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Abstract. In this paper, we construct the Bowen-Ruelle measure for the Lozi
mapping, an almost everywhere hyperbolic diffeomorphism of the plane. We
also derive some of its properties which are similar to those of an axiom A
system.

I. Introduction

The Lozi mapping T is a homeomorphism of R 2 given by

y

For some values of a and fo, Lozi [Lo] observed complicated behaviour for the
trajectories of this system. For b = 0.5 and a=\Π one observes numerically a
strange attractor, which is very similar to the attractor of the Henon map [He].
The main advantage of the Lozi map over the Henon map is that one can prove
hyperbolicity without much effort. This is the main reason why so little is known
for the Henon map, where hyperbolicity is believed to occur only on Cantor-like
sets of parameters. Our opinion is that the Lozi mapping is an intermediate stage
between the Axiom A dynamical systems and more complicated systems like the
Henon map. As we shall see below, its dynamical structure is more complicated
than in the Axiom A systems, although some detailed ergodic properties are the
same. The Lozi map is rather similar to Sinai's billiards, and in this article, we shall
use this analogy. In particular, the discontinuity of the differential allows the
uniform hyperbolicity as in the billiards case. A proof of hyperbolicity for the Lozi
map was first given by Misiurewicz [M]. He also derived many important
consequences which will be described below.

This article is devoted to the investigation of the metric properties of the Lozi
map. In the next paragraph, we briefly describe some properties of the map which
will be needed later on. Most of them were known before. In the third paragraph
we construct an invariant measure its ergodic properties (absolute continuity with



462 P. Collet and Y. Levy

respect to the Lebesgue measure in the unstable direction, ergodicity, K-property,
Bowen-Ruelle property, Bernoulli character) are derived in Sect. IV.

Similar results were obtained by Rychlik [Ry] using a different proof. We
learned that Young [Yl] has proven similar results for piecewise C2 hyperbolic
maps.

II. Notations - General Properties

We set some notations which will be of constant use in this paper. M is the Borel
σ-algebra of IR. If A is a measurable subset of IR2, JίA is the corresponding factor
sub σ-algebra. / and m are the 1-dim and 2-dim Lebesgue measure, d is the
Euclidean distance in IR2. We shall sometimes use the notations ± and +. We
adopt the values of [M] for a and small values for b. For a partition ξ of the space
X, ξ(x), x e X is the atom of ξ containing x. Let SQ = Oy, SQ =0x = TSQ
S± = T±nS$, n e N, are finite broken lines. Note that T±n is singular on S+, n e N.

The fields of stable (unstable) directions E% ) [£"( )] are defined outside
U S~ ( U Sϊ) (cf. [M]). If θs(x) and θ\x) are their angles with respect to the x

)
axis, we have continuous fraction expansions for tan#s(x) and tanθ"(x) which are
given by

^ ^ = a • ε(x) +

where ε(x) is the sign of x. These formulae express the fact that Es( ) and Eu( ) are
invariant fields. If b/a is small enough, the above continuous fraction expansions
are convergent. We shall denote by λ(x) the expansion factor in the direction £"(x),
Le. this is the length of the image by DTX of the unit vector in the direction Eu(x). It
is easy to verify that

[a2 + b2 + tan 2 (θu(x)) - 2aε(x) tan 0"(%)]1/2

Let Ws(x) [respectively FFM(x)] be the global stable (respectively unstable)
manifold of x. The maximal smooth component F^cC*) [^ίϊcW] °f Ws{x)
\_Wu(x)~] containing x will be called the local stable (local unstable) manifold of x. x
splits W^c(x) into two "semi local unstable manifolds."

Let X be the fixed point of T with positive coordinates. Z is the intersection of
the positive x axis with W£C(X). We shall denote by F the triangle defined by the
points Z, T{Z), T\Z) (see [M]). Ω will denote the strange attractor of T which is

00

equal to Π Tn(F) [M]. We shall denote by λ and λ+ the infimum and the

\ +00

supremum of λ(x) for x in the set F\ (J Sf :λ>0.
\-GO

It is now easy, using the continuous fraction expansion, to verify the following
lemma

Lemma ILL Let x and y in F be such that for O^j-^q, Tj(x) and T\y) are on the
same side of So. Then
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i) The angle between W{

s

oc(x) and W^Xy) (if they are defined) is bounded by

'GΓ
ϋ)

My)

We also observe that the angle between two local stable manifolds is between

— and — — if a < 2, and the angle between a local stable and a local unstable
π

manifold is greater than —.

We now introduce a set H which is more convenient for our purposes than the
set F. This set was already used by Misiurewicz but we recall here its properties.

Lemma Π.2. For b small enough, there is a polygon H such that
i) THCH,

ii) ΩCH,
iii) The boundary of H is contained in TqW£c(X)vWf0C(X) for some q>0.
iv) TrF CH for some positive r.

Proof We adopt the notations of [M]. Ho is the triangle XZP, where P= Wxlc(X)

n(Z, T{Z)) and H= Q Tn(H0). (T is denoted / in [M].)

