ik φ 0 at k ̂  2. The Fourier coefficients have similar properties

.5*2-*ck"2; ^ ϊ - ^ c 2 - * . (2.4)

c->0 c ^ oo

The irreducible parts lk for small fc can be elementary evaluated either in the frame of
coordinate Bethe's Ansatz, or in the frame of QISM. Below we shall need k = 2,3:

The Fourier coefficient sί\ is equal to

^ A ) = - 2α x -λ2 + kyiλ, -x2- icχλi - λ2)
2.

For k = 3 we have

/3OM2Λ3) = Σ [ e - ' ^ - ^ - \Wl(λPιλP2λP). (2.6)
P

Here the sum is over permutations P of λ1λ2λ3. The Fourier coefficient s#\ is equal
to ( ^ = ^ . - 4 ) :

To calculate the contribution of the irreducible part in the correlation function it
must be "dressed." Let us define the dressing transformation. It is constructed by
means of the function Pn(t, {λ + }n, {λ ~ }π), which depends on (2n + 1) arguments. It is
defined in a unique way by the dressing equation
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and by inequality RePπ(ί,{Λ + },{/Γ}) ̂  0. The set {λ + }n as well as the set {λ~}n

contains n elements λf and λj correspondingly. Each of the arguments belongs to
the interval [ — q,q\, — q^t^q; — q^λf Sqi — Q^^i =<1 The properties of the
Pn which will be used below are as follows: 1) It is simply changed under the complex
conjugation P*(t9{λ + },{λ~}) = Pn(t,{λ~},{λ + }). 2) The function Pn is a symmetric
function of all λf and of all λj separately. 3) The function Pn_ t is the special case of
Pn indeed at λ^ = λ~ \Pn = Pn_ 1. If the whole set coincides λt = λj J = 1,... ,n,
then Pn = 0. 4) In the strong coupling limit c -• oo the function Pn decreases

5) At c -• 0 function Pn goes to zero almost every where except the regions \λ} — t\^c,
Pn being bounded in these regions. 6) At any c function Pn is bounded in the domain
of its definition: \Pn(t, {λ+},{λ~})\ ^ l/π.7) For {λ+}φ{λ~} and 0 < c < o o ,
function Re Pn ψ 0 in the domain of its definition.

Let us introduce also another function pn({λ + }n,{λ~}n). It depends on In
arguments. This function is defined in the following way

7 = 1 -q

The dressing transformation d acts on the irreducible part (2.3) as follows:
&'Ik({λ})-*Il({λ}). Here the dressed irreducible part is equal to:

I%W= Σ e'^ι+^-»^{λ + },{λ-},{λ0}) (2.11)
μ} = {λ + }u{λ-}uu°}

Here the sum is taken over the same partitions as in (2.3).
So the dressing transformation acts only on the exponents by means of

replacement exp{ — D C £ ( 2 + — λ~)}\-+exp{xpn({λ + },{λ~})}, the Fourier coef-
ficients si remaining invariable. In this way we have defined the dressing
transformation. It is important that the function !{({λ}) is real, symmetric and a
bounded function of all the λ }.

Now everything is ready to describe the decomposition of the correlation
functions. The contribution of the /c-particle processes Γk can be obtained by the
integration of the Id

k({λ}) over all the variables X. with the weight ω(λ):

Here the weight ω(λ) is equal to

ω(λ) = e x p | ^ - ? K(λ,μ)dμ\. (2.13)

Its variation is bounded l/e ^ ω(λ) < ω0,
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The correlation function of the currents is equal to

Here x>0. Note that the first term gives the long wave asymptotics (1.6). The
formulae (2.4), (2.9), (2.11), (2.12), (2.13) show that Γfc->c2~* at c->oo. So
decomposition (2.15) is similar to the 1/c expansion, which can be extracted from our
decomposition by means of elementary calculation. Nevertheless the 1/c expansion
gives nonuniform approximation in the distance due to the polynomial contri-
butions. The decomposition (2.15) avoids this defect, it gives the uniform approxi-
mation in x. Formula (2.15) is the main result of the paper. The whole paper is
devoted to its derivation.

