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Abstract. We derive a theorem of exponential decay of correlation functions at
high temperature for a general statistical mechanical system following the
approach introduced by L. Gross. The theorem is formulated so as to be useful
for locality problems in lattice quantum gravity.

1. Introduction

The purpose of the present article is to formulate a theorem of exponential decay of
correlation functions at high temperature in a statistical mechanical system so as
to be applicable to a lattice gravity model [1]. In fact we want to show that a lattice
quantum gravity model based on Regge calculus [2] with an ultraviolet cutoff of
the order of the Planck length leads to Einstein's gravity theory at large distances.
The effective action derived from the lattice theory should be general coordinate
invariant and local with respect to the gravitational field. The latter will be proved
by the theorem of the present article in a subsequent paper [1].

There are several articles in literature discussing classical statistical mechanical
systems which under certain conditions (e.g. high temperature or low activity) do
not exhibit long range correlations. We refer for example to the papers of Gross
[3], Israel [4], and Klein [5]. In our case we are mainly concerned with a rather
generally formulated theorem introduced by Gross [3]. Gross used the Dobrushin
uniqueness method [6] to derive exponential decay rates for two point correlation
functions at high temperature in classical statistical mechanical lattice models. The
result of Gross can be expressed in the form (Theorem 1 in [3]): If α < 1, then for
any functions /, g e C(Ω),

\σ(fg)-σ(f)σ(g)\^e-d^b^f\\Jg\\b(l-ar2(l-a2r^ (1.1)

Ω is the space of all functions s from a countable set L (a, be L) into a compact
metric space X(s(a)eX for aeL). σ is a probability measure on Ω, d( , •) is a
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pseudometric on L and the norm of / is given by

| |/ | |β=Σ^ ( M )sup{|/(5)-/(ί)| |s,ίeΩ ands^ίoff {b}}.
beL

The parameter α is defined in terms of conditional probabilities μa( \ ), so that

. | s)-μ f c (. | ί) l lvar |s = ί off {α}}]^ ' & >. (1.2)
beL aeL

The main point of the present article is to slightly improve upon the Gross
theorem (1.1) so that we can use it later on in applications (especially in lattice
gravity).

It is the parameter α that provides a measure for how nonlocal the action of a
lattice field theory is. The Gross theorem (1.1), which we shall refer as G. Th.
hereafter, presupposes that α is less than unity. However, the problem with G. Th.
is that the definition of α contains taking a supremum over pairs of microstates for
the statistical mechanical system. This means that microstates that are extremely
unlikely because of the weight factor e~s (S is the action) being small may
contribute significantly to α. Intuitively that seems unreasonable: one would think
that rarely occurring states should not be of great importance for the range of
correlations. Of course that is not quite true if the rare states by themselves have
infinite range correlations. But if they have only finite, although somewhat long
range, correlations we expect their contribution to the range of correlations for the
total system to be controllable. It is basically this expectation we want to justify by
formulating and proving an improved version of G. Th..

Before going into detailed definitions (Sect. 2) we first briefly explain some
features of our way to improve G.Th..

We consider a general lattice field theory having field configurations s: L->X
just like in G. Th., but we choose a pseudometric d{ , ) which depends on the
state of the statistical mechanical system. That is to say, for each state s there is
defined a pseudometric ds( , ) obeying as a function of the lattice points the usual
rules for a pseudometric. Actually we are not so interested in the case in which
there really is a new pseudometric for each state s. Rather we take a pseudometric
which as a function of the states is a piecewise constant function. In other words
there are "large" pieces γ of the space of states Ω(s eΩ,γCΩ) over which the
pseudometric d ( , ) does not vary. The point of this kind of an equivalence class
division of Ω in the improved theorem is that if the classes y are small but numerous
our assumptions (see Sect. 2) will be very strong. Therefore one could expect that it
will be easier to argue for the applicability of our theorem in the case where d£ , )
is piecewise constant with quite large pieces. We mention that G. Th. itself may be
considered as a special case corresponding to just one piece. Furthermore we
notice that the set of all pseudometrics can be interpreted as a lattice in the
mathematical sense of the word [7] and we use this property by introducing "the
meet pseudometric" ds A dt( , ) and "the join pseudometric" ds v dt( , ).

