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A New Approach to the Self-Dual Yang-Mills Equations
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Abstract. Inspired by Sato's new theory for soliton equations, we find a new
approach to the self-dual Yang-Mills equations. We first establish a cor-
respondence of solutions between the self-dual Yang-Mills equations and a new
system of equations with infinitely many unknown functions. It then turns out
that the latter equations can be easily solved by a simple explicit procedure. This
leads to an explicit description of a very broad class of solutions to the self-dual
Yang-Mills equations, and also to a construction of transformations acting on
these solutions.

Introduction

Recently there has been significant progress due to Sato [1] in the theories of
completely integrable systems. Further developments from slightly different aspects
can be found in the papers of Date et al. [2], Mulase [3], Segal and Wilson [4],
Ueno and Takasaki [5], etc. Sato's theory provides, in a unified framework, a new
formulation of the "complete integrability" of various kinds of "soliton equations"
(the KdV equation, the nonlinear Schrodinger equation, the Kadomtsev-
Petviashvili equation, etc.), without using the conventional inverse scattering
techniques including the Riemann-Hilbert problem. In his formulation all the
information contained in a solition equation is "coded" into the time evolution
of oo x oo matrices which are regarded as points of an infinite dimensinal
Grassmann maniford, and in such a picture the structure of both solutions and
transformations acting on them can be clearly described. In this paper we shall
discuss a similar approach to the self-dual Yang-Mills equations.

In the four dimensional complex flat space C4 with coordinates x = (y, z, y, z),
the (complexified) self-fual Yang-Mills equations with structure group GL(r,C)
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(r ^ 2) are written in the form

[_dy + Ar dz + AJ = 0, [δ- + A-, d- + Λ J = 0,

[a, + Λ,, dy + ̂ -] + [δ2 + AΪ9 dz + ̂ ] = o, (o.i)
where du = d/du, u = y, z, >', z, and ̂ 4u,u = y,z,y,z, denote the ̂ /(r, C)-valued un-
known functions depending on x. Contrary to the usual formulation, no reality
conditions are imposed here. Then Ay and Az can be eliminated by a suitable
complex gauge transformation AU-^G~1AUG+ G~1duG,u = y,z,y,z,G = G(x), so
that Eqs. (0.1) are reduced to

V * " d*Ay + tA> A*~\ = °> 3 Λ + δ ^ έ = ° (° 2)
In what follows we shall mainly consider Eqs. (0.2), especially their formal power
series solutions, Λ^,v4 fe^/(r,C[[x]]), including local holomorphic solutions
defined at x = 0.

It has been known that the self-dual Yang-Mills equations admit two different
approaches—one from the twistor theory and the other from the inverse scattering
method. The twistor approach, initiated by Ward [6], was combined with the
algebraic geometry of vector bundles over the complex projective space P 3 to
determine the structure of all the instanton solutions (see Atiyah and Ward [7],
Atiyah et al. [8], Atiyah [9] and the references therein). The inverse scattering
approach, pointed out first by Belavin and Zakharov [10], was developed by using
the Riemann-Hilbert problem to yield several results; the general construction of
the Atiyah-Ward Ansatz by Corrigan et al. [11], the systematic derivation of the
hidden symmetries by Ueno and Nakamura [12], etc. (see also Chau et al. [13],
Dolan [14], Pohlmeyer [15], and Wu [16] for related topics), etc. Also it has been
shown that these two approaches are closely related to each other (see Corrigan
et al. [11] and Chau et al. [14]).

Our approach is based on a different principle (though closely related with the
inverse scattering approach). We introduce, following the idea of [1], a n c o x o o
matrix ξ = (ξu)ί€Z < 0 consisting of ̂ /(r, C)-valued unknown functions ξ.. (where
Z denotes the set of all integers), and consider the equations

- δyξi+1J + d&j + ξ^ξoj = 0, dzξί+ Uj + d£tJ - ξt-Λξoj = 0,

ξij = δiJlrfori,j<0. (0.3)

Here \r denote the r x r unit matrix, and δυ Kronecker's delta. We first show, in
the realm of both formal power series solutions and local holomorphic solutions,
that the equations

A9 = dzξ0_l9Ai=-dyξ0_x (0.4)

define a correspondence of solutions (this is not a one-to-one correspondence)
between Eqs. (0.2) and (0.3). To be more precise, we show that Eqs. (0.4) yield all
the formal power series solutions to (0.2) from those to (0.3), and also all the local
holomorphic solutions to (0.2) defined at x = 0 by imposing some analytical
conditions on the solutions to (0.3). On the other hand, it turns out that we can
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explicitly construct both these solutions to (0.3) and transformations acting on
them by means of some simple manipulations of oo x oo matrices related with ξ.
This construction is very similar to that of [1] for soliton equations, but there are
also some decisive differences. Combining these facts, we can specify the structure
of solutions to (0.2).

We shall develop our discussions as follows. In Sect. 1 we shall show that
Eqs. (0.4) actually define a correspondence of solutions between Eqs. (0.2) and (0.3).
We establish this fact by utilizing the linear system of Belavin and Zakharov [10],
which we reinterpret as nonlinear differential equations connecting (0.2) and (0.3).
Also the characteristic matrices originally introduced by Jimbo and Miwa [18]
play an important role in these discussions. In Sect. 3 we shall explicitly solve (0.3).
Our main theorems concerning the structure of solutions to (0.2) and (0.3) are
stated here. (In the appendix a related topic is supplemented.) In Sect. 4 we shall
discuss transformations acting on solutions to (0.3). (To be interesting enough, the
expressions of these transformations and the associated infinitesimal transfor-
mations have forms similar to those of Hauser and Ernst [19] and Ueno and
Nakamura [12].) Two classes of transformations, called type I and type II, are
discussed in detail. The transformations of type I are shown to constitute a group,
which transitively acts on the space of all the formal power series solutions. In a
simplified case of transformations of type II there appears a hierarchy of differential
equations which are similar to the AKNS systems [20] and consistently coupled
with the self-dual Yang-Mills equations. In Sect. 4 we shall add a few comments
on the relation of our method to Mulase's method [3] and the Riemann-Hubert
problem.

List of Notations Used Throughout this Paper

C and Z denote respectively the sets of all complex numbers and all integers.

C[[x]] and C[[y, z]] denote respectively the sets of all formal powers series of
(y,z9y,'z) and (y,z) (with coefficients in C). ^(r,R)(R = C,C[[j;,z]],C[[x]], etc.)
denotes the set of all r xr matrices with components in R. For a nonnegative

00

integer n and an element / = £ fijkmΫ^f^ o f C C M ] o r / ( r » c [W])»
i,j,m = 0

the notation ordx f^n means that fίjkm = 0 for i +j + k + m < n. l r denotes the
r x r unit matrix, and H the oo x oo unit matrix of various size. In this paper we
shall freely utilize oo x oo matrices consisting of r x r blocks. Such a matrix is
expressed in the form ( α l 7 ) i 6 / j 6 j , where / and J are some subsets of Z, and atj (which
we call the "(ij) block" of this oo x oo matrix) is an r x r matrix. In our convention
the blocks of these matrices are arrayed in such a way as indicated in the following
example with / = J — Z:

\
M - l - 1 " - 1 0 u - l l

« 1 - 1 fl10 β l l
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A denotes the ooxoo matrix (δi+ί jlr)ijeZ, where dtj denotes Kronecher's delta.