Let us calculate first two terms in decomposition (2.15).
To calculate Γ2 one needs I2 (2.5). The Id

2 is equal to

-e^^+iλ^λ,). (2.16)
t 1 2

The two particle contribution Γ2 is equal to

r l } a ΛAI f

Γ ί i λ j d λ S

The symmetry of (2.16) shows that the principal value of the integral must be taken.
Contribution Γ3 is generated by I3 (2.6), (2.7)

Γ 3 = 4 ί ωiλ^dλ, J ω(λ2)dλ
71
4 ί i ^ , J ( 2 ) 2 j ( 3 ) 3 (
71 -q -q -q \λl ~ λ2 ~ l C

[ λ3 - λx

λ3 -λx λ 3 - λ2 Jiλ, - λ2)\λ3 -λ,+ ic)(λ2 -λ3 + ic)

The principal value of the integral must be taken. Let us write down the correlation

function (2.15):

Γ ?= J p(λ)dλ -
J

= J p(λ)dλ J ^ωμX^)I T
(Ω\Ω) \__q J -g(^π) \λ1-λ2-ιc

ic\/λ32 λ3Λ exp{xp2(λ1λ2)} (\_

){ λ)(λ + i)(λ + i) \ 2
λ12-ic){λ31 λ32)(λ31 + ic)(λ23 + ic) \c

Note that p2(λ1λ2) tends to zero as λ1 -*λ2:p2(λ1λ2)-+(λ1 — λ2)p(λ1 + λ2)- In the
strong coupling limit c -> oo the correction to this expression is of order 1/c2 at any
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value of x > 0. In this limit the expression is simplified:

= Λ Λ 2 4/g\3 Λ 2 a Vsingx,

2 d Γsingx ?
H y-r— αx sin AX In

πx _%

πc\ πx J

Here xr = (l + 2g/πc)x. One can easily calculate the two initial terms in the 1/c
expansion and verify that the 1/c expansion gives a nonuniform approximation in
the distance. In the same way one can calculate any term in the expansion (2.15). The
proof of (2.15) goes as follows. In the next sect, we derive the formula, expressing the
mean value of the operator Qf (2.2) in terms of irreducible parts. We shall use the
two-site generalized model of the paper [1]. In Sects. 4, 5 we shall pass to the
thermodynamic limit in this formula and complete the proof of (2.15).

3. The Expression of the Mean Value <Qj> in terms of Irreducible Parts

In this sect, we derive the formula expressing the mean value (Qf}N in terms of
irreducible parts Ik,2^k^N. We use the two-site generalized model, see Sect. 2 of
the paper [1]. Let us consider, first of all, the mean value of the identity operator (8.1)
[1] with respect to the eigenfunction:

(3.1)
c»\γ\a{λ)d{λ)\γ[fjk

Here we denote fjk = /(/L7/Lfc) = 1 + ic/(λj - λk) and

φ. = ίlnriλj) + ί £ \n(fjk/fk); r(λ) = | | (3.2)
fc=l

The explicit expression for the N x ΛΓ-matrix φjfe = dφj/dλk is presented in Appendix
A. So N in the expression dQtNφ' denotes the dimension of matrix φf. For N = 0 we
put det oφ r = 1. The momenta λ- satisfy the equations

N

(3.3)

The values z- = ίd{\nr(λ)/dλj} can be regarded as independent variables [1, 9, 18].

Note. For the NS model r(λ) = exp{ - iλL},zj = L. For N = 0 we put det o φ' = 1.
The most important properties of the determinant are as follows (see [9]):
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1) It is a symmetric function invariant under replacement of pairs
(λk,zk)<^>(λj,Zj). 2) It is a linear function in zN. 3) The coefficient at zN is equal to

-—dety(φ') = det^ ,/φO (3-4)
dzN

The matrix (φ')jk = dφ jdλk ;j,k = 1,... ,(JV — 1) is defined by means of φp which is
given by (3.2) with the replacement N ->(N - 1) and r(λ) -> r(λ) = r(X)f(λλN)/f(λNλ).
It means that z. is replaced by z.

zj = zj + KjN. (3.5)

Here we use the notation K e = K(λjλ^)f see (1.3). The Jacobian at the right-hand side
of (3.4) does not contain zN ;λN is included in r(λ). 4) The determinant is equal to zero
at all Zj = 0 and λj fixed (for N ^ 1)

δl at Zj = 0. (3.6)

5) For N = 1

det 1 φ' = z1. (3.7)

It was noted in paper [9] that the left-hand side of (3.1) has the same properties. It
permits us to prove (3.1) by induction in JV. One can say that the irreducible part of
the identity operator 1^ = δ%9 see (7.6) [1], generates formula (3.1).