In Proposition 2 of [M], it is shown that there is a positive integer p such that

H= \Jjn(H0).

Moreover, in the same Proposition 2, it is established that

TPFCH and THcH. Q.E.D.

We shall use the following mixing property derived by [M].

Proposition Π.3. (Ω, T) is topologically mixing, i.e.: if A,BC^2 are open, then

(AnΩ + φ, BnΩφφ) => (3N,n>N=> TnAnBnΩφφ).

We investigate now the absolute continuity of the unstable foliation. Let Wι

and W2 be two local unstable manifolds in Ω. We define a map P = Pwιw2 from
W1 to W2 by

if

P is defined on @(P) = {xeW1\Wι

s

oc(x)nW2

Proposition II.4. Given W1 and W2 as above there is a constant Lί>0 which is Θ{\)
such that for any Borel subset A of W1,

The proof is given in the appendix.
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III. Construction of Invariant Measures

Let L o = Wγoc(X). We know from Misiurewicz's work [M] that Ω is the closure of

(J TnL0. Therefore, it is natural to try to obtain an invariant measure by iterating

the Lebesgue measure supported by Lo. We define a sequence {μ!t)neΊL of probability
measures on Jίn (μ'n has support in TnL0) by μ'n(A) = l(T~nAnL0)/l(L0) for A e JίΩ.
The sequence (μπ)w e N defined by

Λ = - Σ μ'j
n j=o

is a sequence of probability measures on JίΩ. As Ω is compact one can extract a
subsequence which vaguely converges to an invariant probability measure μ
(cf. [B]). Let A* denote the stripe of width ε around SQ.

In order to obtain some properties of the measure μ, we shall first estimate the
μw-measures of A*.

Proposition III.1. For any positive number τ < ( 1 — — (K is the integer
V KlogλJ

appearing in Lemma 111.2), there is a positive real number ε0, such that for 0 < ε :g ε0,
we have μn(Aε

±)^ε\ VrceN.

We give the proof for Aε = A~. We shall first give some geometrical
considerations. For n e N, TnL0 is a segment or a broken line. Let Jn be the set of
maximal smooth components contained in TnL0. For M e Jn, the endpoints of M
belong to SpuSq for some p, q l^p,qt^n + 2. We define fc(M)by k(M) = M(p,q).
For M belonging to Jn, we shall denote by Rp(M) the element of Jn_p containing
T~PM for peTL. We now define recursively a finite sequence of integers kt(M) by

ί{M)(M)) as long as Rkι(M)(M) + Lo.

We shall write k{ instead of kt(M) when there is no ambiguity. We now prove a
lower bound on k( ).

Lemma III.2. Assume b is small enough, there is an integer K>4 and θ>0 such that
if MeJn, l(M)<θ, and M n S 0 Φ0, then k(M)>K.

Proof. For b small enough, there is an integer K>2 such that 0<p^K implies
(So nF)nS; =φ.

Let θ = inf d(S0 nF, S; nF), then if l(M) < 0, we have fc(M) > K. Q.E.D.
0<pSK

We now come to the basic estimate. It is enough to prove the assertion for μ!w

neΈ. The proof is recursive. Let τ be a number such that 0 < τ < 1 ; . The
Klogλ

estimate is obvious for μ'_u since ί(L 0)> 1; for μ!w n^ — 2 and ε small enough,
μ'n(Aε) = 0. From now on, we assume the bound has been already proven for μp9
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Let ρ, 0 < ρ < 1 be such that

Note that such a ρ exists since τ < 1 : — - .
KXogλ

Let E1 = {MeJn\l(M)>4ερ}. If M e £ 1 ? M is a straight segment of TnL0,
therefore

l(T-"(AεnM)) = l(AenM) 4β _ 1 _ ρ

l(T~nM) l[M) ~ 4ερ S '

since Z(̂ 4enM) ̂  4ε (we have used the fact that the contraction coefficient by T~n is
constant along M). Therefore,

Σ ( ( T - ^ M ) ) ^ 1 ^ Σ l(T-nM)^ε1-ρl(L0).
Me£i Me£i

We now define a subset £ 2 °f Λ by

£ 2 = {Me J n |3ieN, fcf(M)<c|logε|, /(Λfci(M))>4ερΛ"fci(M)},

where c is a fixed number satisfying

K(l-ρ)/log2>c>(l-ρ)/log/l (note that K °g >ίY

For M eE2 let σ(M) be the smallest integer i such that

Let p be a positive integer, and let M be an element of Jn_p such that MnSo Φ0.
We shall denote by N(M,p) the number of elements M of JM such that T~PM is
included in M, and kσ(M)^p.

Let

L p = sup sup N(M,k).
O^k^p MeJn-k

MnSo + Φ

Note that Lp is a non-decreasing sequence. We shall now give an upper bound for
Lp. For M as above let ML (respectively MR) be the segment Mn{(x,y)\x^0}
[respectively Mn{(x,3;)|x^0}]. Assume moreover that the subset EL(p) of £ 2

defined by EL(p) = {MGE2|T"PMCML, /cσ(M)^p} is non-empty. [If £L(p) is
empty, then ER(p) is not empty or Lp = 0.] Let <2 be the smallest positive integer
such that TqMLnSQ Φ0. There are two cases.