Finally, I ) denotes the binomial coefficient, i.e. I ) = a\/(b\(a — b)l).
\bj \bj

1. Correspondence of Solutions between (0.2) and (0.3)

In this section we develop preliminary discussions about Eqs. (0.2) and related
equations. The main purpose is to establish a correspondence of solutions between
(0.2) and (0.3). The discussions developed below are divided into two steps.

The first step is to modify the observation of Belavin and Zakharov [10]. As
pointed out in [10], Eqs. (0.2), which we may rewrite (using an indeterminate
variable λ) in the following form

\_-λdy + dz + A29 λdz + d9 + Ay] = 0,

are nothing but the integrability conditions of the linear system

(-λdy + dg + Ai)W = 09(λdz + d9 + Ay)W = 0. (1.1)

(To tell the truth, Belavin and Zakharov used a different gauge. The gauge adopted
here is due to Chau et al. [13, 17] and Pohlmeyer [15].) In our case where formal
power series solutions to (0.2) are considered, we require W = W(x, λ) to be matrix-
valued formal power series of the form

3 = 0

In terms of Wj Eqs. (1.1) are written in the form

-dyWj+1 + dzWJ + AzWj = 09dzWj+1 + dyWJ + AyWJ = 09j=t0, (1.2)

and recursively (though not uniquely) we can solve Eqs. (1.2), whose integrability
conditions in the sense of Frobenius are assured by (0.2). (Note that this procedure
is nothing but the well known construction of conservation laws. See, for example,
Sect. Ill of [17]). It is also easy to show, conversely, that Eqs. (1.2) imply Eqs. (0.2).
Thus we have

Proposition 1. For any formal power series solution to(0.2), there is a solution to
(1.2) with Wje#S(r9C[[x]']) and Wo = 1Γ. Conversely, if Eqs. (1.2) have such a
solution, then Eqs. (0.2)are satisfied.
When we consider local holomorphic solutions to(0.2), the usual argument for
the integration of (1.1) (see, for example, Sect. 2 of [11]) shows

Proposition 2. For any local holomorphic solution to (0.2) defined in a neighborhood
of x = 0, there is a local solution W = W(x,λ) to (1.1) which is defined in a
neighborhood of (x, λ) = (0, oo) in C 4 x P 1 , holomorphic with respect to (x, λ), and
satisfies the condition W(x,co) = l r .
The equations for j = 0 in (1.2) shows that Ay and A- are recovered by

Ay^-dzWl9A^dyWx. (1.3)
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Substituting (1.3) into (1.2), we finally obtain the equations

J = 0J^0, (1.4)

for the new dependent variables Wj9j ^ 0. Proposition 1 shows that Eqs. (1.3) define
a correspondence of solutions between Eqs. (0.2) and (1.4), and that all the formal
power series solutions to (0.2) are derived from those to (1.4) via this correspondence.

The second step is to introduce a one-to-one correspondence of solutions
between (1.4) and (0.3).

Let us first consider, apart from the differential equations, a one-to-one
00

correspondence between a matrix-valued formal power series W= Σ ^A~j

j=o

(with Wj€pS(r, C[[x]]) and Wo = lr) and an ooxoo matrix ξ = (ξij)iezj<o (with
£ / ( C [ [ ] ] ) ) with the conditions

Λξ = ξC, (1.5)

ξiJ = δiJίr forij<0, (1.6)

where A = (δi+1Jlr)iJeZ and

r _ ( (<>i+l,A

\(ξoj)j<

(Note that (1.5) and (1.6) are the same as the third and fourth equations in (0.3).)
The correspondence W.<-+ξ between W and ξ is defined by

ξOj=-W_jJ<O. (1.8)

(This actually defines a one-to-one correspondence because ξ is completely
determined by the blocks ξOj9j<0, by virtue of (1.5) and (1.6).) The structure of
ξ is specified as follows.

Proposition 3. We have

ξ = (Wΐ-j)iszj<o(Wi-j)ij<o, (1.9)

where we set Wj = W* = 0 for j < 0, and W*,j ^ 0 , denote the coefficients of W~ι,
CO

i.e. W~1= £ Wfλ~j.
j=o

Note that WfJ ^ 0 , can be recursively calculated by the formula

k = 0

Proof of Proposition 3. Let ξ' = (ξfij)iez,j<o denote the right-hand side of (1.9). To
show ξ = ξ', we have only to verify that a) (1.5) and (1.6) are also satisfied by ξ'
in place of ξ, and b) ξOj = ξ'Oj for any j < 0. Statement (b) follows immediately
from (1.10). Also from the definition of WJ or (1.10),
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where Λ(_} = (δi+1Jlr)iJ<0, so that

Thus statement (a) follows. This proves the proposition.
It turns out that the blocks ξijJ^O,j<0, coincide with the characteristic

matrices of W = W(x,λ) introduced by Jimbo and Miwa [18]. Recall that the
characteristic matrices Gij9i^. l j ^ 1, are originally defined by the equation

W(x,μy1W(x,λ)-lr = (λ-μ) £ G^-^-J (1.11)
ί,j=l

of generating functions with indeterminate variables λ and μ.

Proposition 4. We have

ξij=Gί+lί_j forί£0J<0. (1.12)

Proof. Equating the coefficients of monomials of λ and μ in (1.11), we have

w* _ Q W——G W*W — G — G Π \V\

while from (1.9) we have

Hence

This proves the proposition.
Now we can rewrite (1.4) in terms of ξ.

Proposition 5. Via the correspondence W<^ξ Eqs. (1.4) are equivalent to

(-Λdy + d£)ξ + ξA=0,(Λdx + dy)ξ + ξB = 09 (1.14)
where

H l ) ( J J (U5)

Note that Eqs. (1.14) are the same as the first and second equations in (0.3). Hence
this proposition shows the equivalence of (1.14) and (0.3) via the correspondence

Proof of Proposition 5. By virtue of (1.12) we can rewrite (1.14) into the equations
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Using generating functions of Gtj with indeterminate variables λ and μ, we can
once more rewrite the above equations into

7 = 1

/ 00 \

^μ-'λ-'-l lr+Σ Gnμ-ί)dz

\ i=l /

Finally, multiplying them by λ — μ and using (1.11) and (1.13), we obtain the
equations

(λdz + dy)W{x9 λy w(x, λyι= (μdz + dy)w(χ9 μy w(x9 μy \

which give equivalent expressions of (1.14). Both sides of these equations are
consequently independent of λ and μ. Hence, defining A- and A- by them
respectively, we conclude that (1.4) and (1.14) are equivalent to each other. This
proves the proposition.