In the two-site generalized model, the variables z- are equal to:

zj = xj + yr (3.8)

Here x. = ίδ[ln^(λp ]/&!.; y. = id[ln m{λ)Mdλ} and ί(λ) = a^λyd^λ);
m(λ) = a2(λ)/d2(λl r(λ) = ί{X)m[λ). '

Note. For the NS model /(A) = exp{ — iλx],xj = x,yj = L — x.
Our aim is to express the det φ in terms of x and y. The following definitions are

useful. Let use consider a partition of the set {λj}N into two disjoint subsets {λx} and

in
{ ^ = U*}u{nU x}n{^}=0. (3.9)

Here card {A*} = nx,card{λy} = ny,card{λj} =N,nx + ny = N. We write the number
of elements as the subindex of the set, for example, {λx}nχ.The values φx and φy are
defined by:

7i
λx

ke{λx} J\Akλj)
kψj

J] ^ ^ (3.11)

The number of ψj is equal to nx, the number of φy is equal to ny. Now we can
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introduce two Jacobians

det^((/>^), (φ'3)jk = dφj/dλk

κ, (3.12)

det n (φ'y), (φ'y)jk = dφyj/dλy

k. (3.13)

It should be noted that these Jacobians are exactly of the same kind as άetφ'. They
have the same five properties: 1) Determinant (3.12) is invariant under the
replacement of pairs (λk ;xk)<^(λj xj), and (3.13) is invariant under the replacement
of (λk yk) <-> (λ. JΛ). 2) Determinant (3.12) is a linear function in xnχ (3.13) is a linear
function in yn . 3) The coefficients are equal to

d
detn (φ'x) = det(λI _1)(φ/

x), (3.14)

and similarly ddetn{φ'y)/dyn = det ( J !_1 )(φp, with

xj = Xj + K(λ*λ*J yj = y3 + K(λμζ). (3.15)

4) At Xj = 0 Jacobian (3.12) is equal to zero for n ^ 1:

de t B (φX, = 0 = δS. det π (φ;) | > . = 0 = «5g, j=ϊ,...,n. (3.16)

5) In the scalar case they are equal to

det 1 (φ^ = x1, d e t ^ φ p ^ ^ . (3.17)

Now everything is ready to prove the following

Theorem 1. The determinant (3.1) is expressed in terms of the determinants (3.12),
(3.13) by the following formula

detN(φ') = X det J φ ^ d e t j φ ; ) . (3.18)

The summation is performed over all the partitions (3.9).
The proof goes by induction in JV, starting from N = 1 (compare (3.7), (3.8)

and (3.17)). Assume that (3.18) is already proved for N = 1,... ,M — 1. We shall show
that then it is valid for N = M. Let us consider the value

ΔM = detM(φ')- £ de

It is a linear function in xM. The derivative with respect to xM is equal to

^ = det (M_ 1}(φ') - £ det J φ ^ d e t Π y ( φ ; ) ,

nx + ny = M - 1

see (3.4) and (3.14). The right-hand side is equal to zero due to inductive assumption
and (3.5), (3.15), (3.8). So dAM/dxM = 0. Due to the symmetry dAM/dxj = 0,
7 = 1,...,M. Similarly one can prove that dAM/dyj = 0. So ΔM is Xj and y.
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independent. But ΔM = 0 at xj = y. = 0, due to (3.6),(3.16). So ΛM = 0 identically, and
(3.18) is valid for N = M. This completes the proof of the theorem. It should be noted
that the s.t.e. (3.3) was not used in the proof. All the proofs in this sect, will be of this
kind.

