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Abstract. Existence and hyperbolicity of fixed points for the map Jfp'.f{x)
-^λ~1fp{λx), with p p-fold iteration and λ =fp(0) are given for p large. These
fixed points come close to being quadratic functions, and our proof consists in
controlling perturbation theory about quadratic functions.

1. Introduction

The main theme of this paper is another manifestation of the observation "highly
iterated maps are quadratic functions," made by Jakobson [1], Milnor [2],
Guckenheimer [3], and Benedicks and Carleson [4]. We shall elaborate on this
idea and use it to give a simple proof of Feigenbaum universality for certain classes
of functions.

We consider maps in a class of function Ί)p which we shall describe now
informally and in more detail below. We shall say that feT)p if / : [—1,1]
->[— 1> 1]> fE^2 (in fact> w e s n a l l w o r k with analytic functions below), / (0)= 1,
/"(0)<0, and, most importantly, / permutes cyclically p disjoint intervals
JO,JU...,JP with 0 G Jo. The intervals are supposed to be arranged as follows and

h Jp-1
H H

Fig. 1 λ

the endpoints of Jo are fp(0)<0< —fp(0). Under these circumstances, setting
λ=fp(Q^ one can show, see Collet, Eckmann, and Lanford [5], that Jfpf(y)

1

I-1

is now :If feΊ)p is not too far from being a quadratic function, then the same is true
for Jίpf. Following Guckenheimer, we measure this deviation from being

= -fp(λx) is again a map of [— 1,1] to itself and (jVpf)(0) = ί. The contention
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quadratic by the quantity

If/ is an even quadratic function, then G/=0. Given p and feT)p with \Gf(x)\
<4~p|x|, then, under mild additional conditions to be given in detail below, we
have \G{Jίpf){x)\ <4~p |x|. Thus, for large p, Jίpf remains almost quadratic if/ is
almost quadratic.

The above observation (that Jίpf is almost quadratic) is part of a more general
phenomenon (not restricted to quadratic functions) which we describe now.
Consider a function g with a quadratic critical point x0 which is not a periodic
point of g. Assume

i) some iterate of x0 falls onto a linearly unstable periodic orbit of g,
ii) a sequence of preimages of x0 accumulates at this unstable periodic orbit.
Under these circumstances, there are neighborhoods U of g in <$2 and Vp of x0

in IR (or (C) such that the following holds: iίg^sU satisfies g{(Vp) e Vp then g\\Vp

deviates by γ ~p from being a quadratic function. (In this paper, g = 1 — 2x2, x0 = 0,
the unstable periodic orbit is —1, y = 4, Vp = {x||x|^const4~p, with a small
constant}.)

We are interested in a fixed point for Jίp, and the previous discussion shows
that the fixed point, if it exists, is to be sought among functions / with \Gf(x)\ very
small. This observation can be put to work, and perturbation theory about
quadratic functions is straightforward (although long) to control.

In the space of even analytic functions, we show that JVp has a fixed point f*,
for which DJfp{f*) is hyperbolic with one eigenvalue δp > 1 and the remainder of
the spectrum inside the unit disk, and, hence, by the analysis of Collet, Eckmann,
and Lanford [5], Feigenbaum universality [6] will hold in this class.

In order to orient the reader, we list here the leading behaviour of the various p
dependent quantities. We shall find

^ ( / ; ) p ( 0 ) ~ - | 4 2 - ' ~ -0.3927.

12R
<5 ~ 162-*p 3π2

Furthermore, the eigendirection of δp is approximately x2, while the contracting
subspace is given by functions vanishing at 0,1 (and — 1, since we consider even
functions, only).

Finally, let us remark that the case p = 2 is the one originally considered by
Feigenbaum [6]. Our estimates are not good enough to yield existence of the fixed
point for p = 2, but we hope that they shed some more light on the existing proofs
for that case, in particular, the one by Campanino, Epstein, and Ruelle [7]. A way
to explain the necessity of complicated proofs for the p = 2 case can then be seen in
the observation that although GJί2f becomes small, the smallness obtained is not

1 A related observation was made by Geisel and Nierwetberg [9]
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sufficient, and higher order terms must be considered. This is manifest in [7] and
also in Lanford's proof [8].

The remainder of this paper is organized as follows. In Sect. 2, we give precise
formulations of our results and discuss the functional-analytic parts of the proofs.
In Sect. 3, we study functions / which are close to the function 1 — 2x2, In Sect. 4,
we construct an approximate fixed point fp for the operator Jίp, and we study a
small neighborhood of fp in function space. In Sect. 5, we study the linear
operator D Jίp.

2. Notations and Results

We denote Ήp the space of analytic functions on {y\\y\ <p}, which are bounded on
\y\ r^p, and which are even, have real coefficients when expanded around zero, and
vanish at y = 0.