Thus we have shown that Eqs. (1.3) and (1.8) define a correspondence of solutions
between (0.2) and (0.3), and that all the formal power series solutions to (0.2) are
derived from those to (0.3) via this correspondence. Further, when we consider
local holomorphic solutions to (0.2), we may suppose that the dependent variables
ξy are matrix-valued holomorphic functions with some quantitative conditions
implied by Proposition 2. In this way, although this is not a one-to-one
correspondence (because the solution to (1.2) is not uniquely determined by A-
and Az), our original problem concerning the description of solutions to (0.2) is
now converted into the problem of solving (0.3).

Let us conclude this section with a few important remarks on the equations
discussed in this section.

Remarks, i) The initial value problem with respect to the two dimensional plane
y = z = 0 provides a convenient framework for considering the structure of solutions
to (0.3). In fact, it is not hard to show in the realm of formal power series solutions
that any solution to (0.3) is uniquely determined by the initial value ξ(0) = ξ\y = - = 0,
which is consequently required to satisfy (1.5) and (1.6) in place of ξ. Thus the
next problem is to describe the evolution ξ{0) -• ξ. This problem will be solved in
Sect. 2.

ii) A similar aspect is also true of (1.4). Namely, any formal power series solution
to (1.4) is uniquely determined by the inital value Wi0) = W\y=2 = 0. In Sect. 4 we
shall discuss a method which directly characterizes the solution to this initial value
problem. (Needless to say, this initial value problem and that mentioned in the
above remark (i) are equivalent to each other via the correspondence W*-+ξ and
the correspondence W(0)<^>ξi0) induced to the inital values. Also note here
that the formulas (1.8)—(1.13) are also valid for the initial values ξ{0\ Wf}

= W\y=-z = 0,Wf)*=Wf\y = i==0 and Gff = Gtj\^z = 0. We shall later utilize these
formulas.)

iii) The coupled system of (1.5) and (1.14) have the following significant
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properties (all the discussions in Sects. 2 and 3 crucially depend on them). First,
if we forget conditions (1.6), this system admits the transformations of solutions
of the form

H~1CdyH - H~ ίdzH, B-+H~ίBH - H~ιCdzH - H~ ^ i ί ,dy

as far as H is an invertible ooxoo matrix depending on x and all the transformed
quantities can be defined asoo xoo matrices in a suitable meaning. We can check
this fact by simple calculations. Note, however, that formulas (1.7) and (1.15) are
not preserved under these transformations; in the case where conditions (1.6) are
not satisfied, (1.7) and (1.15) are not valid anymore. We can recover (1.6) by
replacing ξ by £(£ij.)ί~

1

<0 (this is one of the above transformation) on the
assumption that (ξij)i j<0 is invertible in a suitable meaning. Then (1.7) and (1.15)
turn out to be valid again. (To see this, we have only to equate the "upper half"
parts of the terms in (1.5) and (1.14). For example, we have

/ / 0

which shows the first formula in (1.15).)

2. Construction of Solutions

In this section we discuss the structure of solutions to (0.3) by explicitly solving
the initial value problem mentioned in Remark (i) at the end of Section 1.

2.1.

We now state our main theorems concerning the structure of solutions to
(0.3) in the framework of the above initial value problem

We first consider the formal power series solutions. Let ξ{0) = (ξ^})ieZ j<0 (with
ξ^e^/fir, C[[y,z]])) be an oo x oo matrix satisfying (1.5) and (1.6) in place of ξ.
We can describe the evolution ξ(0)-+ξ as the following astonishingly simple
manipulations of oo x oo matrices.

Theorem 6. Let ζ = (ξij)iEz,j<o an^ ?( + ) denote the oo x oo matrices (consisting of
rxr blocks ? ι 7 e^(r ,C[[x] ])) defined by

ξ = exp {zΛdy - yΛdz)ξ{0) = f (?Λdy - yΛ3z)ψ0)/k!,

Then the inverse ξ^ and the product £(+)£(~L1

) can be defined as oo x oo matrices
consisting of r x r blocks e^/(r, C[[x] ]), and the matrix
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satisfies (03) and the initial condition ξ\y = ~z = 0 = ξ{0).

In the appendix we shall discuss more explicit expressions of the components

of?(+)?(-)
We next consider the case where local holomorphic solutions to (0.2) defined

in some neighborhoods of x = 0 are concerned. Let ξ(0) and ξ be te same as above,
and recall the correspondences Wi0)<r^ξ{0) and W<r+ξ mentioned in Remark (ii)
at the end of Sect. 1. Of course we know from Proposition 5 that W gives solution
to (1.1). Further, we have

00

Theorem 7. Suppose that W(0) = £ Wf}X~j is holomorphic with respect to (y, z, λ)

00

in a neighborhood of(y, z, λ) = (0, 0, oo) in C 2 x P 1 . Then W = £ W.λ~j obtained
i = o

via the evolution ξ{0) -> ξ is also holomorphic with respect to (x, λ) in a neighborhood

of(x,λ) = (0, oo)mC 4 x P 1 .
As an immediate corollary of these theorems and the results of Section 1, we

get (via (1.3) and (1.8)) the explicit description of both all the formal power series
solutions and all the local holomorphic solutions to (0.2).

Our construction of solutions by means of (2.1) and (2.2) is very similar to that
of Sato [1] for soliton equations. The main difference is that in our case there
appears an operator exp (zAdy — yΛdz), whose counterpart in the discussions of
[1 ] is merely an exponential function of an oo x oo -matrix-valued linear function.

2.2

We here prove Theorem 6.
First, let us consider how to justify the inverse ξ~J} and the product

According to the decomposition

ξ is written in the form

ia y - yΛdx)

It is easy to show that | 0 e #S[r, C[[x]]) and

ovdxlj^-i for iJ<0. (2.4)

Hence we can define the ίi power |f_} of ξi-) = (ξίj)iJ<0 as an oo x oo

matrix consisting of r x r b lockse^(r ,C[[χ]]) such that ordx [the (ij) block of

£*_)] ̂  k — 1 — i for ij < 0. By virtue of this fact we can justify the Neumann
OO ^

series 1 + £ (— ?(_))fe in the same meaning, and we have
k= 1
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?(-) = 1+ Σ(-ξ-/. (2-5)

ordx [the (z/)block of ξ[_) - H ] ̂  - i for /, j < 0. (2.6)

Further, (2.6) shows that we can also define the product |(+)?(~_1

) in the same
meaning. (In these discussions we must deal with the infinite series appearing
blockwise in the product of oo x oo matrices and (2.5). We can justify them by
virtue of the following simple fact: For any sequence / M e^(r ,C[[x] ]) with

00

ordx/π ^ n, the infinite series ]Γ fn is well defined as an element of ^/(r, C[[x] ]).)
n = 0

Secondly, let us derive (1.5) and (1.14). To derive them, we have only to show

that there is an oo x oo matrix C = (Cij)ίj<0 with C i j G^(r,C[[x] ]) such that

Λξ=ξC, (2.7)

ordxC .^7-ί-l(ί^7-l). (2.8)

In fact, from (2.1) we have

{-Λdy + 3-fξ = 0, (Λdz + dfξ = 0. (2.9)

and applying Remark (iii) at the end of Sect. 1 to the transformation associated
with ξ^ξξ[-\, we can derive (1.5) and (1.14) from (2.7) and (2.9). The
manipulation of the oo x oo matrices appearing in these discussions is justified by
(2.4), (2.6) and (2.8).