Let us consider now the operator of number of particles in the first site of the
lattice Q1 (2.18) [1]. The mean value of the operator Qι:

(3.19)

= l Jjψk

with respect to the JV-particle eigenvector (3.3) depends on 4iV variables
<Qi>jV = <Qi>iV({^},{xJ },{^},{^}λ see (8.2) [1]. We remind the reader of the
properties of < Qj >, see Sect. 8 of paper [1]. 1) It is invariant under replacement of
(λk9xk,yk,SJ<-+(λj9Xj,yj9Sj). 2) It is a linear function on xN and j ^ . 3) The coefficient at
yN is equal to

T T ~ \ Q l /N ~ \ Q l / (N - l\\Aj} (N - l)ΛXj} (N - l)Λyj + KjNS(N - l)'{t jf (N - iy-

°y
The coefficient at xN is equal to

^ ^ ^ y (3.21)

Here we denote <QX + 1> = <QX> + <1>. At the right-hand side of (3.20), (3.21)
7 = 1,... ,(N — 1), so the variables xN9yN and ίN are absent. 4) The mean value is equal
to zero at ^. = ^. = 0 and λ/ fixed: <Q1>({A</},{0},{0},{^.}) = 0. 5) In the one
particle sector < Q x > 1 = x1. By means of these properties one proves the following:

Theorem 2. The mean value of operator Q1 is expressed in terms of the determinants
(3.12), (3.13) by the following formula:

<Qi>iv= Σ M e t J ^ d e t J φ ί ) . (3 2 2 )
{λ}} = {λ*}v{λy}

Here we use the same notations as in Theorem 1. The proof is similar to that of
Theorem 1.

The normalized meanvalue of Qι is equal to

i Π ^ )lo> / n N

izl \VI/JV

π ^ π <1>

7 = 1 7 = 1
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One can say that formula (3.22) is generated by the irreducible part of the identity
operator.

At last let us consider operator Q j . The correlation function can be expressed in
terms of it (2.1). Let us denote the mean value of the operator Ql with respect to the
N-particle eigenfunction by

j ^ j φ (3.24)

jk

7=1 jfk

see(8.7) [1]. We remind the reader of the properties of <Q? >, see Sect. 8 of [1]. 1) It is
invariant under replacement of {λ^x^y^^^λjX^/). 2) It is a linear function on
xN and yN. 3) The coefficients are equal to

(3.25)

( ) ( ^ ^ | ^ ^ | ) (3.26)

Here <(Q t + 1)2> = <Q?> + 2<Qi> + <1>. In the right-hand side of (3.25), (3.26)
j = 1,...,N — 1, so X yjj/jv and ^ are absent. 4) The mean value <Qj> at x,. = y. —
0 (/ = 1 , . . . , JV) is equal to the irreducible part (7.11) [1].

Σ ^(U+},μ-},μ0}) π^α y-1^-). (3.27)
U;}=U+}u{Γ}u{A0} j = l

It is not equal to zero for N ̂  2. 5) In the one-particle sector <Qj> x = χίm

In this case the irreducible part of the identity operator and all the irreducible
parts of the operator Q j will give the contribution to the value <QJ>. Let us
introduce the value

<Q?>£= Σ n2

xdetjφ3detny(φ'y), (3.28)

which gives the contribution of the irreducible part of the identity operator in < Qj >.
Each irreducible part Ik generates the contribution to the < Q{ >. We shall denote it

= Σ ' U μ ' J ^ μ ^ N - * ) . (3-29)

The sum is taken over all the partitions of the set {λj} into two disjoint subsets
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{λ1}, and {λv}, card {λ1} = fc, card {λv} = N - k. The value ld

KN is equal to

uk,N~ L^ ^ / c U Λ SnΛ/ι SnΛ/ι Jk-2nJ

Here the values j/£ are the Fourier coefficients of the irreducible part (3.27). The sum
is taken over the partitions of {λ1} into three disjoint subsets {/l + },{/l~} and
{/I0} card{2+ } = card{/ί~} = n,card{Λ0} = k — 2n, like in the expression for the
irreducible part (3.27). The value EnN-k is equal to

{xηN_k = {λx}u{λy} i=ij=i

^ = 1. (3.31)

The sum here is taken over the partitions of the set {λv} into two disjoint subsets {λx}
and {λy},card{λx} = nx,c3.τd{λy} = ny,nx + ny = N-k like in (3.9), (3.18), (3.22) and
(3.28). So we define the expression Q)\. It is equal to the sum over the partition of
{λj}N into five disjoint subsets {λ}N = {/ί/}u{/ltl},{/l/} = {λ + }u{λ~}u{λ0},
{λv} = {λx} u{λy}. Now one can prove the following:

Theorem 3. The mean value of the operator Qf is expressed in terms of the irreducible
parts by the following formula

N

k=2

The proof is similar to that of Theorem 1.
Now let us normalize the mean value <Qj> and rewrite it in final notations.