We shall use, for every p, a polynomial

Ep(x) = EpΛx
2 + Ep,2x\ £ p ( l ) = l , (2.1)

where EpΛ-l=Θ(4~p)9 Epa = Θ{4'p). This function will turn out to be an
approximate eigenvector oiDJfp, for reasons which are explained towards the end
of Sect. 4, and which become clear in Sect. 5. We give below an implicit definition
of Ep, cf. Eq. (2.12). Once, the function Ep is given, the following construction
makes sense. Every function h in Ή.p can be uniquely expanded as

p x), (2.2)

where/ί1(0) = A1(l) ί = h1(-\)1=0. We set

«P = 3 p , (2.3)

and we equip ΊΆp with the norm

IIΛIIp^plΛol + lftil,, (2-4)

where

\hx\p= sup Mz)\. (2.5)

For convenience, we call this the decomposition H p = I p
We denote by / the set of functions / e ^ 2 , mapping the interval / = [—1,1]

into itself and satisfying

) = l
(2.6)

xf'(x)<0 for xe/\{0}.

The set Ί)pCf is the set of those functions which "exchange p disjoint intervals,"
J 0 ,J 1 , . . . ,J p _ 1 , where

Jo = [/p(0),-/p(0)L

and



498 J.-P. Eckmann, H. Epstein, and P. Wittwer

The intervals are supposed to be arranged as in Fig. 1. For feΐ)p, we define

(2.7)

^p?

where λ=fp(0). It is easy to see that feT)p implies Jfpfef, see e.g. Collet,
Eckmann, and Lanford [5]. Below, we shall formulate results which guarantee the
existence of Jίp as a map in function space, (viz H p +1).

Conventions, (i) All theorems, propositions, and lemmas are to be implicitly
supplemented by the statement "There is a p0 < oo such that for p > p0 one has ... ."

(ii) All constants Kπ9 Kλ,..., C l 5 C 2,... are independent of p, of integers kj,...,
and of the functions in relation to which they occur. The order symbol G is also
independent of such quantities but G(4~p)x is a shorthand notation for x u(x),
u(x) = Θ{4-p).

(iii) The constants Kπ,..., retain their meaning throughout the paper, while
C l 5 C 2,... keep their meaning only through a single proof.

We now list the theorems which are needed for the proof of the existence of a
fixed point for Jίp and its hyperbolicity, as outlined in the introduction. These
theorems are chosen in such a way as to allow an application of the contraction
mapping principle (in a way similar to Lanford's argument [8]). The final result
will be formulated in Theorem 2.4.

Theorem 2.1. For every sufficiently large p, there is a polynomial fp, of degree four,
such that fp e T)p and

p 6 - γ . (2.8)

The function fp will be constructed in Sect. 4. It is of the form

fp(x)=l-μpx
2 + Ka4-"x4, (2.9)

where Ka is a universal constant, and μp is implicitly chosen by the condition

i.e./,(l) //(0) =//'(<)).

Definition. We denote 93P the set of feMp +1, for which

UZ-Zpll^io-y. (2.Π)

Definition. The function Ep(x) is given by

(This is essentially the projection of the function 1 parallel to fp(x) — xfp(x) [ = the
eigenvector with eigenvalue one of /-»/°... °f (p times)], into Mp.)

Theorem 2.2. Assume / e S ^ . Then

})f\if
ii) Jίpf, as given by Eq. (2.7), is defined and is in H p + 1.

iii) Jί f extends to an analytic and bounded function in \y\<2p.
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iv) Jίp is infinitely differentiable from 23 p to Mp +1.
v) For any f in the ball 93p, DJίp(f) is a compact operator on Mp.

Theorem 2.1 will be proven as Theorem 4.3. Theorem 2.2i) is Remark 4.2'.
Theorem 2.2ii), iii) is immediate from Corollary 4.4. Theorem 2.2iv), v) follows from
ii), iii), by MonteΓs theorem, cf. Collet, Eckmann, and Lanford [5].

We next concentrate on the tangent map DJfp(f\ and we show it is hyperbolic
for fe 23p. We identify Mp with R © H ; , cf. (2.2)-(2.5), and we write DJίp as a matrix

Λ o ( / ) A01(f)

where Aoo e R , i 0 1 e M'*, Λ10e Mp, and AX1 e J£{M'p, M'p). Our main estimates are
summarized in

Theorem 2.3. // /e23 p , then we have

\\Aί0\\m,p<fypp20,

\\A0l\\M,*<12pp2,

where Koo is a universal constant.

32 °° 128

^ Π 2 ( 2 " ' - 1 ) ^ δ

3 j=

In fact, K o o = - Π cos2(π2~ / ~ 1 )= ^-^ ^4.323037. [This number should be

compared with Feigenbaum's constant (case of p = 2), δ = 4.6692... .]

Proof. The theorem is a consequence of the results of Sect. 5 and the definition of
the || \\p norm. Aoo is estimated in Proposition 5.1. In Proposition 5.2, we show

\(AEp)(z)-Ep(z)(AEp)(\)\^Θ(φpp19), if \z\^p.