We also make another kind of an equivalence class division by dividing the
lattice L, which is a countable set, into sets R by using the pseudometήc nature of
ds( , ). Here the equivalence relation is determined by the pseudometric in such a
way that R is given by those lattice points for which the pseudometric vanishes. So
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effectively we are putting some points together and therefore, in a sense, we can
treat the set R as if it were just one point. It turns out that we can do the derivation
of the improved theorem with the sets R easily because the presence of these sets
doesn't affect the derivation at all. However, in (future) applications we shall make
use of the possibility that we are able to divide the lattice L into equivalence classes
R, and therefore all our definitions in Sect. 2 already take this division into
account. It is worth emphasizing that the classes γ mentioned previously are of
great importance both in the derivation and in the applications.

In Sect. 2 we present the basic definitions following the notations of Gross [3]
as closely as possible. The improved theorem is derived in Sect. 3 by making use of
G. Th., and the main result is given by Theorem I. Then finally in Sect. 4 we give
some concluding remarks about the result and possible future applications.

2. Notations and Definitions

Let our "lattice" be a countable set L of "points" a e L, and let X denote a compact
metric space. Then we have a general statistical mechanical system described by
the function s: L->X, and we define the configuration space for L with the product
topology to be Ω = XL, so that seΩ. Furthermore, we have a probability measure
σ on the Borel sets of Ω so that

<f> = σ(f)=Sf(s)e-sM@s, (2.1)

where fe C(Ω). Here C{Ω) denotes the space of continuous real valued functions
on Ω.

Let dt( -, ) be a state-dependent pseudometric for the set L, i.e., there exists
ds(a,fc)eIR+u{0} for any state seΩ and for any pair a,beL such that ds(a,b)
= d£b, a), ds(a, b) + ds(b, c) ^ ds(a, c), ds(a, b) = 0iϊa = b, but it is possible to have

ds(a,b) = 0 even if αφfc. Corresponding to each pseudometric ds we define a
division of L into a set of equivalence classes R C L by

Lds = {RIR is an equivalence class under the relation ~ } . (2.2)
ds

Here a γ b iff ds(a, b) = 0ϊorVa,be L. This division can be considered as some kind

of a patching.

We can now define a new configuration space by

Ωds = {t\t:Lds-+Xds}, (2.3)

where
X*.= U X\ (2.4)

ReLds

and where for any equivalence class ReLds the field value sReXR. The
correspondence between Ω and Ωds can be expressed by a function Fds: Ω^>Ωds, so
that Fds(t)R = t\R for each R e Lds. Similarly we may introduce a meet metric dSί A dS2

and the corresponding division Lds Λ ds by

dSlΛdS2 = iΏΪ{dSl,dS2}9 (2.5)
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Ldg Ads ={R\R is an equivalence class under the relation -—-—•}. (2.6)

It is also possible to write dSl A dS2(a, b) in terms of the length of a chain from a to b
as follows (see Appendix):

dSl A dS2(a, b) = inf {l(<g) \% is a chain from a to b}. (2.7)

We can also divide Ω into equivalence classes γt by putting

yi = {seΩ\ds(a,b) = ds,(a,b) for Vpairs a,beL}, (2.8)

where the different equivalence classes are numbered by the value of i, s' is a
representative of the ith class and furthermore (J yt = Ω and 7/0^ = 0 for ί+j.

i

However, when making the division of Ω (which is a topological space) into
equivalence classes yt we use closures yt because yt itself is neither closed nor open.
Then the closures yh which are closed sets, can be taken to be Borel sets of Ω, and
we define a probability measure σ in each of these Borel sets. The closures yt satisfy
(J y~ Ω and we assume that σ ^ nyy) = 0 for i φj, i.e., the boundaries of yt and the

i

overlapping parts of various yt give just a zero measure. So in spite of the fact that yt
n7j ( z+j) c a n be non-void we can essentially work as if we had a division of Ω
generated by yt.