J = l

J = l

One must remember that the s.t.e. (3.3) is valid. The Γk N is the contribution of the k
particle irreducible part

< 1 > N {A} = {Ai}

Here we introduce a new factor det(φ^) which will cancel the denominator of (3.37).
The matrix φ'v is defined by (φ'v)jk = dφVj/dλv

k and by

φ) = il
λkλj)
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Here the summation variable λv

k takes all the values from the set {λv} except λ]. The
number of values φυ. is equal to the number of λv- and is equal to N — k. The IkN is the
normalized 0 k N :

(3.36)

Here EnN_k is normalized E n J V_ f e :

ZdetJ^detJ^A " /(A/A?) /(AfA/),

So we have achieved our aim and expressed the correlation function in terms of the
irreducible parts. It should be noted that the behaviour of ΓkN in the strong coupling
limit is the same as one of irreducible part (2.4), ΓKN-+c2~k at c-*oo. So the
decomposition (3.33) looks like an expression in the coupling constant. In the next
sect, we shall move on to the thermodynamic limit. The order of the limits will be
standard for the quantum field theory. We fix k—the order in the coupling constant
and tend the number of vacuum particles (N — k) to infinity. In the next sect, we shall
calculate the limit

lim EnM_k({λ+},{λ-},{λv}N-k) = En({λ+}n,{λ-}n). (3.38)

Here n and k are fixed. In Sect. 5 we shall calculate the limit

lim ΓkN = Γk. (3.39)

4. The Dressing Equations

Here we evaluate explicitly the limit of the function En N (3.37), (3.38). First of all let
us define the thermodynamic limit for the generalized model by analogy with one of
the NS model. For this purpose put i\nr(λ) = Lu(λ); here u'(λ) > 0. The thermody-
namic limit is L-> oo, N-* oo, N/L = const. The momenta λ-\ satisfying the s.t.e.
φ'^lπj + πNi-NβSij^Nβ (see (3.2), (3.3), (1.1)), fill the interval l-q9q].
The density ρu(λk) = \/L(λk+1 — λk) satisfies the equation:

(4.1)

see (1.3). The limit of the Jacobian is equal to

- K/2π), (4.2)

see Appendix A. It should be noted that in this limit the continuous function
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x(λ) = ί\nΎ(λ) remains fixed and finite. It is a positive function with a bounded
variation. The function y(X) goes to infinity

xm>x(λ)^09 y(ύ) = Lu\λ)-x(λ). (4.3)

Note. For the NS model u(λ) = λ,u'(λ) = 1.
Below we study the behavior of the function EnN under the variation of function

x(λ). The function u(λ) will be fixed, one can put u(λ) = λ from the very begining.
Now we shall evaluate the limit of values <Q1>/<1> (3.23) and <Q?>°/<1>

(3.28). Let us introduce the generating function:

= Σ e^Wfy^ (4.4)

We have written down explicitly the functional argument x(λ). Due to (3.18), (3.23)
and (3.28) we have:

£ | -l d

E \ - ^ * δ2E\ - < Q ^ (45)
£ w | α = 0 - l , γaENl = 0 - < 1 > , -^jtN\a = 0 - ^ j ^ (4.5)

We put Reα = 0. The first property of E is

EN(a,lx(λ)l)=l at x(X) = 0, (4.6)

see (3.16). Then we prove the following

Theorem 4. T/ze modulus of the function EN is less than one:

1. (4.7)

Proof. The positiveness of the determinants d e t φ ' > 0 , detφ^.>0, det</>y>0,

which is proved in Appendix B, permits us to make the following estimation:

This completes the proof. Let us consider the thermodynamic limit of EN.