Note that | |E p | | p = αp9 so that \\AX0\\m,p<%p\§pp2Q = φpp20, as asserted. In
Proposition 5.3, we show that for heMp, \Ah(l)\<\h\p4

pp2. Therefore,

Finally, in Proposition 5.4, we bound AX1.
We next prove the existence of a fixed point, proceeding as in Lanford [8]. We

consider the map

where

(oow-2-\y o
U B " 1 o - i

From Theorem 2.3 one deduces easily that

if
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Therefore, it will follow from the contraction mapping principle that Φp has a
unique fixed point in 93pj provided

cf. (2.8). But this is immediate from Theorem 2.1 and the definition of Up. In
summary, the above Theorems 2.1 and 2.2 imply

Theorem 2.4. // p is sufficiently large, the operator Jίp has a fixed point f* which is
in H p + 1 (and with f*\j e T)p). The operator ΌJίp is uniformly hyperbolic on a ball
of radius I6~pp9 around fp. It has exactly one eigenvalue δp not strictly in the unit
disk. This eigenvalue is simple and δp = K00 16^"2(1 + Θ(3~P)). Also, λ(f*)

The assertions on the eigenvalue δp follow at once from Theorem 2.3. The
bound on f*p(0) is a consequence of Lemma 4.2 and Lemma 4.5i). The constants
Koo and Kλ are

Koo=~ Π cos 2(π2^'+ 1 ))=128/(3π 2)^4.323037,

These constants are already rather good for p — 2, cf. Feigenbaum [6] [δ — 4.66920,
λ= -0.395353).

Finally, fp% e T)p because / / e / , by Theorem 2.2i), and since / / ( I ) = jVpf*(l)
implies f*2p(0)=f*p(G)f*(l), i.e. \f*p(λ(J*))\<\λ(f*)l

3. Orbits of Perturbations of 1 -2x2

In this section, we first study the backward orbit of the function ψ2{x) = 1 — 2x2. As
ψ2 is the limit of the fixed points of Jίp when p—χχ>, as we show in this paper, it, of
course, plays a special role in our analysis. The fixed point /p* of Jίp will lie at a
distance — 4~p from ψ2. Thus, we study here a neighborhood 35p of τ/;2, defined as
follows:

Definition 3.1. We say / G 2Sp if
i)

ii)

The following observation may be helpful in understanding the strategy of our
proofs. If/ is in 93p, then it is not only very close to ιp2, but it shares in particular the
following properties with ψ2: It has a fixed point t0 near — 1, and the qualitative
dynamics for the inverse f~λ on [t0,O] is the same as that of \p2

x on [—1,0].

2 See Lemma A.2
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We shall estimate λ{f) = fp(0) and find 0< -λ(f) <K24~P (Lemma 3.3), then

we show Pγ\ {-fj(λ(f)z)) = Kπ(l + Θ(4~pp3)) (Lemma3.4),and finally, in Lemma
j=2

3.5, we show
Gp()K

for \z\ ^ Θ(4~pp). This crucial estimate will allow us in the next section to construct
an approximate fixed point for Jίp.

It is well-known that the function ψ2 is conveniently reexpressed in the variable
v, related to x by x = sin(πv/2). One has

y>2(x) = sin(πv?2(v)/2), and ψ2(v)= 1 -2|v|.

We shall denote by ψ2

 1 the negative branch of the inverse function of ψ2, and we
write φ2"

fcforφ2~
1o...oip2"

1 (fc times). It is easy to see that

% (3.1)

We shall use the same convention for f~k as for ψ2

k.
Although the above construction is very special to the function ψ2, we insist

that only two things are really of importance:
i) The critical point is mapped to a linearly unstable periodic point (— 1, in the

case of ψ2).
ii) Some preimages of the critical point accumulate at the unstable periodic

point.
We now compare the backward orbits of ψ2 and of/ε33p.

Lemma 3.2. // /e93p, then for j= 1,2,...,

Proof. If fe 33p, then not only /(z) is close to ψ29 but we have, for \z\ ^ 3/2, /"(z)
= —4 + Θ(4~p) (use contour integration), and hence, f\z)= -(4 + Θ{4~p))z. This
will be used throughout. We set xo=

zyo = ® a n d xj=f~jΦ), yj = ΨΐjΦ)' It is
obvious that \x1-yι\^C14~p. Now, \ί\xj-yj\SC14~p, then

f(j+i) ψ2(j+i) ( ) since

Thus,

It follows from \xj+ x +yj+ il > \xj+ il that

l l -2

2. l-ξr

This clearly implies the assertion.
Our next estimate is a provisional bound on λ(f) =/p(0). Whenever there is

no confusion possible, we shall write λ instead of λ(f).



502 J.-P. Eckmann, H. Epstein, and P. Wittwer

Lemma 3.3. If / e 3 3 p , then

Proof. The inequality λ<0 is part of the definition of T)p. Since /e33p 5 we must
have \fp(λ)\^ \λ\. Every point in Jfc, fc^2, is to the left of Jk+1, and the left endpoint
of Jk+ γ is fk+1(0). Since fe 23p, / i s concave (contour integration again), and thus,
/ is increasing for x < 0, and hence, we have

fk +1(0) =fk+1 ~p(fp(0))<fk + 1~p(0), for k+l<p,

because fp(0) = λ<0. Hence, by Lemma 3.2, fk+1(0)<ψk

2

+ι-p(0) + K14-p, for
k = 2,...,p — 2. Finally, since f (z)= — (4 + $(4~p))z, as we noted in the proof of
Lemma 3.2, we see, by combining the above arguments, that

\\, k+l<p.