To seek for such a matrix C, recall the correspondence W{0)^>ξ{0) mentioned
in Remark (ii) at the end of Sect. 1. From formula (1.9) applied to ξ{0\ we have

Wj),J<0 for k ̂  1,

where Λ(_) = (δi+ijlr)ij<0. Then by virtue of the Leibniz formula and the above
formulas,

(ΪΛδy - yΛSz)
kξ(0) = Σ (k )t(ϊΛdy - yAdz)

m(Wf»)teτj<0 ]

for k ̂  1, so that

ξ = ΞH, (2.10)

where

S = ( S y ) t e Z J < 0 = exp(zΛδ y-

H = ( H l 7 ) u < 0

Since ΛΞ = ΞΛ^, as an immediate corollary we have

Λξ = ΞΛ(_)H. (2.11)

Equation (2.11) shows that we may take C = H~1Λι_)H, provided that the
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p r o d u c t H~ίΛ(_)H c a n b e d e f i n e d a s a n oo x oo m a t r i x c o n s i s t i n g o f r x r b l o c k s

/ ( C [ [ ] ] ) h h d [ h ( ) b l k f / r M ( ) Wsuch that ordx [the (ij) block o f / r M ^ t f ^ y - i - l(ί ^j - i). We
can actually justify this in the same way as the justification of ?( + ) | ( 1

1

) . First,
note that

H = H + H,

It is easy to show that # o e ^ ( r , C [ [ x ] ]) and orάx H^^j-i + l(i ^j + 1).
Hence we can define the kth power H as an oo x oo matrix with blocks in
^ ( r , C [ | > ] ] ) such that ordx [the(ij)block of Rk] ^j - i + k(i ̂ j + k). Hence the
inverse of H is given by the Neumann series

which consequently satisfies the conditions that ordx [the(ij)block of//"1]
^7 — i(ί ^7). From these observations we can show immediately that the product
H~1Λ(_)H can be defined and satisfies all the required conditions. Thus we can
take C = H~1Λ{_)H.

Finally the intial condition follows immediately from the construction. This
completes the proof of Theorem 6.

2.3.

We here prove Theorem 7.

First, we can show from the assumption that the characteristic matrices G\°}

of W(0) are matrix-valued holomorphic functions of (y9 z) defined in a neighborhood
U of (y, z) = (0,0) with the estimates

ffi Mak + mbi+jk\m\ for ij^ l,/c,m^ 0 and (y,z)eU, (2.12)

where M,a and b are positive constants, and the sign | | denotes the norm of r x r

matrices, \(aaβ)1<aβ<r\ = max \a J. In fact, from formula (1.11) applied to

we have

while the assumption together with the formula FF(0)(j;,z, 00) = l r implies that the
right-hand side of the above formula is a matrix-valued holomorphic function of
(y,z,λ,μ) defined in a neighborhood of (y, z,2, μ) = (0,0, 00, GO) in C 2 x IP1 x P 1 .
Hence (2.12) follows by virtue of Cauchy's inequality.

We can estimate the blocks of ξ as follows. Proposition 4 shows that ξ\f
= G™u_j(i ^ 0J < 0), so that from (2.3)

lj= Σ Wy-y
/e = max{0,-i}
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On the other hand, applying (2.12) to the right-hand side of

( fd ,-3 t f/G<% + 1 > _,= Σ
m = 0

we have

\{zdy-ydz)
kG^k+u_^Makbi + k + 1~K\y\ + \z\)kkl

Hence ξ.j is a matrix-valued holomorphic function of x in the domain 2ab(\y\ + \z\
< l,(y,z)eU in C 4 with the estimate

fc = max{O,-i}

= Mflmax{0, - l}foί+l-J + max{0,- /}(|jj| + |^max{0,- i y ^ _

1~j, if i^O, (2.13a)

^-^ly l + lzIP, if i < 0 . (2.13b)

Now, the uniform convergence of the Neumann series in (2.5) can be checked
as follows. First, if 2ab(\y\ + \z\)< 1 and (y,z)eU, we can prove the following
estimates for k ̂  1 by induction:

|the ((/) block of f*_}|

g S ^ - ^ ^ - V " 1 - ^ - 1 - ^ ! + |z|)k-1- i for iJ<0. (2.14)

When k = 1, this is nothing but (2.13b). Suppose that (2.14) is valid for k. Then

from (2.13b) and the assumption that 2ab(\y\ 4- \z\) < 1,

m < 0

m < 0

This completes the induction. On the other hand, summing up the right-hand side
of (2.14) over k ̂  1, we get an infinite series which converges uniformly in the
domain V = {x = (y,z,y,z)eC4;2ab(\y\ + \z\)< 1, 8Mrab2(\y\ + \z\) < l,(y,z)eU}
and coincides with 2Ma~ib1~j(\y\ + \z\)~i/(l-4Mrab2(\y\ + \z\)). Hence the
Neumann series in (2.5) converges blockwise uniformly in V, and defines a
matrix-valued holomorphic function in V with the estimates

\the(ij)blockoϊξ[_1

)\^δij + 4Ma-ib1-j(\y\ + \z\)~\ (2.15)

Finally, (2.13a) and (2.15) show that ξ(+)ξ^J) = (Gi+lί_j)i>0J<0 defines a
matrix-valued holomorphic function of x in V with the estimates

\Gi+i,-j\^r Σ i L
m < 0
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S (2Mr + 16M2rαZ?2(|y| 4- |z|))6 ί+ * -•>'. (2.16)

00

This shows, in particular, that W=lr— ]Γ G{-X~i converges uniformly to

define a matrix-valued holomorphic function of (x,λ) in a neighborhood of
(x,/l) = (0, oo) in C 4 x P 1 . (As a matter of fact, (2.16) also implies the convergence of

00

Σ Guμ~ iλ~j in a neighborhood of (x,2,μ) = (0, oo, oo) in C 4 x P1 x P 1 ) This

completes the proof of Theorem 7.

3. Construction of Transformation

In this section we discuss transformations acting on the space of solutions to (0.3).