Case l.q<p. Then TqML Gjn_p+φ and for any M e EL(p), we have Rk.(M) = TqML

for some integer i. Moreover, ki(M) = p — q<p^kσ(M). This implies i<σ(M), and
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If ε0 is small enough, we have 4ερ < θ, and we can apply Lemma III.2 to conclude
that q>K. Therefore,

S sup sup N(M\k) = Lp_κ.
O^k^p-K M'eJn-k

M'nSo+0

Case 2. q^p. In this case we have TpMLeJm and card£L(p)=l. Similarly, we
define ER(p) by

and we obtain as before card £#(/?)= 1 or card ER(p)SLp-κ. Therefore, N(M,p)

L(p) + cardEi?(p)^sup(2,2Li?_x), and we obtain the bound

Let now p be an integer such that O^pS c|loge|. Let M eJn . We note that if there
is an Me Jn for which T~pMcM, and kσ{M) = p, we have MnS o φ0. For such an
M, we have

and from l(M)>4εQλ~p [since p = fcσ(M)(M)]5 we deduce

Σ
MeE2

T-PMCM

If Me Jn and Γ p M c M , MeJn_p, we have

l(Γ""(4nM)) _ l(T-p(AεnM))

l(T~n+pM) Ϊ(M) '

Therefore,

Σ
MeE2

T

and

Σ KT-"(AεnM))=Σ Σ Σ KT~%ABnM))
MeE2 p = 0 MeJn-p MeE2

T-PMCM
kσ(M)(M) = p

l -o-- lof i2 £(cl l og£D

<2ε s κ 8 Σ Σ KT~{n-p)M)
p = 0 MGjn-p

Let now £ 2 be defined by E3 = Jn\(E1uE2). We shall assume E3 Φ 0, otherwise, the
proof is finished. This implies n>c|logε|. For M eE3, let / be the unique integer
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such that

ki(M)<c\logε\^ki + 1(M).

Note that ki+ί(M) exists if ε0 is small enough since /(Lo) > 1. We now observe that
*Φ, and

Therefore, T~iki + 1~ki)Rki(M)cA^εOλ-kι + ι. We shall now use the recursive
assumption. We have

Σ l(T-\AεCΛM)) = μf

n_p( U T-p(AεnM)\ l(L0)

kι + ί(M) = p \kί+ί(M) = p

Therefore,

M e £ 3 p = c|logε|

Q

From ρ + c log/I > 1 , 1 — ρ > τ , and 1—ρ — — Iog2>τ, we obtain μ (̂v4ε) ̂  ετ if ε < ε 0

for ε0 small enough but independent of n. Q.E.D.

We fix now τ as in Proposition ΠI.l and denote by (μπ)ne]N a subsequence of the
previous sequence which converges weakly to μ.

Corollary III.3. i) For ε small, rceN, fceZ, μn{TkAε)<ε\ μ{TkAε)<ε\

ii) For N e N, we define HN = I x e Ω: one (αί feαsίJ o/ the endpoίnts of W£c(x)

does not He on (J Sk

+ f. There exist c > 0 and a, 0 < α < l , such that for n e N ,
k = 0 )

μn(HN) < cocN, and μ(HN) < caN.
iii) For εeR^", we define Hε = {xeΩ: one (at least) of the semi-loc unstable

manifolds is shorter than ε}. For ε small, μn(Hε)<ε\ rceN, and μ(Hε)<ε\
iv) For xeΩ, μ({χ}) = 0.
v) ForxeΩ, i

Proof. The first part of i) follows from Proposition III.l, by the definition of μn\ the
second part is a consequence of the weak convergence of (μj, for Aε has smooth
boundary.

To prove ii) consider the line A passing through x e Ω in the unstable direction,
and let y be one of the endpoints of W£c(x).

By construction, either yeSk for some ke¥l or yφ [J Sk, but y is an

accumulation point of (J Sk CΛΔ . In the latter case, one can construct a sequence

(yn)neN> yn

e^ > s u c n t n a t > for some strictly increasing function fc( ), yπ e Sk(n), n e N,
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k(n)

and moreover, (J S£ does not cross A between yn and x. Then, T~k(n) is linear on
k = 0

the segment [x, yΛ C A. As lim yn = y e Ω and Ω is bounded, we can suppose
/|->00

J(x,yJ<10, so that d(T~mx, S^)< 10/λk{n\ VrceN. Thus, xe f| TmAί0/λk{nh

which is a set of μ-measure zero, by i): almost surely, the endpoints of W?oc(x),
xeΩ, lie in (J S£. Suppose now yeS^k^N. Then x e Γ̂ yl x 0/λk whence ii) by i)

With the same notations, suppose xeHε; then if yeS£, fceN, xeTkAεjλ-k,
whence iii) by i) and the convergence of Σ ^ kτ

The proof of iv) is similar to the proof of Proposition ΠI.l: Let xeΩ, and let ε
be a positive number. Let B be the ball of radius ε centered at x. Let Jn be as above.
We have

μn(B)= Σ KT-\BnM))/KL0).
MeJn

Let JΪ=\MeJn\l(M)>ε1+τ\, J;=Jn\J^. If MeJ^, from /(£nM)^2ε, we

obtain

l(T-n(BnM)) = l(T-nM)-

Therefore,

For J~, we have

Σ l(T~n(BnM))S Σ KT~nM) = μn( \j M)Ί(L0)
MeJn MeJn \MeJn

τ) /(Lo) ̂  c l(L0) ε 1 ^ by iii).