Finally, \J1\^(2-\-Θ(4~p))λ2. Combining these bounds, we see that | J p _ 1 |
^C^24P~\ using

(4 + (9(4~ψ = 4p(ί + Θ(4-pp)). (3.2)

We next note that Jp _ 1 must lie to the left of — x0, where x0 > 0 is defined by /(x 0)
= x0 [ = ^(1)], since otherwise JonJ1+0. Thus, we find \Jp\^C2λ

24p, as before.
Since we must have JpQJ0 = [λ, —λ], the assertion follows.

We have now shown that λ = λ(f) is very small. Hence, if \z\ ^ 2p, then λz is very
close to zero. Our next lemma shows that the whole orbit of λz stays close to the
preimages ψ2

 j(0) for p iterations.

Lemma 3.4. If fe%Sp then, for /c^2,

p-ί

where

00

K = Γ

Proof. We shall prove below the bound, valid for \z\^2p,j = 2,...,p—l,

\f\λ(f)z)-ψ{-p(0)\SC34- V . 3 (3.3)

We have already seen that ψj

2~
p(0) = cos(π/2p~j+1\ and hence, the assertion

follows from (3.3), using again (3.2), and from

Π cos(π/2^+1) = ̂  *

The identity Kπ = 2/π is derived in Lemma A.I.

3 For j<p, ψ{~p should be viewed as ψ2ip~j)
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We now proceed to prove (3.3). We first bound \fj(0)-fj-p(0)\. Since feΐ)p9

we have \fp(0)-0\^K24~p, by Lemma 3.3. Hence, by the bound /'(£)
= -(4 + Θ(4-p))ζ, for |C|^3/2, we deduce, using Lemma 3.2, \fj(0)-fj~p(O)\
^C14~p-\ and thus, \fj(0)-xpj

2~
p(0)\^C24-p for j = 2,3, . . . , p - 1 . Next, we

observe that /(Λ(/)z)-/(0) = Φ(16~V)J since f'(λ(f)z) = - (4 + Θ{4~ p))λ{f)z.
Since /, at (, |C|^1 + ̂ (4"P), expands by no more than 4 + Θ(4~p), we see that

\f\λ(f)z)-f\0)\ ύ C24nβ-pp2 . (3.4)

Combining the above estimates, we obtain (3.3), and hence, the lemma is proved.
We next show that Gfp is essentially a linear function, with coefficient

independent of fe 2}p.

Lemma 3.5. Assume fe%$p and \z\^2\λ(f)\p. Then

Gfp(z)=-KG4
pz(l+Θ(4-pp3)),

KG = 4/π2.

Proof. The assumptions imply (Gf)(z) = G(4~p)z, as is easily checked from the
definition. We rewrite Gfp{z) — Gf{z), using the chain rule, and induction on p, as

1=1 rim)
where

7 =i f'(fj(z)) '

Using Lemma 3.2, we see that Zf(z) = Z (1 + Θ(4~pp3)), where

z=V = 4 / '~ 1 'π (-v>9~p(0))

[we use / /(z)= - ( 4 + ̂ (4-p))^ and (f"/f)(z) = (l +fl?(4"p))A]5 and we estimate
/ /(/(z))^4φ 1-^(0), f'(f\z))κ -4ψk-p(0), if fc> 1. If we define

then we see that

The quantities Z I > P and Kπ are estimated in Lemma A.I, A.I'. We have ZΣ =
Kπ = 2/π, where ZΣ = lim Z^ . The lemma is proved.

p—• oo

4. The Approximate Fixed Point and Its Neighborhood

In this section, we first construct an approximate fixed point fp for Jfp\ this fixed
point will lie in 9Sp, provided the constant Kv in its definition is chosen sufficiently
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large (but, of course, independent of p). We will then collect some bounds for
functions in a small neighborhood of fp. The approximate fixed point will be
constructed along the following lines. By Lemma 3.5, if fp(x)= 1 — μx2 + K(X4~px4,

( l K a = Θ(l), then

Gfp{x)^-KG4
px.

We shall impose

/„(!) = (Λ/P)W. (4-1)

and this will imply, through Lemma 3.4, that

λ(fp)^-Kλ4^", Kλ=l/4Kπ.

Therefore,

On the other hand, it is easy to see that

(Gfp)(x)^-2Ka4-px.

Thus, if we choose 2Ka = 44KGK
2

λ, then

\G(jrpfp)(x)-(Gfp)(x)\£Θ(16-*p3). (4.2)rpfp)(x)(Gfp

It will be easy to see that (4.1) and (4.2) imply

so that fp is an approximate fixed point, as asserted.
We now fill in the details of this argument. We fix

Ka = 2ΊKGK
2 (4.3)

(we have Ka = 8 by Lemma A.I, A.Γ). We next consider the one parameter family of
maps

2 -px4. (4.4)

For μi0) = 2 + Ka4~p

9 we have gμ(l)=-l, while for μ ( 1 ) = l + K α 4"Λ# μ (l) = 0. This
implies that gμ{0) and gμ{i) are not in Ί)p, but, by kneading theory (see e.g. [10]), there
is at least one interval M of μ's, M C [μ ( 1 ), μ ( 0 ) ], so that μeM implies gμ e Ί)p. At the
boundary μ\ μ" of at least one such interval, we must have

and

g2

μt(0)=-gpA°)>

see the discussion in [5]. It is also shown in [5] (Proposition 3.1) that

μμ
μeM
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while it is obvious from the definition of Jίp that (Jfpgμ»){ϊ)= — 1. By continuity,
there exists a μp between μ' and μ" for which

J(i)=^,(i) ( 4 5 )
(since //, μ" < μ(0)). We shall denote henceforth μp the largest such value, and we set

Lemma 4.1. With the above definitions, we have \μp — 2\^Θ(4~p) and fpe%$p.