To each "point" RεLdγ Adγ and to each state sεy1uy2cΩ, we associate a
probability measure μy

R

iy2 ( \s) on the Borel sets of Xd Ad . Here ε e [0,1] is a
weight coefficient in the case of two equivalence classes Vi a'nd y2. Let C ^ u j ^ )
denote the space of continuous real-valued functions on yχκjy2. Then we define a
mapping τψ2*\ C ^ u ^ - ^ C ^ u ^ ) by

(τ^f)(s)= if(xvs)μψ»(dx\s)9 (2.9)
Y

W h e r e s = s\LXR, (2.10a)

[ , (2.10b)
sa for a eI\R' v ;

Y={xReXR\xvseyίuy2}, (2.10c)

and / is a continuous function / : y ί κjy2 ^ R . We say that the probability measures
μR

inε form a set of "conditional probabilities" for the statistical mechanical system
with a probability measure σ on the Borel sets of Ω (yγ and y2) provided

σί(εχn +(1 -ε)χ y a)τ™*/] = σ[(βχ?ι +(1 -ε)χ, 2 )/] (2.11)

for all ReLdy Λ d v and for all / e C(y: uy2). Here χ̂ . is the characteristic function
given by

We may consider τR

ί72εf the conditional expectation E(f\^), where #" is the set of
measurable sets F onΩ such that a change in s6 for b e R does neither bring any 5
out of nor into the set F. According to the Radon-Nikodym theorem we see that
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such a "conditional expectation" exists. We remark that we can do such an
argument for any value of s separately.

To every pair y1? y2 and to every weight coefficient εe [0,1] we define

» , (2.13)
R' R

where R,R'eLd A(l and
~ (Xy Λ (Xy

α y m ε defined in Eq. (2.13) is analogous to the α defined by Gross [3]. However, for
our proof in Sect. 3, we have to introduce new α's as follows

α ^ 2 = sup ocyiy2\ (2.15)
ε e [ 0 , l ]

and
α= supα y m , (2.16)

and furthermore we assume that

α < l . (2.17)

Inequality (2.17) is the basic assumption of our theorem.
For the norm of / we take the following expression

^•b)|s = i off {b}}, (2.18)
beL

where fe C(Ω) and the join metric is

dsv dt = sup {ds, dt) . (2.19)

3. Derivation

In this section we derive an upper bound for the correlation |</#> — </> <#>|,
where f,geC(Ω), f = f(s), g = g(s) and where the average is defined by

We use the notation

cor = </g> - </> (g) = </(s) g(s)} - </(s)> <0(s)> . (3.2)

Equation (3.2) can be rewritten in a form

cor = «/(s)0(s)-/(ί)0(s)», (3.3)

where the double average is defined by
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This double average can also be expressed in terms of the probability measures
σ(γι) for the equivalence classes defined by Eq. (2.8). We put

Γ = {yi\iel}, (3.5)

where I is some index set parametrizing the family. Equation (3.1) reads

and similarly

Σ

Here <($(s))yι means the average of Θ(s) which is defined only for those states 5
belonging to γt (analogously <ζ&(s,t)^>yiXyj). Actually we should use here σ(fι),
where yt is the closure but according to the assumption we made below Eq. (2.8) we
put σ(boundary of y£) = 0. Equations (3.3) and (3.7) give

Σ «f(s) g(s)-f(t) g(s)}}γi x γj a(7i) σfy)
^ ^ - . (3.8)

)

Next we split cor in Eq. (3.8) into two parts such that

Σ €f(s)gm7ιXγjσ{ydσ{yJ)

and denote y"y'eΓ

Σ <*(yd<r(yj)
yuYjeΓ

Σ «f(t)g(s)»γtXγjσ(yi)σ(7j)
yjeΓ

Σ σ(γdσ{vj)
n 9)

cor = cor!—cor2, (3.10)

where cort and cor2 refer to the first and second terms on the right-hand side of
Eq. (3.9), respectively. We immediately see from the definition of the double
average that coΓj can be written as