We obtain τ

and get iv) if we let ε->0.
We shall prove v) for Ws(x), the proof for Wu(x) is similar. It is enough to prove

that (Wllc(x)) = 0, since Ws(x)= Q T~ / ^ c ( T /x). Assume xeΩ satisfies
j = o

^(^ίocW) >β>0. Then, there is a couple of integers i andj, i Φj such that T11 WίoC(x)
nΓ^ s

o c(x)φf), otherwise, we get a contradiction from μ(TιWι

s

oc(x))>β, V/^0.
Assume z >j and let /c = ί —j. Since T is a bijection, we have Tfc^c(x)nP^ίocW + 0?
and therefore, TfeW£;c(x)c WίocW Since Γ l̂̂ f̂ ^ is a contraction, this means

00

that WίJc(x) contains a fc periodic point P. Moreover, P = f] TklW{

s

oc(x), and
therefore, z = 0

({P}) iϊiT^W^i)) W^x)) > β.
a contradiction with iv).
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IV. Ergodic Properties of the Invariant Measure

So far, the measure μ is not unique. The uniqueness will be proven by showing that
μ is the Bowen-Ruelle measure. We first investigate the properties of the
conditional expectations of μ on the unstable foliation, making use of the sequence
(/UπεN I n o r d e r to investigate and use these properties, we define two countable
partitions a and β which decompose Ω.

Let ζ+ (ζ~) be the decomposition of μ.a.a. Ω into local unstable (stable)
manifolds. As ζ + is a partition generated by (J Sn

+, it is measurable. We can define

the restriction μ+ of μ to the sub σ algebra Jί+ CJiΩ of the sets ζ + -saturate. By
Corollary III.3U), for μ.a.e. Wo e £ + , there are two maximal smooth components 70

No

and J o , contained in (J S£ for some No ^ 0 such that the endpoints of Wo lie on Io
k = 0

and J o . We then define the partition α by oc(W0) = {We ζ+ with endpoints on 70 and
N

Jo}. Let Civ CC + be the union of the elements of ζ+ with endpoints on (J Sfc

+,
fc = O

iVeN. (N is a finite union of atoms of oc; since, by Corollary ΠI.3ii),

lim μ + (ζχ) = 1, α is a countable partition of ζ + .
N-+00

We now look for a partition of Ω into parallelograms. Let P^ (P^) be the
N / N \

partitions generated by U «̂+ ( U S~ I. As S* is a broken line, folded only on

U S/1", a simple recursion argument shows that the P^(x), x e Ω, are convex sets.
i = 0

Note that ζ± = lim P^. Let x e Ω such that W+ = W^c(x) and W = ^ s

o c(x) have
iV->-oo

positive length. Let N + (x) be the smallest integers such that the endpoints of W~
(W+) lie outside P^+(x)(x) K - W ( x ) ] . It is easy to see that JV± are finite; Â + are
obviously measurable functions, so that we can define, for such an element x e Ω
the atom β(x) by:

As usual, we define the unstable and stable fibers y+(x), y~(x) by

(x), i.e. y±=βvζ±.

The set jβ(j ) is a parallelogram in the following sense

3\z'eβ(y), z' = γ (x)^y + (y).

This is easily checked by using the convexity of P^±(JC)(x) and the fact that JV* are
constant on atoms of P^± (JC) v ζτ. By definition β is a countable partition of Ω into
parallelograms.

We now come back to the properties of μ. As ζ+ is a measurable partition, we
can apply the usual theorem on disintegration (see [Ro] e.g.).

Namely, there is a μ-a.s. unique family {μw, We ζ + } of probability measures on
Ω such that:
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a) μw has μ-a.s. support on W,
b) for AeJίΩ the map W-+μw(A) is in I}(ζ + ,dμ+), and μ{A)

= j μw(Λ)dμ + (Wl denoted μ + (μ.(Λ)).
ζ

For Weζ + , let lw denote the normalized ί—d Lebesgue measure on W.

Proposition IV.l. The conditional expectations of μ on the local unstable manifolds
are the corresponding 1 —d Lebesgue probabilities, i.e.: μw = lw for μ.a.e. Weζ +.