Remark. The size of Ka and of μp — 2 determine the choice of Kv.

Proof. By construction, we have μp ̂  2 + Ka4 ~ p. We now derive a lower bound for
μp. Define vp by 1 — vp = ψ~ip~2\0), where τ = 2 + Ka4~p and ψτ(x) = 1 — τx2. For
μ ^ 2 + Kα4~p, we have gμ(x)>ψτ(x) when xe/\{0}. Therefore, defining μ* to be
that (maximal) value of μ for which gμ e D p and gp(0) = 0, we see that

Since | τ - 2 | = β?(4"p), Lemma 3.2 and Eq. (3.1) imply φ τ"
( / 7" 2 )(0)< -

and hence, μ* ̂  2 — β?(4 ~ p). By the general theory of kneading, we have μp > μ*, and
thus, the first assertion of the lemma follows. The second assertion is now an
immediate consequence of the definition of 93 r

Lemma 4.2. With fp as defined by (4.1) and (4.3), we have

where Kλ=l/4Kπ = πβ.

Proof. By construction, we have fp e 23p (and, a fortiori, fp e Ί)p). By Lemma 3.3, we
have \λp\^K24~p, and hence, Lemma 3.5 implies, for |z |^2p,

(GJfpfp){z) = λp(Gfp)(λpz) = Θ{4'p)z. (4.6)

By construction, we also have

= &(4-»)z. (4.7)

We next apply Lemma A.2, with u = Jfpfp, v =fp. It is easy to see from fp e Ί)p that
Jfvfp satisfies the general assumptions of Lemma A.2, and (4.6) and (4.7) imply
(Gu)(x)-(Gv)(x) = Θ(4~p)x, for | x |^p . Hence, we conclude

(Λ//( ° )=-( 4 + fl?(4"V)). (4.8)
By the chain rule, we have

(Λ/P)"(o)=/;(o) "π wtm • K . (4.9)
7 = 1

Since //(0) = - 4 + 0(4" p \ we conclude from Lemma 3.4, and from fp(x)
= (-4 + Θ(4~p))x, for | x |^2 , that

.(l+O(42->p))λp,
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i.e.

This proves the lemma.

Remark 4.2. Lemma 4.2 implies fp(l)> — l-\-5~p. Indeed, assume the contrary.
Then we will have //(0) < - 1 + 0(4P5"P), which contradicts |//(0)| ^ Θ{4~p). We
now come to our first main estimate:

Theorem 4.3. With fp as defined by (4.1) and (4.3), we have

\\~Vpfp-fp\\pίKN16-»p8.

Proof. By Lemma 4.2, we find, using Lemma 3.5,

(GJrpfpχx) = λ(fp)Gfp(λ(fp)x)

= - K2

λ4
4 ~ 2pKG4

px( 1 + Θ(4 - V ) )

By construction,

Now Lemma 4.1 and Eq. (4.3) imply

(Gfp)(x)= -2Kax(l + Θ(4-pp2))

= -K2

λ4
4~ 2pKG4

px( 1 + 0(4 " V ) )

Hence,

G^pfp(x)-Gfp(x) = xΘ(l6-γ). (4.10)

We reapply Lemma A.2 and obtain, after integrating ii),

sup \Jrpfp(χ)-fp(χ)\^Θ(l6->ps). (4.11)
\χ\^p

Since Jfvfv(\)— / p(l) = 0, this implies the assertion.

Corollary 4.4. One has

sup |^/p(x)-/p(x)|^0(16-V),
\x\^2p

and Jίpfp is analytic in |x|:g2p.

Proof. This is obtained as (4.11), by an obvious modification of Lemma A.2.
Now, that we have got hold of an approximate fixed point for jVp, namely fp,

we are in a position to define two objects: the neighborhood of fp in which the fixed
point is to be found and the approximate unstable eigendirection of DJίp. Had we
considered instead of Jίp the operator Λ^/^/l^ 1 °fp°λ0, with λ0 fixed, then this
eigendirection would be approximately the function 1, however, our choice λ(f)
=fp(0) preserves the normalization JΓpf{Q)= 1, and projects 1 approximately to
l~fp(x) + xfp(x) We? therefore, define
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and from the definition of fp, Eq. (4.1), we get

Ep(x) = x2 (1 -x23Ka4'p/μp)/(l -3Ka4^/μp). (4.13)

Note that JEP(O) = 0,Ep(l)=l, and that Ep(x) is close [by Θ(4~px4 + x24~p)~] to x2.
We next consider the neighborhood SΆp, defined by / e S p if

feMp+l and \\f-fp\\pύ 16" V .

We shall state and prove now a certain number of lemmas which will be useful in
estimating the operator ΏJίp in the next section.

Lemma 4.5. If fe 33pj then
i) λ(f) = λ(fp)(\+Θ(3-γ°)\

ii) \p{λ{f)z)-fJ{λ{fp)z)\^\6-v4Y\ \z\^2p.