Theorem 5. The thermodynamic limit of EN{OL,[X~\) is equal to

£(α,Wλ)]) = expj } χ(t)P{t,a)dt\ (4.8)

Here function P(ί,α) is defined at — q^t^q and R e α = 0. This function is defined in
the unique way by the nonlinear integral equation

2πP(ί,α) = expi a + J K(t,s)P(s9<*)ds > - 1 (4.9)

and by inequality ReP(ί,α) ̂  0.

Proof. Let us separate EN into two parts

F (n ΓYΊΊ — F(1Hn ΓYΊΊ -I- F(2Yry ΓYΊ^ (A \0λ
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with

.«.,«,w,= 1 " ̂ ^fψλ (4.π)
{λ}={λx)κj{λy} aQlNW )

The value E{^] is the complement of E^] with respect to the whole EN.

Remark. The properties (4.6), (4.7) are valid for Effl also.
Let us transform the expression for E^K The values N and ny go to infinity, so the

two determinants can be simplified, like (4.2). The explicit formulae are presented in
Appendix A. The asymptotical expression is:

nx-glnN

for ω, see (2.13). Let us evaluate the contribution of the terms with fixed nx. In the
limit it will be a «x-multiple integral, see (1.4):

^ [ j / ( t ) (4 13)

[ln/V]

So we have E^] = £ ^ ( n j . It is proved in Appendix C that the limit of this sum at
nx = 0

N-^co exists and is equal to
00 Γ q x(λ)dλ)

E(a,[x(λW= Σ ^(«λ ^(0) = exp^ - | " V — ^ (4.14)
κ = 0 I -g Z 7 Γ J

Derive now a linear equation in variational derivatives for this functional. Let us

vary it with respect to the function x(μ). The answer is the following:

Here we use the property of the determinant (3.14), (3.15). One can obtain all the
solutions of the linear differential equation by means of the Fourier transformation

j \ x(t)P(t,a)dt], (4.16)
I -q

see (4.6). From (4.15) we obtain

2πP(ί,α) = exp<̂  α + j K(t9s)P(s,d)ds i - 1, (4.17)

and from (4.7) ReP(ί,α) ̂  0. In Appendix D the uniqueness theorem is proved for
this system. So we have calculated the limit of E^ (4.11). In Appendix C it is proved
that the limit of Eψ in (4.10) is equal to zero. This completes the proof. Now we are
able to calculate the mean values (4.5)
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Here P'(ί) is defined by the equation [(2π - K)P'] = 1, see (1.3). Comparing with
(1.2) we see that P'(ί) = p(t). Note that for the NS model < Q1 >/< 1 > = x j p(Λ) dλ For
<Q?>°, we have:

^ ^ = £ Ί α = 0 = Γ J x(t)P'(t)dtΎ+ f x(t)P"(ήdt. (4.18)

Here P"(ί) is defined by the integral equation [(2π - K)P"] =(2πP')2. Now let us
calculate the thermodynamic limit of EnN_k (3.37), (3.38).

Theorem 6. The limit of EntN-k({λ + },{λ~},{λv}) at N-> oo n,k-fixed is equal to

j x(t)Pn(t,{λ + },{λ-})dtl (4.19)

- « J
The function Pn is defined in the unique way be the equation:

3; inequality RePM g 0. //ere — q^t^q, — q^λj ^q.
The proof is similar to that of Theorems 4, 5. So we have evaluated the

thermodynamic limit oϊEnN. It will help us to calculate the thermodynamic limit of
Γk N in the next sect.