Proof. As stated before, some subsequence (μw.)ίe]N of (μn)πeN converges weakly to
μ; we shall still denote it (μπ)ne]N. Let μπ

+ denote the restriction of μn to Jί^, n e N.
By the geometrical properties of Γ, it is easy to show that for AGJίΩ, μn(Λ)
= f lw(A)di£(W) = ij£(!.(A)). It is enough to prove lim μπ

+ (/.(/)) = μ+(/.(/)) for
ζ+ n->oo

/ G C°(Ω). Let / G C°(Ω). With respect to the Hausdorff topology τH on £+, the map
ζ+ ->IR: W->lw(f) is continuous. We shall show that μπ

+ converges weakly to μ+ in
the sense of τH.

By Corollary ΠL3ii), ft?"(C+\Cjv), fceN and μ+(C+\C*) are simultaneously
bounded by C ρN for some ρ e ]0,1 [ and some positive constant C. Let Q C ζ + be
an atom of α. Since ζ^ is a finite union of atoms of α the compactness of Ĉ  would
follow from the compactness of Q. As two elements of ζ+ cannot intersect, the
elements of Q depend continuously on, e.g. the vertical coordinate of their
rightmost endpoint. Since Ω is compact, the limit of a convergent sequence of
elements of Q is a segment contained in Ώ, thus, it belongs to Q : Q is compact. As Ω
is totally regular, the hypothesis of Prokhorov's theorem are fulfilled (cf. [B]), so
that (μ^)n e M converges weakly to some probability measure on ζ +, which has to be
the restriction μ+ of μ. Q.E.D.

We are now able to derive the ergodic properties of T.

Proposition IV.2. (Ω, T, μ) is ergodic.

Proof. Take fe C°(Ω)1 By Birkhoffs ergodic theorem, there is a set B C Ω, μ(B) = 0
and a function fel}(dμ) such that, if xeΩ\B the limits /±(x)

= lim —NΣf(T±nx) exist and f+(χ)=f-(χ)=f(χ). What we shall prove is that

f is almost surely constant. Let x,yeΩ\B. As μ(B) = μ(f] Hε\=0, the

conditional measures of J5u if] Hε\ (i.e. the corresponding normalized lengths)

are zero on W^x) and WϊocOO f°r μ x μ-a.e. (x, y). Thus, by Proposition II.4, it is
enough to find a subset A C W"oc(x) of positive length and an integer N such that for
z e i , Wιoc(z) crosses TNW^c(y), because / + (/") is obviously constant on stable
(unstable) manifolds. Consider now β(x). Almost surely μ{β(x)) > 0, and thus, by
Proposition II.4, l(y + (x))>0. By Corollary ΠL3v), we can define X1,X2GJ8(X) by
demanding that the quadrilateral Q defined by ζ±(x1), ζ±(x2) ^ e the smallest such

For some N9 by Proposition II.3, TNW£c(y) "enters" β, and one of its smooth
components, that we shall call W, crosses ζ~(xι) or ζ~(x2) or both . Thus, we can
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define the canonical isomorphism P along stable fibers from W"oc{x) into
We TΉW"oc(y), with a domain Q)(P) of positive length. The proof is completed by
taking A = 3f{P\

Proposition IV.3. i) For n e N*, (Ω, Tn, μ) is ergodic.
ii) (Ω, T, μ) is a K-system.

Proof. The proof of i) is similar to the proof of Proposition IV.2 ii) follows from the
fact the Pinsker σ-algebra Π of T is smaller than the σ-algebra of the measurable
sets saturate by stable and unstable manifolds (cf. [P]). The proof of Proposition
IV.2 shows that if fe l}(dμ) is constant along stable and unstable manifolds then /
is μ-a.s. constant; thus, Π is trivial for μ, whence ii).

In order to prove the Bernoullian property, we introduce some notations. We
define decreasing sequences (^*)neN, where Jt^ is the sub σ-algebra of the
elements of JiQ which are τ±nζ±-saturate. By Proposition IV.3ii) the σ-algebras
lunJί* = Π ^ / a r e both trivial for μ. We note μ± the restriction of μ to Jtξ.

n n

Proposition IV. 1 about the conditional expectation of μ with respect to Jί^
will allow us to prove the following:

Proposition IV.4. (Ω, T, μ) is isomorphic to a Bernoulli shift.

Proof. The proof is similar to [LI].

The canonical map (Ω, Ji£ v ^#0") ̂  ((+ x Γ , A + x A " ) given by P(x)
= (ζ + (x),ζ~(x)) is a.e. defined. Let v = μ°P~ί denote the image of μ through P.
We have:

Lemma IV.5. v is absolutely continuous with respect to μ+®μ , i.e.

Proof. Let A e Jί£ v Jί§ such that P(A) e Jί£ x Ji$ . By definition, we have:

μ+®μ-(P(A))= J dμ (
\xeAnW

Suppose μ+ ®μ~{P(A)) — 0. Then, for some #^CC+ of full measure:

WeiT, => μ~( U ζ-(x))=0.
\xeAnW J

Suppose that, for some W'ey + , included in an element C of β of positive measure,
we have μ(A\W) = 0. Then, by Proposition II.4 and Proposition IV. 1, we have:

μ(Cn U ζ-(
\ xeAnW

so that if W is the ζ+-saturate of W\ we have:

(
\xeAnW

so that WφΨl. Thus, μ(A\W') = 0 almost surely and μ(A) = 0. Q.E.D.