Note. We do not know that fe SΆp implies feT>p, and hence, the estimates have to
be done in a way which differs slightly from the method of Sect. 3.

Proof. If feΐBp, then we have, by the definition of || \\p,

|/(1)-/P(l)|^α;116-V = 48-V, (4.14)

and

sup \f(z)-fp(z)-Ep(z)(f(\)-fp(\))\Sl6-p

P\

which implies by (4.13),

6-V. (4.15)

We relegate to Lemma A.3 the estimate of the orbits of fj and β. Applying Lemma
A.3 with z = 0, we see that

Hence, i) follows from Lemma 4.2. Write now

| / W » -fΐ(λ{fp)z)\ S \fj(λ(f)z) -fi(0)\ + \φ) -fi{λ(fp)z)\,

and apply Lemma A.3 to both of these terms to obtain ii).

Lemma 4.6. // / e S p , then

Gfp(z)~-GW)(z) = Θ(l2-pp10)z, \z\^2p. (4.16)

Proof. By going through the proof of Lemma 3.5, we find

Gfp(x)=-KG4
px(l+Θ(4-pp)), |x|^2p|A(/)|. (4.17)

The assertion follows from (4.17) combined with Lemma 4.5 and the definition oϊfp

[cf. also (4.10)].
We now consider four quantities whose role will only become apparent in the

next section, but whose estimates are a natural sequel to Lemmas 4.5 and 4.6.
The first two quantities are
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and

Af(x)-Ep(x)Af(l),

cf. Eq. (4.12) for the definition of Ep.

Lemma 4.7. If /e33 p , then, for \z\^p, we have
i) Δf(z)=-2z2(l + (9(3->>p1Ί)),

ii) Λf(z)-Ep(z)Δf(l) = Θ(l2-"p1Ί)z2.

Proof. Denote Δ(z) = \ -fp(z) + zf;(z). By construction, Δ(z)/A(l) = Ep(z). By
Lemma 4.6, we have

GΛ pf(z) - Gfp(z) = 0(12 -y ° )z . (4.19)

Denote, momentarily, u=-Jίpf, v=fp. By the definition of G, (4.19) implies

(logu'Y(z) - (logί/y(z) = εz h(z), (4.20)

with \h\ ^ 1, ε = Cx \2~pp10. Integrating and exponentiating we deduce from (4.20):

uχz) = CUίVvXz)eεHiz\ (4.21)

with |/]Γ(z)|^z2, CM>i;φ0. Integrating again, we get

φ ) = CMf Όv(z) + Ctti ,K(z)ε + Du, v, (4.22)

where
K(z) = - - ] v\x) (1 - eεH{x))dx, K(0) = 0.

ε o

Since u = / p , it is easy to see that \K(z)\ <^2C2p
6. Using (4.21) and (4.22), we see

Δu{z) = u(0)-u(

Δu{\) uφ)

where R(z)= - K(z)ε + z(eεH{z) - l)ι/(z). Note now that

υ(0) - v(z) + zv'(z) = - μpz
2 + 3Ka4 ~ pz4,

by the definition of fp = v. Hence, u(0)-ι;(l) + ι/(l)= -2 + Θ(4~p\ so that

^ = ^ + ( p ( 1 2 - p p i 7 z 2 ) β ( 4 > 2 3 )

Note that Au(x)/x2-*(jVpf)"(0)/2 as x^O. Combining (4.22) with Lemma A.2
provides a bound on («Λ^/)"(0)/25 from which i) follows at once.

Using £p(z) = J t ?(z)/J t ;(l)5 we get ii). The proof of Lemma 4.7 is complete.
We next define, for fe 93p,

1 'fp-J-i)Όf (4.24)

and

(4.25).
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and finally, for heHp, ft(0) =

j (4.26)

We shall need in Sect. 5 the following bounds.

Lemma 4.8. If /e93p, then, with the above definitions, for \z\^p,
i) Uj(z)-uJO)-Ep(z)(w/1) -ii/O)) = Θ(4~ψ)9

ii) ώ/z) - ύ/0) -£p(z)(ώ/1) - ώ/0)) = 0(4-?p8)\h\p.

Proof. Recall that Ep(z) = z2-\- Θ(4~pz2p2). Denote by g one of the functions u} or
ύj. We shall first estimate

X = g{z) -gφ) - z\g(X) -g(0)). (4.27)

In order to exhibit best the cancellations, we rewrite (4.27) as

where w = z2, g(w) = g(w1/2) (since g is even, the determination of w1/2 is irrelevant).
Obviously, we must have \X\^2p4 sup |<f (£)|. Observe now that

\ξ\<P

g'(w) = g'(w1/2)/2w1/2

and

§"(w) = g"(w1/2)/4w - g\w1/2)/4w3/2 .

Therefore, we find

g'(ξ) (Gg)(ξ)

4ξ ξ

We claim \X\ <; Θ(p64~j) when g = Uj and $(p64~p), when g = ύj. This claim follows
by a tedious, but straightforward application of the rules of calculus of which we
only indicate the steps and their leading behaviour.