3.1

We first consider the formal aspects.
As the data for a transformation, let us consider an oo x oo matrix P = ( P 0 ) ί J e Z

(with Pij€^(r,C[\_x]']) satisfying the following conditions

[Λ, P] = 0, [ - Λdy + dz, P] = 0, [Λd2 + dr P] - 0. (3.1)

(If necessary, we may suppose that the blocks P{j depend on some other variables
parametrizing P. Later we shall encounter such a case.) Note that the first condition
in (3.1) means that P has the form

j i i j j ^ m (3.2)

and that in terms of the generating function P = £ Plj the remaining ones read

( - λdy + d2)P = 0, (λdz + df)P = 0.
The transformation associated with P is constructed as follows. Let ξ =

(ξij)ieZJ<o ( w i t h £ije?S(r> C [ [ * ] ] ) ) be a solution to (0.3). Then P£ satisfies (1.5) and
(1.14), but not (1.6). In order to achieve (1.5), we perform the procedure mentioned
in Remark (i) at the end of Sect. 1. Namely, dividing the matrices ξ and P into
the blocks of the form

with 1 =(<$ yUj<o and G = (ξtJ)^0J<09

/P^PΛ
— I wi th P — (P ϊ P — (P λ

and multiplying P^ by (P2 + P4G)~1 on the assumption that P1 + P4<G is invertible,
we finally obtain the matrix

( l \ (3.4)
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which satisfies (0.3), where

PoG =(P>2 + P)

3G)(P)

1 -f P ^ Γ 1 . (3.5)

Thus we have shown that any matrix P satisfying (3.1) induces the transfor-
mation £->Po£ i n the space of solutions to (0.3) (as far as we can justify the
definition of P°ξ.) Also, it is remarkable that in terms of the matrix G this
transformation have the form of a linear fractional transformation G -• P~° G of
oo x oo matrices. This fact seems to suggest some relation to the discussions of
Hauser and Ernst [19, Sect. V].

It is also possible, at least formally, to derive the associated infinitesimal
transformation. To see this, we set

p = u + εp? p =

and calculate P°G modulo ε2, i.e. to the first order with respect to ε. Since
P x = 1 + εP1 and P 3 = H + εP 3 , they are to be considered invertible with P ^ 1 =
11-εPi and P ^ 1 = 1 - εP 3 modε 2 . Hence H + P ^ P f 1 = 1 + εP4G(1l - εPt) =
H + εP 4 G mod ε2, so that

(D + P 4 G P " 1 ) " 1 Ξ 1 - ε P 4 G m o d ε 2 .

Similarly,

P 2 P ~ 1 + P 3 G P ~ 1 Ξ εP2(H - εPj) + (H + εP3)G(H - εP χ)

= G + ε(P2 + P 3 G - G P J m o d ε2.

Hence we obtain the following representation of the infinitesimal transformation
with generator P:

(ί + εP)°G - ( P - P " 1 + P3GP~1)(11 + P 4 G P " 1 ) " 1

= G + ε(P2 + P 3 G - GP X - GP 4G)mod ε2.

This representation is very similar to those presented in [12], though they are
basically different from ours: The characteristic matrices used in [12] for
representing the infinitesimal transformations are associated with W+ of the
pair (W+, W_) in the Riemann-Hubert problem, while our W corresponds to W_ .
(Here the notations are the same as those used in Sect. 4).

We can also describe the effect of the above transformations on the initial
values. As can be checked easily, ξ -> P ° ξ induces the transformation ξ(0) -> P ( 0 ) ° ζ(0\
where ξi0) = ξ\y = z = 09P

{0) = P\y = z = 0, and P(0>o£(0) j s defined in the same way as
the definition of P ° ξ, and the latter transformation uniquely determines the former.
The second and third conditions in (3.1) imply that P is recovered from P ( 0 ) by

P = Qxp(zAdy-yΛdz)Pi0\

and the only condition to be imposed on P ( 0 ) is that [A, P ( 0 ) ] = 0, so that P ( 0 ) is
written in the form P ( 0 ) = (Pψ^l /f=7 with
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3.2

We here consider, as examples of the cases where the above arguments are
rigorously justified, two important classes of transformations. We call them the
transformations of type I and type II respectively. They are defined by the following
conditions imposed on P ( 0 ) = (P<°_>.).j62.

Type I: Pj o ) = 0 for j > 0 and P<°> = 1Γ.

Type II: Pf] = 0 for < 0 and P[)

0) is invertible.

In the case of the transformations of type I, the definition of P°ξ is justified
as follows. From (3.5) and the conditions imposed on P ( 0 ) , we have

oτdx(Pj-δJ0lr)^j+l for 7^0.

Bearing this fact in mind, we can show in the same way as the discussions developed
in Sect. 2 that the product (P 2 + P 3 G) (P 1 + P4<G)~1 can be defined a s a n o o x o o
matrix consisting of r x r blocks e^/(r, C[[x]]), where the inverse of Pt + P 4 G is
given by the Neumann series

(P x + P 4 G ) " 1 = ί + X (1 - Px - P4G)fc.
fc=l

The effect of the transformations of type I on the space of initial values is
extremely simple. To see this, we recall the correspondence W(0)-^ξ{0) mentioned
in Remark (ii) at the end of Sect. 1.

Proposition 9. The transformations of type I induce the transformations W{0)

Proof From formula (1.9) applied to ξ(0) we have

S — \yy ί - j )ieZ,j < 0 V vv i - j)ί,j < 0 •>

so that

= (Pj - 1 'ije l\W i- j)i,je Z \Pij ̂  r)ie ZJ<0\ ^ j - Ui,j < 0 \P j - i\,j < 0

= ( ™i - j )ie Z, j < 0 ( Wi _ j)ιj < o •>

where Wf] = Wf* = 0 for j < 0, and Wf\ W^*, j ^ 0, denote respectively

the coefficients of W^P^'1 and p^Wi0)-\ i.e. |^(o)p(O)-i= £ tyfχs,
7 = 0

oo

p(O)p^(o)-i = ^ wf^λ'K This proves the proposition.
7 = 0

This proposition shows that the totality of the transformations of type I
constitutes a group isomorphic to the group {Pi0);P(0) = Yjj^0Pf)λ\Pf)e^
(^,C[[x]]),P (Q ) = lr}, whose group structure is defined by the usual product
p(0)? p(o) _̂  p(0)p(0) ^ o t e that this group acts transitively on the space of all the
formal power series solutions to (0.3).
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In the case of the transformations of type II, we may use the matrix-valued
variables Pfp

]

σ, 7, p, σ ^ 0, defined by the expansion
00

jr= Σ
p,σ = (

to parametrize the matrix P in the form

P = Σ P[
j,p,σ=0

where Pfp\ is identified with the 00 x 00 matrix (P(jO

p

}

σδij)ίjeZ. Then we can
justify the definition of Poξ in a suitable noncommutative algebra of formal power
series of x,P$l and PjJJJo1, extending the algebra ^ [ r , C [[*]]) ,

We, however, omit the detail of these discussions, since introducing the
matrix-valued formal variables makes the algebraic setting much too complicated.
Instead, let us consider below a simplified case. Even in that case we can see the
essence of the discussions to be developed in the general case.