We shall denote the measure μ + ®μ~byμ x .By Radon-Nikodym's theorem,
there is a μx -integrable function h\ζ+ x ζ " ^ I R + , such that dv(x) = h(x) dμx (x).
If A G J?Q x JΪQ and v(A) > 0, the conditional probability vA = v( \A) is given, for
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a function /, by:

vΛ/) = v(/ χΛ)KχΛ) = μx(/ h • χΛ)/μ*(h • χΛ)

= μ*(f h)/μϊ(h)

or, more briefly:

We are now able to prove the weak Bernoulli property.

Lemma IV.5. (Ω, Jέ, μ, T) is weak Bernoulli, that is μ and μx ° P coincide on

C v Jί~\

Proof. As (Jίn v Jtn ) π e N is a decreasing sequence, the conditional expectation on

A of μ with respect to /\ ( ^ + v Jί~) is given almost everywhere by:
n

Λ (<^n V Jίn~)

μn

A = lim μ
n —*• o o

= lim v

by definition of v. Therefore,

μ n

A = lim(μx)^i)x^(i
n~~* oo

As (Ω, J(Q, μ, T) is a K-system, the σ-algebras f\ Jί^ and /\ ^ π ~ both coincide
nelN we IN

with the trivial algebra modμ: the conditional expectations
Λ ±

μ"elN " = lim μf*
n-* oo

are constant μ-almost everywhere.

Thus, both μn n and (μx o P)n n v " a r e μ-a.e. constant and thus
coincide. Q.E.D.

The statement of Proposition IV.4 follows from Lemma IV.5 (cf. [L2] for
instance).

We prove now that μ is the (unique) Bowen-Ruelle measure, id est:

Proposition IV.6. For geC°(F) and rn-almost any xeF,

The proof follows three steps: We consider the points x of (J TnL0 such that,
we IN

I N-ί
for some geC°(F), we have not lim — Σ g(Tnx) = μ(g), and prove that the

JV->oo N n = 0

length of this set is zero (Lemma IV.7). Then we notice that, for m-a.e. xeF one can
find positive integers p, n such that W{0C(Tnx) crosses TPLO (Lemma IV.8). Thus,
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what we have to show is that, m-almost surely in F, this intersection does not fall in
the exceptional set estimated in Lemma IV.7.

f 1 N~x

e l J TnL0\3geC°(F) and lim — Σ θ(Tnx) does not exist or is
n^O N^ + oo N n = 0

not equal to μ(g)>.

Lemma IV.7. VneN,

Proof. We first observe that #/ = Ίstf, and if x, y e TnL0, y e W£c(x), then x e stf is
equivalent to y e ^ . This last property implies using Propositions II.4 and IV. 1,
that W-+μ(j/\W) is a continuous function on (ζ +

 9τH). From μ( [j TnL0\ =0, we

deduce μ(s/) = 0. Therefore, using the Birkhoff ergodic Theorem, we have

0 = μ(sί)= $ dv(W)μ(s/\W)= lim S dvn(W)μ(j*\W)= lim
ζ+ n ^ + o o ζ + «-^ + oo

However, Λ ( ^ ) = KT~"Jft?L°) = ̂ P ^ , henee l(^nL0) = 0. Q.E.D.

Let ^ = {XGF|V

Lemma IV.8. m(J§?) = 0.

Proo/. Let // and r be as in Lemma Π.2. This lemma implies JS? C U T~n(^nH).
n>0

Therefore, it is enough to show that m(^nH) = 0 since Γ" 1 is absolutely
continuous. For α>0 and πeN, let JfZ={xeH\l(W£iC(Tnx))«x,n}. We have

T»H\l{W{oc{y))

and using [M], we derive

where δ is a positive constant. Therefore, if α < fc, we have with Jia = Π

Let xe(H\Jia)n&. We have x^^ α for n large enough, but

C ( Γ x ) n Γ ^ L 0 = (ί,

therefore,

Wfoc(Tnx)QTnH.

( λ(x\n

— 1 . However,

for fc small enough, it is easy to verify that for yeH such that W{

s

oc(y)CH, then

does not intersect both SO and S$. This implies that T~nW^oc{Tnx) is
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composed of at most 2[π/2] + 1 straight segments. Therefore, since each segment has
a length at most one, we have

We now choose α < b, such that ¥-— < 1 (this is possible since λ > l/l). We have
λ (X

λa\n

which is a contradiction if rc is large enough. Therefore, if nH cJίa, and we have

) = 0. Q.E.D.

We now come to the proof of Proposition IV.6.
We first observe that if x eF\JS?5 one can find an integer n, and p^n such that

o φ 0 . We define a new set Si by

If x e F\(J£vS$), there is an n e N, and an integer p ̂  n such that some point y of
I^s

oc(Tnx)nTpL0 does not belong to si. Therefore, Ίϊg belongs to C°(R2), we have

1 m - l 1 m - 1

lim - Σ 3(Γ jx)= lim - Σ θ(TJ+"x)
m ^ + 00 YYl j=0 m-»oo Mi j=0

= lim - * Σ g(Tjy)
m->ooΐYl j = 0

We shall now show that m(^) = 0. Let 0$p be defined by

From J*= Π T~n£$p it is enough to show that m(^p) = 0 for every integer p.