We rewrite g'(ξ) (Gg)(ξ) as follows: set τ = VjEp (respectively Vjh). Then

= (τ" ~ Ϋj ° (fj ° λ) o (fj o λ)'2 + (τ' op o λ) • (JJ o λ)'G(fj o λ).

From Lemma A.3 and Lemma 4.5, we derive, in the case τ = VjEp, the bounds

(/Όλ)'(z)~4>λ2z, if \z\Zp,

τ '( x)^l 42(P-Λ ) if |χ|^3/2,
A

τ"{x)~-A^>-i\ if |x|g3/2,
Λ

G(fjoλ)(z)~4jλ2z, if | z |^p.
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This last bound follows as in Lemma 3.5. Combining these bounds, we get

\X\ S

from which the assertion follows for g = Uj.
When g = ύp then, since h( ± 1) = 0, we have with τ = υ} h,

χΌf\λx) = v'j(fj(λx))h(f(λx)) + Vjiή

= v'j(fJ(λx))h(±l)

+ v'j(f\λx)){h(f\λx))-h(±\)}

+ υj{p{λx))h'{f{λx))

since, by Lemma A.3 and Eq. (3.3), fj(λx)+ 1 ~4j~pp2.

Hence, g'(x)~ —4~jP|/z|pp
2, in the case g = up so that the bound on X follows in

A

all cases. Finally, we have to bound

Y=(Ep(x)-x2)(g(l)-g(0)).

This is achieved by writing

\Y\^Θ(4-p(x2 + x4)) sup \g\ξ)\,

and we obtain

\γ\~4-pp*-4-J9 when g = uj9 (4.28)
A

| y | - 4 - V τ 4 ~ p | Λ | » , w h e n g = ύf. (4.29)
λ

The lemma is proved.

Corollary 4.9. // fe %$p, then, with the definitions (4.24)-(4.26), we have, for \x\Sp,

iii) ύj(x) = Θ(4p)\h\p.

Proof, i) and ii) are an immediate consequence of the derivation of (4.28) and (4.29).
iii) follows at once from

u/x) = Vj(fXλx)) (h(f\λx)) - h( ± 1))

1 p_.

λ
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5. The Operator A

In this section, we consider the operator A = Af = DAr

p(f)9 when fefBp. In the
decomposition H p = ]R + ]Hp, i.e.

the operator A is "almost diagonal", with Ep "almost equal" to the unstable
direction, and Mp "almost equal" to the stable subspace.

We shall consider the four "matrix elements" Aip i,j = 0,1, as described in
Sect. 2. The explicit expression for A is given in Eq. (5.1) below, and a quick
calculation shows that Aoo~ \6P. In A01 we shall find a division of the leading
terms by ~4 P , because A01 is applied to a function h which vanishes at 1. Hence,
we will find \(Ah)0\~4p. (This bound will use part of the compensations of Lemma
4.8.) The bounds of Lemma 4.7 will induce a cancellation of all terms ~ 16P and 4P

in A10 = sup\(AEp)ί(x)\9 so that A10~φpp20, while in All9 both of the above
mechanisms superpose and yield ||v41]L|| <Θ(3~pp20).

The estimates of this section are not expressed in the norm || ||p, but rather in
the sup (on R) and the norm | \p. This makes the natural orders of magnitude of the
matrix elements more transparent. But in Sect. 2, we have defined
PHp = |ftol3p + |Λil/,J and the factor 3P "balances" the matrix and makes the
neighborhood S p shorter in the Ep direction (which is very expanding) relative to
the (contracting) direction Mp.

A straightforward calculation shows that Af = DJfp(f), for fe 23p, maps Mp to
H^ and is given, for h e Vίp, by

μ A)() J V w/x)-w/O)(jς/(x)-x(^/X(x)), (5.1)
j=0

where

w/x) = (/'-•'- ')\fi+ \λx))h(f\λx)). (5.2)

Proposition 5.1. If / e S p , then

32 °°
where Koo= — Π cos2(π2"°'+ 1 )).

3 j=ί

Proof. Using (5.1), (5.2), (4.24), and (4.25), we see that

/ / (5.3)

with zly as defined in (4.18). Note that wo(0) = 0. We analyze now in detail M/0), for
j= 1,2, . . . ,p— 1. From Lemma A.3 and the standard bound /'(x)
= — (4 + Θ(4~p))x, we derive, using the chain rule and Ep(l)= 1,

^4P'J~^1 + ^ ( 3 ^ P ) ) (5.4)



512 J.-P. Eckmann, H. Epstein, and P. Wittwer

(To be honest, it has to be said that we have used quite a number of other lemmas
here, namely 3.4, 4.2, and 4.5.) Summing, we get

j=ι

= -K2

π4
2p~2 ±(

Finally, by Lemma 4.7, we have ^ ( 1 ) = -2(1 + Θ(4~P)), so that

4/ l ) P ΣwX0) = K2 f 16*-2(l + 0(3-*)). (5.5)

It is clear that the proposition follows if we manage to show that

PΣuj(l)-Uj(0)
7 = 0

is negligible with respect to (5.5), cf. (5.3). However, this is immediate from
Corollary 4.9. Thus, the proof of Proposition 5.1 is complete.

We next estimate the quantity

Proposition 5.2. // /e33 p , then

Proof. We write A10 as

where

= uj(y) - u/0) - Ep(y) (u/1) - u/0))

+ Uj(O) {Af(y)-Ep(y)Af(l)}.