5. The Contribution of the ^-Particle Processes to the Correlation Function

Here we calculate the limit of ΓkfN (3.34), (3.39). The limit of Id

kN is equal to

(5.1)

see (3.36), (4.19). The calculations similar to those of Appendix A show that
k

detN_k(φ'v)/detNφ/ = f\ [ω(λI

j)/2πLρu{λI

j)~\. For ΓkN we obtain the asymptotical

expression (JV-» oo):

/V*= Σ ^ ^

As the ^({λ1}) is a symmetric, bounded function of all λ] we can replace the sum by
an integral as was done in (1.4). Finally the limit of (JV -• oo, fe-fixed) Γk N is equal to a
/c-multiple integral:

see (2.13). For the mean value of Q^ with respect to the physical vacuum, we have
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(4.18), (3.33), (1.2):

<Ω|Q;
2\Q\ Γ 4 ~]2 q

i ^ = j x(X)F(λ)dλ + J x(λ)P"(λ)dλ
11 / L-« J -«

(5.4)

So one can see that we can explicitly evaluate the dependence on the arbitrary
function ί(λ) in the generalized model. We can not however explicitly evaluate the
dependence of the correlation function on the R matrix as we have no simple
formula for the Fourier coefficients j/Jj. These coefficients must be calculated step by
step, using the methods of paper [1]. Now let us pass to the NS model. For it,
/(A) = exp{ — iλx},x(λ) = x. In this case formula (5.4) looks like

/ o ι o 2 ι o \ Γ q Ί 2 q ^
^ ' ^ ; = x2 j p(λ)dλ + x j P\λ)dλ+ Σ Γk. (5.5)

In the expression for Γk one must put into (5.1) that

J = I I 7 = 1 -q

To obtain the correlation function of the currents one must use formula (2.1). This
completes the proof of formula (2.15).

6. Conclusions

We have constructed the consistent perturbation theory for correlation functions of
the currents for the NS model. Our approach is quite general. The increase of the
number of sites in the generalized model gives us the opportunity to calculate any
correlation function. As it was mentioned in [1] one needs a four-site generalized
model to calculate the correlation functions of the fields (ψ(x)ψ+(y)}. Let us
describe the answer. Any correlation function is equal to a mean value of some
operator o with respect to the physical vacuum <Ώ|o|Ώ>. To construct the
decomposition of this correlation function one must calculate the mean value of the
operator o with respect to the k particle eigenstate of the Hamiltonian (Ψk\o\Ψk},
then take its irreducible part (zero coefficient in (2.2)), dress it by means of equations
similar to (2.8), and then integrate. For the correlation function of the currents this
decomposition gives the improved version of the l/c expansion. However, generally
speaking, for an arbitrary correlation function all terms of the series are essential.
For example, the correlation function (ψ(x)\l/+(y)} can be expressed as a series at
any 0 < c < oo by means of our method. However, all terms of this series for
(ψ{x)ψ+(y)} are essential at c->oo, and not only the first term as for current
correlator (j(x)j{y) >. Our approach can be applied to any model with the R matrix
of the XXX or XXZ models. This set includes XXZ Heisenberg model and the sine-
Gordon model. Note, for example, that the XXX Heisenberg model and the NS
model are special cases of the same generalized model [1]. The decomposition (5.4)
is natural from the point of view of the analogy of the quantum inverse scattering
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method and the theory of groups representations. Indeed, the "representation" is
parametrized by the function a(λ)/d(λ) [18]. We succeeded in evaluation of the
dependence of the correlation function on this arbitrary function (the coefficients
sd \ depend only on the iί-matrix).

Let us discuss the series (2.15) and make some hypothesis. The series seems to be
convergent due to the weight ω(λ). Its contribution can be estimated as ωk

0 (2.14)
(0 < ω 0 < 1). All other factors in expression (2.12) depend on k in a polynomial way.
The analysis of the series leads to the following estimation:

(x )Ί(X ) 1Ω\
0 ^ T — ^ f p(A)dλ j.

Appendix A

Let us consider the Jacobian det φ' in the generalized model. We write the matrix (see
the beginning of Sect. 3)

as a product of two factors:

φ' = GΘ, detφ' = detGdet<9. (A.2)

Here

θj, = δj&9 S, = z,+ Σ ^ m > 0 , (A.3)
m = l

and

G^bje-Kjtβe. (A.4)

The representations similar to (A.1)-(A.4) are valid for matrices φ'x and φ'y. They can
be obtained from (A.1)-(A.4) by replacement of z- by x. or by y. respectively. The
thermodynamic limit (see the beginning of Sect. 4) of S^ is equal to

λe). (A.5)