Σ <fg>yισ(yD

Σ
yίeΓ

Hereafter, we drop the explicit state-dependence. Similarly a straightforward
calculation gives

(3.12)
^
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Now using Eqs. (3.11) and (3.12) in Eq. (3.10) we finally obtain

Σ

T
7,eΓ

n - <f\

This result could have been obtained of course directly from Eqs. (3.2) and (3.6),
but our purpose here was just to introduce some use of the double average which
occurs in the final result [see Eq. (3.31)]. The first term on the right-hand side of
Eq. (3.13) can be bounded by using the original theorem (G. Th.) because the
quantity inside the square brackets includes only one equivalence class. Hence, we

get Σ

Σ

Σ
Σ

Σ
(3.14)

yteΓ

where α y ι < l for Vi e I(ocyι < otyιyj) and

Φ(αyί) = ( l - α y 0 " 2 ( l - ( α y 0 2 ) " 1 , (3.15a)

Φ|in = ll/llαllffll6. (3.15b)

This is valid for arbitrary pairs α, b of lattice points.
In order to find a bound for the second term on the right-hand side of Eq. (3.13)

we can restrict our analysis to two equivalence classes yx and γ2. This is why we
gave the basic definitions in Sect. 2 in terms of only yx and y2 (and ε) [see
Eqs. (2.9)—(2.16)]. Making use of Eq. (3.6) we can write down a formula for the
average of / in the case of two equivalence classes yx and y2 (likewise we could do
the following analysis for any pair yb y,)

</> ( 2 ) = β</> y i + ( l - £ ) < / > y 2 . (3.16)

Here the superscript (2) means that we deal only with yt and y2 and εe [0,1] is
the weight factor used in Eq. (2.11), so that the correspondence is

(3.17)

(3.18)

It is clear that we also have

By means of Eqs. (3.16) and (3.17) we get after some algebra
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where

y y 7 , (3.19a)

i <g}γι - </> y i <g>γ2 + <f\2 <g>γ2 - </>7 2 <g}n, (3.19b)

C = <fg>72-<f>y2<g>y2. (3.19c)

We can now apply G. Th. to the left-hand side of Eq. (3.18) due to the result

α y i y 2 < l , (3.20)

which follows from Eqs. (2.16) and (2.17) (and of course we use all the previous
definitions for the case of two equivalence classes in Sect. 2). Therefore we obtain

(3.21)

where

K=ze-dγιΛdγ2(a,b)ψ^ (322)

Here the meet metric is

dyi A dl2 = inf{dγi, dyj, (3.23)

and

) " 1 . (3.24)

Actually we are interested in finding a bound for B in Eq. (3.19b), and therefore
we use the following lemma.

Lemma. If\εA + ( l - ε ) ε 5 + ( l - ε ) C | ^ K for Vεe[0, l ] ,

\c\^κ.
Hence

,<g> y ι-</>y i<g>y2+<Dy2<g)y2-<f)y2<g} γ ι\S8κ. (3.25)

First we multiply both sides of Eq. (3.25) by σ(yί)σ(y2\ then we sum over all
yb γj G Γ and finally divide by

Σ e

obtaining

Σ K/> Λ <g> n -</>,, <g\\σ(yt)σ(7j)
7eΓ

ψ..
Σ σ(γi)σ(yj) "

yuy j eΓ

(3.26)
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where

ψ(ayίy>) = (1 - oc^ή ~ 2 (1 - ( α ^ ) 2 ) " * , (3.27a)

^llll = ll/llαll^llb = Φ | | | | . (3.27b)

Thus, this result gives the required bound for the second term on the left-hand side
of Eq. (3.13).