What we here consider is the case where Pf\j ^ 0, are diagonal matrices. In
this case we can introduce new independent variables t = {t{%)

pσ)1^aύrnpσ^0 to
parametrize P in the form

P = exp ( Σ Σ ^iK^y + ΛzY(z + Λy)\ (3.6)
\α= 1 n,p,σ = 0 /

where £ α , l ^ α gr, denote the oo x oo matrices

which from now on we often identify with the r x r matrices {δ^δ^)^ <β y<r> Note
r

that Ea, 1 ^ α ̂  r, and A commute each other and satisfy the formula Σ E* = '"
a— 1

Let us consider the justification of the definition of P°ξ, which from now on
is denoted by ξ(x,t) (for the later use), i.e.

(3.7)

Here G 7 (x, t), i^. l,j^ 1, denote the corresponding characteristic matrices (cf.
Proposition 4). According to the construction of transformations presented before,
ξ(x, t) is to be defined by

where

We now introduce an algebra C[[x, ί ] ] of formal power series of x and t by

C[[x,ί]] = {/;/= Σ Λ,/

(
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where the notation o r d t f n ^ n means that fn is a linear combination,
with coefficients in C[[x,ί (

0^0(l ^ α ^ r ) ] ] , of only the monomials of the form
' * ? P U feU w i t h n1+p1+σ1+n2 + p2 + σ2 + - ^w. Then we can show
in the same way as the discussions in Sect. 2, using ordt instead of ordx, that the
inverse ξfaή^L] and the product ξ(x, t)ξ(x, t)[J} can be defined as ooxoo
matrices with blocks in ^/(r,C[[x,ί]]), and that ordt [the (ij) block of ξ(xit)^1

)']
^j-i(ί^j). In particular, G t./x,i)e^/(r,C[[x,i]]).

3.2

The transformation ξ -»ξ(x, t) turns out to have a remarkable feature. Namely,
this induces a hierarchy of nonlinear differential equations which are similar to
the AKNS systems [20] and consistently coupled with the self-dual Yang-Mills
equations, as we shall see below.

First, in terms of ξ(x9t) we have

Proposition 10. ζ(x,t) satisfies the equations

(-Λdy + di)ξ(x, t) + ξ(x, t)A(x, t) = 0,

(Λdz + djξ(x,ή + ξ(x,t)B(x,t) = 0,

Λξ{x,t) = ξ{x,t)C(x,t), (3.10)

and

Bξ{x, t)/dή$σ = EaΛ"(y + Λz)»(z ~ Λy)σ{x, t) - ξ(x, t)C%σ(x, t) (3.11)

for 1 Ξ α ^ r and n,p,σ^ 0, where

0 /

C(x, t)zf{z - C(x, t)y)σ. (3.12)

Proof. Note that by virtue of (3.6) and (3.9) ξ(x,t) satisfies

( - Λdy + d,)l{x91) + ξ(x, t)A = 0, (Λdg + d-)ξ(x, t) 4- ?(x, t)B = 0,

Λξ(x, t) = ξ(x, ί)C, θ?(x, t)/dt%σ = EaA\y + /lzT(z - Λyfl(x91\

where ^ , B and C are the same as those given by (1.7) and (1.15). The argument
developed in Remark (iii) at the end of Sect. 1 can be easily generalized to conclude
that the above equations satisfied by ξ(x,t) imply (3.10)—(3.12). This proves the
proposition.

oo

Next, let W(x,t9λ)= £ Wfx,t)λ~i denote the formal power series cor-

responding to ξ(x, t) via the correspondence established in Sect. 1, i.e. W0(x, t) = l r

and W(x, t)= — Gxfx91) for 7 ̂  1. In terms of W(x, t, λ) we have



52 K. Takasaki

Proposition 11. W(x,t,λ) satisfies the equations

(-λdy + δz + Az{x, ή)W(x, t, λ) = 0,

(λdz + 3- + A-(x,t))W(x,t,λ) = 0, (3.13)

and

dW(x,t,λ)βή$σ = B%σ(x,t,λ)W(x,t,λ,)~ W(x,t,λ)Exλ"(y + λz)»(z- λy)°, (3.14)

for 1 ^ α ̂  r and n,p,σ^. 0, where

Ay(x, t)=- d2Wλ{x, t), Az(x, ή = dyW^x, t),

B%o(*,t,λ)= Σ Σ Wk{x,t)EaW*m_k(x,i)λn-m'
m=0fc=0

ΰ^(x,u)= Σ Σ (p

n
p' = O<τ' = O \ P /

B{:lP-+β oo(x,tΛ (3.15)

and Wf(x, t),j^O, denote the coefficients of W(x,t,λ)~ι, i.e.

7

As a corollary of the above propositions, we find, after some calculations, that

l-λdy + d-z + A-Z(x, t), λdz + dy + A-(x, ί)] = 0,

l-λdy + d-z + A-Jtx,ί),5/5i^ - Bnt(^ί,^)] = 0,

x, ί), δ/5ί̂ >ff - B$σ(x91, A)] = 0,

C ^ ^ ί. AX a/δίg;>v - B<?;>V(X, ί, A)] = o,

for 1 S <x, α' ^ r, and w, n', p, pr, σ, σ' ^ 0. (3.16)

If we forget the dependence on x, the last equations in (3.16) are generalizations
of the AKNS systems [17] to the rank r case. The whole system (3.16) provides
a consistent coupling of them with the self-dual Yang-Mills equations.

Now, let us proceed to the proof of Proposition 11. We shall prove the
equivalence of the equations imposed on ξ(x, t) and those imposed on W(x91, λ).
Since the equivalence of (3.10) and (3.13) has already been established in Sect. 1,
it remains only to prove that of (3.11) and (3.14). We shall, at first, consider the
case where p = σ = 0, for simplicity. The general case will be discussed later.

To begin with, we rewrite the equation for ρ = σ = 0 in (3.11) in terms of
generating functions of G^x, t). First, comparing the "upper half" parts of both
sides of the formula Λnξ(x, t) = ξ(x, t)C{x, t)n (cf. Remark (iii) at the end of Sect. 1)
and multiplying them by Ea, we have

By virtue of this formula, we can rewrite the equation for p = σ = 0 in (3.11) into
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the equation

dG^x9y)/dt% = EaGi+nJ(x,t) - Gi+np9t)EΛ - £ G i f ϊ l_m + 1(x, t)EaGmj(x,t).
m = l

Finally, we can once more rewrite them in terms of generating functions of
Gy(x, ί) with indeterminate variables λ and μ to obtain

oo oo n oo

= μ"Ex Σ Gfaήμ-'λ-l-λ" Σ GιJ,x,t)μ-iyiEa+ Σ Σ GJ^^μ^X'-'E.

n oo « oo oo

- £ « Σ Σ G t/*,ίμ-y-'- Σ Σ G,,I1-Ill+1(χ,ίμ-'£a Σ Gj,x,t)μ-κ
i=ίj=l m=ίi=ί j=ί

(3.17)

To calculate the right-hand side of (3.17) further, we prepare the following.