From the definition of S$p, we have

^Pc U (^ocWπF).
xe^nTPLo

Thus, an unstable segment PFbeing chosen, we consider Mw = (J WίoC(x), and
prove m(SSw) = 0, using /( j/n^) = 0. Λ e ^ n ί Γ

Let sίw = {xesinW\Wfoc(x)*{x}}. It is enough to prove m( U ί̂oc

= 0. If the W^Js w e r e depending smoothly on x, this would be a consequence of
Fubini's theorem. Instead we use Lemma ILL Let ε >0 be given sufficiently small.
As l(s#nW) = 0, s$r\W can be covered by a countable union of open disjoint
intervals of total length smaller than ε. Consider one of these intervals, say /; let

n+ί

εf < ε be its length. Let now n e N* (J iSfc" splits / into at most 2"+ 2 segments if J is
o

such a segment, by Lemma II. 1, the dispersion of the angles of {Wioc(x), x e J} is
bounded by 2(b/λ)n, so we obtain

m(Ό WfocC
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Thus, m ( U Wλ

s

oc(x)\ S 16(2b/λ)n +1(1) ̂  16(2b/λ)n + ε'. As n is arbitrary and λ > 2b,
\xel )

we get

m([) Wί;c(.

so that

Wf U ^ίo<

which proves that m(0$w) = 0.

V. The Hausdorff Dimension

Let us denote by χ+ and χ_ the characteristic exponents of (Ω, T, μ):

χ+ = lim -log \\DxT
n\\ for μ.a.e. xeΩ. Let h denote the μ-entropy of T. In [Y2]

Young proves that, if M is a compact surface, (M,/, m) an ergodic C2 dynamical
system with characteristic exponents χx ^ 0 ^ χ 2 , the Hausdorff dimension of m is

given by HD(m) = Λm(/) ( ), where Am(/) is the m-entropy of/. If the limit

exists almost everywhere, HD(m) is defined by HD(m)= limlogm(^(x, ε))/logε,

where^*(x, ε) = {ye M\d(x, y) < ε}. As we shall show this result remains valid in our
case, despite the fact that T is only almost everywhere C00. We have the following
theorem.

Proposition V.I. For μ-a.e. xeΩ,

1 1
, α))/logα = h

\X+ X-

In order to prove this, we merely adapt ideas of Ledrappier [L3] to our case. We
prove separately two inequalities which lead to Proposition V.I.

Lemma V.2. lim inf logm(J*(x, α))/logα ̂  h ( I μ-a.e.
«-o \X+ X-J

Proof. Let P denote the partition of Ω defined by S = SQ USQ . For simplicity, let
F + (x) denote the quantities HD^T111|, for x e Ω. Note that F+ is constant on each
side of SQ .

We first prove that, ε > 0 being given, we can find for μ-a.e. x e Ω an integer N(x)
and a number C(x, ε) > 0 such that if n > N(x) and d(x, y) ̂  C(x, ε) e ~", then x and

j ; belong to the same atom of \/ TkP, where n+= [n/(μ(jp±) + 2ε)]. Suppose

d(x, y) ̂  d(x, 5). Then x and j ; belong to the same atom of P, and d(Tx, Ty) S F + (x)
d(x,y). If, moreover, d(x,y)Sd(Tx,S)/F + (x), we deduce d(73c, Ty)g;d(Tx,S): x

and y belong to the same atom of T~XP, and d(T2x- T2y)^F + (Tx) -F+(x)
• d(x, y). Similar arguments are valid for T~1 and F_. Thus, we see that a sufficient
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« +

set of conditions to insure that x and y lie in the same atom of \J TkP is that

lk-1

F_(T~jx),
7 = 0

(where the product is taken equal to 1 if fc = 0).
We have the two following estimates:
1) Let B(ak) be the neighborhood of S of diameter ock. We recall that μ(B(ak))

<K ατ/c, where K,τ are two positive constants. Thus, if α < l , the series
00

Σ μ{B(ock)) converges. This allows us, through a measure theoretic result (see [L 3]

e.g.) to derive the existence a.e. of a measurable function C(x, ε), 0 < C(x, ε) ̂  1 for
μ-a.e. xeΩ such that for keΈ d(Tkx,S)^C(x,ε)e~^ε. In particular, we get

2) By the ergodic theorem, for μ-a.e. xeΩ, 3N(x) such that if n_>N(x),
n+ >JV(x), we have

Π F+

Π F_
j = o

Assuming ε is sufficiently small and setting N(x) = N(x) μ(F+ +F_), we get, for
n>N(x),

d(Tkx,S)
I 7 = 0

d(T~kx,S)
/

/ +

Then, S(x, C(x, ε) β~")C V
\

f o r n>N(x).