Here we replaced Σ by an integral like in (1.4), and use the equation (4.1). The
N

determinant of Θ is equal to det(9 = Y\ \_2πLρu(λ)~\. The operator G in the limit
7 = 1

turns into the integral operator (1.2), (1.3) G =(1 — K/2π). So the final answer is

I Π [2πIpMα;] Jdet(l - K/2π). (A.6)

Now let us consider det^ (φp from (4.11). Here ny^(N - \nN) goes to infinity in the

thermodynamic limit. We represent the matrix φ'y in the form (A.2) φ'y = GyΘy with

^ (A.7)
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By means of (3.8), (3.9), (4.3) and (A.5) one can calculate the limit of Sy\

5? = 2πLpu(λ§ - x(λy) - y K(λy:λ*). (A.8)
£= 1

The determinant of Θy is equal to

ΐly Π

~ 1 -

see (1.4). Here the sum is over the set {λx} (3.9). In (A.9) the weight ω(λ) (2.13) appears.
The limit of Gy is exactly the same as that of G,Gy -> (1 - K/2π). So the asymptotical
expression for the Jacobian is

det(l-K/2π) (/=

Note. The asymptotical expression for άQtφ'υ (3.35) is similar, but the last factor is
absent.

The ratio of two determinants (A.6) and (A. 10) is equal to

det (φ'

Appendix B

Let us prove that φ' > 0 at z. > 0. If Vj is a real vector, then the quadratic form

_Σ/ij^j=Σψj + ΣKJJ(υJ-v^ (B.I)

is positive, see (A.I). It means that

φf>0, detφ'>0. (B.2)

It leads to 1 > G > 0, see (A.2)-(A.4). In the thermodynamical limit the operator

1 > 1 - K/2π > 0 (B.3)

is positive and nondegenerate, see [5-7].

Appendix C

The value £^1}(0,[x]) is less than £w(0,[x]), see (4.4), (4.11) at α = 0:

Here we use (4.5) and (B.2). In the thermodynamical limit it means that

[lniV]

£ ^ 1 ) ( 0 , [ x ] ) = Σ W ( r c X = 0 ^ l . (C.2)
«ΛΓ=O
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As W(ή) > 0 at α = 0,E{v

1) form monotonically increasing, bounded sequence. So at
JV -• oo this sequence has a limit, and the series

Σ W(n)\a = 0 (C.3)
n = 0

is covergent. It means that the series (4.14) is absolutely convergent as

\
Now let us prove that the limit of E^\(x) in (4.10) is equal to zero. The standard

estimation (see (B.2)) shows that

). (C4)

By means of (4.5), (4.10) one has:

x]). (C.5)

Using Eq. (4.16) and the fact that Eq. (4.17) at α = 0 has only one solution P(ί, 0) = 0,
we obtain

It means that

lim £^2)(0, [x]) = lim £^2)(α,[x]) = 0. (C.6)
JV^oo iV^oo

Appendix D

Here we prove the uniqueness theorem for Eq. (4.17) or (4.9). Let us suppose that we
have two solutions P(1)(ί) and P ( 2 )(ί):Re P ( 1 2 ) g 0,

2πP ( 1 ) — exp{α + KP(] )} = — 1 2πP ( 2 ) — exp{α + KP ( 2 )} = — 1,

see (1.3). Let us subtract the equations and prove the estimate

0 = |2π(P ( 1 ) - P (2)) - e*(e*pι» - eκp^)\ ^ (2π - K)|P ( 1 ) - P ( 2 ) | ^ 0. (D.I)

It will prove the theorem as the equation (2π — K)|P ( 1 ) — P ( 2 ) | = 0 has only one
solution P ( 1 ) = P ( 2 ) , see Appendix B. The first step in the proof of the estimate is:

|2π(P ( 1 ) - P(2)) - e\e*p^ - β ^ , ) | ^ 2π|P ( 1 ) - P ( 2 ) | - |eκpu> - ^ P ( 2 ) | .

As ReKP ( 1 2 ) S 0 (K is a positive, see (1.3)) we have

|exp{KP(1)} - exp{KP(2)}| ^ |KP ( 1 ) - KP ( 2 ) | ^ K|P ( 1 ) - P ( 2 ) | .

It proves the estimate and concludes the proof of the uniqueness theorem.
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