Equations (3.13), (3.14), and (3.26) together give

•WfUθh (3-28)

Using the definition (2.16) we can show that Ψ(a.yiyJ)<LΨ(£) for Vΐj and
Φ(ayί)^Φ(d) for VΪ (here we assume that ayίyί = ay% where of course Φ(S)=Ψ(S).
Then from Eq. (3.28) it immediately follows that

| c o r | ^ { < ^ ^ ^ ^ > + 4 . < < ^ ^ Λ ^ ^ & ) > > } . ^ ( α ) 11/11 J | ^ | | & . (3.29)

Furthermore because the meet metric dy./\dy. is given as an infimum [see
Eq. (3.23)] we see that

Thus we have

Now we can state our main result:

Theorem I. If d<l then for any functions f,g e C(Ω)

where the double average of g-dv,Λdv, («»*>) /5 given by

f -min{ds(a,b),dt(a,b)} p-S[s]-

This theorem is the improved version of G. Th.

4. Conclusions

Looking at the right-hand side of Eq. (3.31) the numerical factor of 5 seems slightly
odd because strictly speaking we don't get back G. Th. as a limiting case, but we
believe, however, that we can use this particular form of inequality in our
applications. Therefore it is not necessary to get rid of this factor by e.g. inventing
some new lemma instead of that given in Sect. 3.

What is most important for us is the possible exponential decay of the
correlation. However, it seems that this property somehow is in disguise because
instead of the ordinary metric we have the meet (infimum) metric, and in addition,
we have to perform the double averaging in the exponential factor. How to
calculate the double average and how to interpret the meet metric (for one
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suggestion see Appendix) is evidently the problem of applications and therefore we
refer to [1]. We also refer to [1] concerning the estimation of the parameter α.
Nevertheless we emphasize that it was crucial for our derivation in Sect. 3 that α is
smaller than unity. Hence it is clear that the property α < l induces strong
restrictions for the action S[s] because essentially α depends only on S[s]. In [1]
we shall show that the Regge calculus action has indeed the desired property of
allowing α to be smaller than unity (actually the situation is more involved because
it turns out that we need some extra terms in the action in addition to the Regge
calculus one).

As it is remarked in [3] it might be interesting to generalize G. Th., and also our
version of the theorem, in such a way that the space X would be any measurable
space and that the function / would be a bounded measurable function of Ω
although, frankly speaking, we really don't have any need for such a
generalization, at least in applications. One such approach was put forward in [5].

Finally we would like to mention that it might be useful to have a genuine
continuum version of the theorem. Then, probably, we could apply the theorem
more easily because we wouldn't have the extra worry how to relate the lattice
points of L and the points in a Riemannian manifold, say.

Appendix

We prove that the meet metric dί A d2(a, b) can be expressed in terms of the length
of a chain from a to b where a,beL.

Define a chain <β from a to b to be a sequence of points all belonging to the
lattice L, i.e.,

<tf = (a = co,cu ...,cn-ucn = b), (A.I)

and the length /(#) of a chain ^ to be given by

ic^cd^iCi-ucd} (A.2)

Consider just a special chain Ή = (a, b), that is to say a "direct chain" from a to b, so
that

= min{d1(a,b),d2(a,b)}. (A.3)

We immediately see that

Iffl^dfab) (z-1,2), (A.4)

and furthermore that

di(a,b) ( ι = l , 2 ) . (A.5)

This means that we have found a lower bound for [du d2}. Now we have to show
that inf {/(#)} is the greatest lower bound, i.e., the infimum.

Let us introduce a metric dk in such a way that dk^d1 and dk^d2. By using the
triangle inequality and Eq. (A.2) we find

1(c i_1,c i),d2(c i_1,c i)} = /(ίf). (A.6)
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Inequality (A.6) is true for all <€ and we can conclude that

(A.7)

Then from (A.5) and (A.7) we obtain

dh(a, b) ̂  inf {l(<g)} S dt(a9 b) (ί = 1,2), (A.8)

which gives the desired result [Eq. (2.7) in the text]

d1Λd2(a,b) = inϊ{d1(a,b),d2(a,b)}=M{l((g)\% is a chain from a to b} . (A.9)

We mention that Eq. (A.9) is very useful in connection with applications of our
improved theorem.
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