Lemma 12. We have

i - 1

k=0

Proof. The calculation in the proof of Proposition 4 shows that Gtj{x91) =

l j , ή . Hence

oo oo 7 ~ 1

Σ G f/x,φ-'= Σ ^f(*,ί)Aί-' Σ
i = l ί = i fc = o

- J Σ ΐ wz_k(x
m=ί fe=0

m - 1

While from (1.10) we have £ ^m-fcθM)WiCM)= - ^ , ( ^ 0 f o r m - L τ h u s

the first formula of the lemma follows. Similarly we can check the second formula.
This proves the lemma.

Let us rewrite (3.17) in terms of W(x,t,.) and B$0(x,t,.). First, applying the
lemma to the right-hand side of (3.17), we can rewrite (3.17) into the following
equation

oo 00 oo

d Σ Gificήμ-'x-'/dή&o-μΈ, Σ G^t^-Ά-^-λ- Σ cjix,t)μ-'λ-%

+ W(x,t,μΓinΣ W"'1 + W1(x,t)μ"-k-2 + - + Wn_k_ι(x,t)Ex
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- {μn~x + μn~2λ + + μλn~2 + λΛ" ^ E .

Then, multiplying both sides of the last equation by λ — μ, and using (1.11)
and the formula defining B^0(x,t,λ) in (3.15), we finally obtain, after some
calculations, the following equation

d(W(x9t9μ)-ιW(x,t,λ))/dtM0

= μnEaW(x, t,μ)-1 W(x, t9 λ) - λnW(x, t,μ)~ι W(x, ί, λ)Ea

\ t 9 λ ) 9 (3.18)

which is equivalent to (3.17).
We now find that (3.18) is equivalent to the equation for p = σ = 0 in (3.14).

To see this, we once more rewrite (3.18) in the following form:

(dW(x9t9λ)/dt%>0 - B$0(x9t9λ)W(x9t9λ) + λnW(x9t9λ)

= {dW(x9t9μ)/dt% - B%(x, t9μ)W(x9 t9μ) + μnW(x9 Uμ)Ea)W{x, Uμ)'1.
(3.19)

Then we see immediately that both sides of (3.19) vanish. In fact, (3.19) implies
that both its sides are independent of λ and μ9 but the definition of B{$0(x,t9.)
in (3.15) shows that both sides of (3.19) are allowed to contain only the negative
powers of λ and μ: Hence they must vanish. Thus we have shown that (3.19) is
equivalent to the equation for p = σ = 0 in (3.18), and this proves the equivalence
of (3.18) and the latter equation.

Thus we have proved the equivalence of (3.11) and (3.14) in the case where
p = σ = 0.

The equivalence in the general case follows from entirely parallel (though more
complicated) calculations. The following argument will help us: Using the last
formula in (3.12), we can derive from (3.11) the following equation

d ^ Gij(x9 t)μ ιλ j/8t{^σ

p σ / \ / \ oo

= y V I il \yp~p'zp'zσ~σ(—vY d y G(xΛ

Hence we have

-it
p' = 0σ' = 0

Now we can apply our previous calculations to the right-hand side of this
formula. In this way we can deal with the general case, utilizing the previous
discussions.
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4. Concluding Remarks

4.1

We have thus far developed our discussions mainly in terms of the matrix ξ. Let
CO

us now consider what could be said about W= £ Wjλ~j. In fact, in terms of

W we can disucss the relation of our method to the method of Mulase [3] and
the Riemann-Hilbert problem. We here add some comments on this subejct.

In [3] soliton equations are formulated as the zero-curvature conditions of
connections of an infinite dimensional vector bundle whose structure group is a
formal Lie group of microdifferential operators, and a kind of "factorization" of
formal microdifferential operators is effectively used to construct all the formal
power series solutions.

We can develop entirely parallel discussions for the self-dual Yang-Mills
equations, replacing microdifferential operators by formal Laurent series of λ. A
key lemma in these discussions is that the solution to the intial value problem of
(1.4), mentioned in Remark (ii) at the end of Sect. 1, is uniquely characterized by
the condition

W-expizλdy-yλdJWW-'eptfaClfoλm (4.1)

(i.e. by the condition that W-exp(zλdy — yλdz)Wi0)~1 does not contain the negative
powers of λ). We can derive this fact from our previous discussions. In fact, it is
easy to show that (4.1) is equivalent to the condition

(W_j)jeZΞ = 0, (4.2)

where we set W = 0 for j < 0, and (4.2) follows from (2.2), (2.10) and the formula
(W_j)jeZξ = 0 (this is equivalent to (1.8)) connecting W and ξ. Further, we can
recover W directly from (4.2) by

Here the invertibility of 1Ξ(_) can be easily checked in the same way as in the case
of H in Sect. 2. (To tell the truth, all the characteristic matrices of W have such
expressions in terms of Ξ, since we have ξ = ΞΞ^ by virtue of (2.10).) Also we
can show that the transformations discussed in Sect. 3 have a similar character-
ization. Let W-+P°W denote the transformation induced by ξ-+P°ξ, where
P = Σ Pjλj> Then P° W is uniquely characterized by the condition

(PoW)PW-1 e?S(r, C[ [x, λ~\ ]). (4.4)

We next show that (4.1) is closely related with the Riemann-Hilbert problem.
To see this, we first review the setting of the Riemann-Hilbert problem (in a
localized situation). Let C be a circle centered at the origin in the Riemann sphere
P1,C+ and C_ respectively the inside and the outside of C, and u(x, λ) an invertible
r x r matrix-valued holomorphic function defined in a neighbourhood of {0} x C
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in C 4 x P 1 such that

( - λδy + ez)u(x, λ) = 0, {λdz + dy)u{x, λ) = 0. (4.5)

The Riemann-Hubert problem requires us to find invertible r x r matrix-valued
holomorphic functions W+(x,λ) and W_(x,λ) defined in some neighborhoods of
respectively {0} x ( C u C + ) and {0} x ( C u C _ ) in C 4 x P 1 such that

W+(x,λ)u(x,λ) = WL(x,λ) on C, W. (x, oo) = 1,. (4.6)

If this problem has a solution, then the usual argument (see [6,11,12,16,17])
shows that W+(x,λ)and W_(x,λ) satisfy (1.1)for some A- and A-Z,so that we obtain
a local holomorphic solution to (0.2). This is the general pattern of applying the
Reimann-Hilbert problem to the self-dual Yang-Mills equations. Now, in
order to connect this with condition (4.1), let us consider the initial values
Wi°)(y9z,λ) = W±\9=-z = 0 and ui0)(y9z9λ) = u\-y = -2i=0. Of course from (4.6) we have
Wi°)(y9z9λ)uiO)(y9z,λ)=WM(y,z9λ). On the other hand from (4.5) we have
w(x, λ) = u{0\y + λz,z — λy9 λ) in a sufficiently small neighborhood of x = 0. Com-
bining these formulas, we can eliminate u(x9λ) from (4.6), and finally obtain the
following:

W_(x,λ)W{^(y + λz,z- λy9λ)~ι = W+(x9λ)W^(y + λz,z- λy9λ)~K (4.7)

This shows that the Laurent expansion of W-(x9λ) in C u C _ (it is a convergent
power series of λ~ *) satisfies (4.1). In fact, the right-hand side of (4.7) is holomorphic
in a neighborhood of {0} x ( C u C + ), so that it can be expressed as a convergent
power series of (x, λ) in the same domain. Thus we find that (4.7) gives a counterpart
of condition (4.1) in the framework of the Riemann-Hilbert problem.