These terms are bounded, respectively, in Lemmas 4.8 and 4.7, and we get

from which the assertion follows.
We now consider functions h e Mp, i.e. even functions vanishing at 0,1

(and —1). We now have the following bounds, with \h\p= sup \h(x)\:
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Proposition 5.3. If feS&p and heMp, then

Proof. Recall the definition of ύj9 Eq. (4.26). We have

Afh(\) = PΣ ώ/1)-ώ/0) + V ύj(0)Af(l).

By Corollary 4.9ii), iii), and Lemma 4.7i), we get

from which the assertion follows at once.
Finally, we estimate the "matrix element" (Aίίh)(x) = (Afh)(x)

-Ep(x)(Afh)(l).

Proposition 5.4. If fe9$p and heMp, then

sup\A11h(x)\ = Θ(3^p2O)\h\p.
\χ\£p

Proof. We again write a decomposition

where

X/x)^u/x)-£p(x)i2/l)-^.(0) {1 -Ep(x)}

+ ύj(O).{Af(x)-Ep(x)Af(l)}.

The first line is bounded by Lemma 4.8 and the second by Lemmas 4.7 and 4.9, and
we get

The assertion follows.

Appendix. Some Estimates

00

Lemma A.I. Π cos(τπ/2J) = sin(τπ)/(τπ).

Proof (F. Leyvraz). The product

PN= Π<

is equal to

4 Σ exj:
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As N goes to infinity, PN tends to

A J e

iτπxdx=\~(eiτn-e~iτπ)
2 - i 2 τπi

= —sin(τπ).
τπ

00 IC S )

Lemma A.Γ. Σ l M cos(π/2 s + 1)4 s Π cos(π/2 j + 1U =2/π.
s = l / I J = l J

Proof. We rewrite the left-hand side as

s = J

7 = 1

which, using Lemma A.I twice, is seen to be equal to

f __i sin(π/y + 1)
S=icos(π/2 S + 1) 2 π

oo

= Σ tan(π/2s+1) 2- s

s = l

τ = l / 2

- - -3 τlog(sin(τπ)/(τπ))| τ = 1 / 2 = 2/π.

In the next lemma, we assume that u\x)x < 0, ι/(x)x < 0, when x Φ 0, M(0) = υ(0) = 1,
ι/(l), υ(l)< —1/2, w/(0) = ι;/(0) = 0, and sup |ι/(x)|^0(l). The more relevant
assumptions are added below. | x | - 1

Lemma A.2. In addition to the above, assume, for | x | ^p , Gu(x) — Gv(x) = ε(x) • x,
£= sup |β(x)|<2~p, and u(l) = v(l). Then

i) ^'(0) =
ii) M'(X) = I;/(X;

Proof. Recall the definition of G,

Gw(x) = u"(x)/u'{x) —

Since u'(x)x < 0 for x φ 0,

Hence,

^7?T = ? 7 7 ^ e x P ^ ( ε χ 2 ) ' (A 1)
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where ε = sup|ε(x)|. Integrating and since u(0) = v(O) = 1, we get, for |x |^ 1,

^ ^ S \v'(y)\(eε-\)."W^^^W^+S SU

V (0) V (0) |y|S

Since u(l) = t?(l)< - 1/2, we find that

£H = 1/(1
This is i), and ii) follows now from (A.I).

Lemma A3. Assume / e H p + 1 and

|/(l)-/p(l)|^48-y, (A.2)

and sup |/O0-/,G0|^ε'^2.16-y . (A.3)

), yk=fk(z), \z\<4^p2. Then

Proof. To simplify notation, set # = / p . We first estimate fk(0) — gk(0). Note that
f(0) = g(0) and, by assumption, |/2(0) —^2(0)|^ε. We shall recursively show

| / f c ( 0 ) | < l + 3 - " (A.4)k

and

where 4 + =4(1 + 3 3~p). These statements are obvious for k= 1. By the bound
Eq. (3.3), we deduce (A.4)fc + 1 from (A.5)t. To deduce (A.5)fc from (A.4)t, we write

fk+1(0)-gk+1 (0) =/(/*(<))) -f{g k(0))

We get, using contour integration and (A.4)fc to bound (f—g)' and Eq. (3.3) to
bound | ^ ( 0 ) | - l ,

This proves (A.5)k + 1.
Next we compare fk + 1(z) to / f c + 1(0)- We have

')), (A.6)

since contour integration and (A.3) imply \f"(z) — g"(z)\^Θ(ε/), and we already
know gf"(O)= — 4 + &(4~p), by construction. We shall show recursively that

| / f c 0 0 | < l + 2 - 3 - ' (A.7)t
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and

\fk + 1(z)-fk + 1(0)\^4 + \f\z)-f\0)\. (A.8)k

The case (A.8)o is obvious from (A.6). Also (A.8)fc implies (A.7)fc+1 as before. Finally,

(A.7)fc+1 implies (A.8)fc+1 by estimating the difference as

| /* + 1 (z)-/* + 1 (0) |<£ sup \f'(y)\\fk(z)-fkφ)\.
\y\^ί+2 3~P

The lemma is proved.
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