Thus we have seen the relation between our method, Mulase's method and
the Riemann-Hilbert problem. Although we can deal with all the formal power
series solutions to (0.2) (which constitute a class of solutions much broader than
that discussed by the Riemann-Hilbert problem) from our point of view, the
relation pointed out above between these methods is still very suggestive.

4.2.

Let us now summarize this paper. First we have introduced an oo x oo matrices
ζ = (ζij)iezj<o consisting of ?έ(r, C)-valued unknown functions ξtj together with
Eqs. (0.3), and established a correspondence of solutions between Eqs. (0.2) and
(0.3). By virtue of these discussions we have been able to convert our original
problem of describing the structure of solutions to (0.2) into a similar problem for
Eqs. (0.3). Next we have shown that both solutions to (0.3) and transformations
acting on these solutions can be explicitly constructed by the following simple
procedures manipulating oo x oo matrices: ξ(0) -• Qxp(zΛdy — yΛdz)ξi0) -> ξ,
ξ -* Pξ -• Po£. These results, which are very similar to those of Sato [1] for soliton
equations, reveals, in terms of ξ9 the very simple structure hidden behind the
original form of the self-dual Yang-Mills equations. Also, in terms of the unknown

oo

function W = £ Wjλ~j of the linear system of Belavin and Zakharov [10],
j=o
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we have seen that we can develop analogies of the discussions of Mulase [3]
devoted to soliton equations, and from this we have found the relation to the
Riemann-Hilbert problem.

It is remarkable that the self-dual Yang-Mills equations admit such an approach
parallel to Sato's approach to soliton equations. As for soliton equations, i.e.
completely integrable systems in lower dimensions, rich experience has been
accumulated for many years. Among them Sato's theory seems to provide the
most universal description of their hidden structure. On the other hand we do not
yet know much about higher dimensional completely integrable systems. Hence
generalizing Sato's theory to the higher dimensional cases, for example, is now
one of the most challenging problems. Further development of our discussions in
this direction may lead to a better understanding of completely integrable systems
in higher dimensions.

Appendix

The structure of the matrix ξ{ + )ξ[L})9 which appeared in Sect. 2 in the description
of the evolution ξ{0)^>ξ, is still less clear, since we there constructed the inverse
ξ[L\ by using the Neumann series (2.5). We here discuss an idea to give more
explicit expressions of the components of ξ{ + )ξ['-\ = (G i+lϊ_</) i^Ofj<o by using
some determinants of oo x oo matrices.

We begin with a formula of linear algebra. Let A = (%)i^ij^N be an invertible
N x N matrix, and / = {fj)i^j^N a n d 0 = (θdizi^N respectively a row vector and
a column vector of size N. Then simple calculations of linear algebra yield the
formula

We want to establish this formula in the case where N = oo.
To consider this problem, we suppose that A has the form

A = lN + X,lN = (δij)^^, X = {XihztjzN. (A.2)

Then we have

N

det(lw + X) = 1 +• Σ Σ det(x^)1Sβ,tSk,
fc= 1 1 ^ ί i <...<ik^N

-r.+ i Σ
fc=l ί ^ i ί < . . .

which are finite dimensional analogues of the well known Fredholm determinant
and minors. Hence we may expect that even if N = oo, formula (A.I) holds true
by defining the determinants in (A.I) by (A.3), whose right-hand side terms then
become infinite series.
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In fact, we can justify (A.I) for oo x oo matrices of the form A =ί + X,f =

(fj\*j<«> a Π d 9 = (0i)l*i<«> W ί t h ^=(δij)l*lJ<a0>
 X = (Xi])l*tJ<«> a Π d Xij>fj>

^.eC[[x]] , on the assumption that

oτdχXiJ = [(i - l)/r] + 1, ordJcgfi = [(i - l)/r] + 1 for ί, j = 1, (A.4)

where r is a positive integer and the sign [•] denotes the operation of taking the
integral part. Here the inverse of 1 + X is defined by the Neumann series

OO

(1 -hX)" 1 =11 + Σ (— X)k, whose validity can be easily checked in the same
fc=l

way as the discussions in Sec. 2 by virtue of (A.4). The determinants in (A.I), on
the other hand, are defined by directly applying (A.3) to the case N = GO, and the
infinite series appearing in the right-hand side of (A.3) actually define certain
elements of C[[x]] by virtue of (A.4). (We can prove the above result by
approximately X, f and g respectively by the matrices χ(N\fW and g(N)

(N = 1,2,...) of the form

X(N) = (x(u°)i*u<oo' xTj] = XifiJ =N), = 0 (otherwise),

f(N) = ( / (N ) } i ^ ^ fψ) = fj{j S N ι = o (otherwise),

g{N) = ( Λ *i <oo, g\N) = gjίi SN\ = 0 (otherwise).

Note that at the stage of the Nι approximations X(N\ f{N) and g(N\ the formula
which we want to establish is reduced to its counterpart for matrices of finite size,
namely (A.I) for N < oo.)

Now let us apply formula (A.I) (which we have just generalized to the case
where N = oo), replacing A, f and g respectively by ξ{-h(

teaξk-ίJ)j<0 and
(δi,-meβ)i<o> w n e r e %,β= l,...,r,k,m = 1,2,...,and ea denotes the column vector
ea = (δaβ)i^β<;r- Recall here that ξ{_} = 11+ ξ(_}, and that | ( _ } satisfies (2.4). Hence
we can certainly apply formula (A.I) to the case where A = ξ(_y Thus we obtain
the following expressions of the components of Gkm:

%Gkmeβ = - det( A ' ^ - ^ V d e t ^ . (A.5)

Furthermore, formulas (A.5) give convergent expressions of the components of
Gkm in the case dealt with by Theorem 7. We can show the convergence of the
infinite series defining the determinants in (A.5) as in (A.3), using Hadamard's
inequality: Recall that Hadamard's inequality asserts, for any k x k matrix
(bij)izijzk w i t n t n e estimates |b o | = Ccidi for 1 ̂  i, j ^k for some constants C,c{

and di9 the following inequality

|det(6..),stJ*k\ g(C^kf Π (cA). (A.6)
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