Using Shannon-Mac Millan-Breimann's theorem (see [Bi]) we obtain for
μ-a.e. x e Ω,

lim inf logμ(B(x, α))/logα ̂  h

As ε is arbitrarily small, we have //-a.e.:

liminflogμ(β(x,α))/logα^h . ,+
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n - 1

We can reproduce the same arguments replacing T by Tn, SQ by (J T±USQ, P by

V TkP, F± by \\DT±n\\. k = °
|fc|

As lim J \\DXT
Z

n—> oo

lim inf logμ(B(x, α))/logα ̂  ft (
\A 4-

Lemma V.3. lim sup logμ(B(x, α))/logα ̂  ft ί ).
α-+0 \X+ X-J

Proof. Let P still denote the partition defined by S. We first prove that, ε > 0 being
given, there is a constant K such that, for μ-a.e. x e Ω, we can find N(x) such that

/ +

n>N(x) => V TkP
\-n-

where n+=n/[-χ_-ε], w_=n/[χ+-e].

Let x G Ω and let Q = ( \/ Tkp] (x).

We first exhibit "unstable and stable widths" w+ of Q. For y e Q, we draw the
line zl = zl (y) passing through y in the unstable direction, and note w + (y) the length
of z ing; we recall that Q is a convex set. We set w+ = sup w + (y) and define w_

similarly. As the unstable and stable directions are transverse, and as the S*, p e N,
and the Sq ,qe N, are also transverse, the minimum ball constaining Q has a radius
smaller than C (w+ + w_), where C is a constant. We now estimate w+ we fix
ye Q such that w + (y)>w+/2. Tn~ is linear on A(y)nQ. Thus, the usual argument

n- - 1

shows that 10 >l(Tn~(A(y)nQ)) = w + (y) Π ^ + (^ί};)? where J+ is the jacobian
i

n- - 1

in the unstable direction. By the ergodic theorem, Π J

where ε( ) is a function depending on y such that lim ε(m) = 0. As y is here fixed,
in —* oo

for n large enough, rc_ is large enough and ε(rc_)<ε. We get 1 0 > w + ()/) -en\
( n+ \

similarly, w _ (y) < 10 e " n , and we get V TfcP (x) C B(x, Ke "n) with X = 20 C.
\-»- /

Letting n go to infinity, we get

lim sup — ^ ft 1

Lemma V.3 now follows from the fact that ε is arbitrarily small, Lemmata V.2 and
V.3 end the proof of Proposition V.I.

We add the following result, which is the mere consequence of [L, S].

Proposition V.4. With the above notations, h = χ + .

Proof. One can check that hypothesis of [K, S] are fulfilled, so that the result of
[L, S] applies.
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Appendix. Proof of Proposition II.4

Lemma A.I. There is a positive constant Lι such that for any pair Wu W2 of local
unstable manifolds in Ω, there is an ε0, 0 < ε0 < 1 such that if 0 < ε < ε0, one can find

2ε
an open subset jtfε of Ω with /(j/εnPί\)< τ=—, and if X,X/E^(PWI

l-4yb/λ
d(x,x')<ε2, then

where D = d(WuW2).

2 1
Proof. Let K be a real number such that — < K < —=. We define stz by

00

^ = U (4>nfl) } where A;j=T~jA'.
7 = 0

Every A^J/KJ crosses W1 at most 2j times, therefore,

JS Σ /(4/
j = o

because the stable and unstable manifolds are transverse. We note p = Pwιw2.
Assume x, x'e3){p\ and xφjtfε and d{x,xf)^ε2. Let (5 = rf(x,xO Let AT be the

/ \ / \N+ί
γ 1

integer such that 2ε -—— ^ δ < 2ε[ —— . Assume that for some k,
\KA+J \KA + J

0 ̂  k S N, Sk" crosses Ŵ  at some point y between x and x'. From d(x, y) < δ, we
deduce d(Γfex, Tky)^δλ\. Therefore,

which contradicts x φ j / ε . Assume now that Sfc~ crosses P1̂ 2 for some k, 0 ̂  fe ̂  JV, at
some point which is on the segment (p(x),p(x/)). Since S^ cannot cross a local
stable manifold, Ŝ~ must have a corner inside the parallelogram
6 = (x,x/,p(x),p(x/)) This implies that there is a point z belonging to this
parallelogram such that zeSj^, for some k\ 0 ̂  fc' < k. By induction we obtain that
Q must intersect SQ 5 a contradiction since SQ i s a straight line. Let j be an integer
such that O^j^N. The above argument implies that TN~jQ is a parallelogram.
Moreover, we have

d(TN jx,TN ix/)^δλN \d(TN jx,TN j(p(x)))<2[^) D,

and
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since the angle between a local stable and a local unstable manifold is greater than

—. We have, therefore,

- 1
δ'

which implies

- 1 <—-|/D by our choice of N,
10

provided ε0 is chosen small enough (independently of N and <S), and

.<
2\og(λ2/b)

. We also have

d(TN-J(x),TN-j(x')) I d(x,x")
d{p{x\p{x')) = γj

?^~W)))

where

satisfies

according to Lemma I.I. Therefore, i f ; = | - 1 _ _ / i 2 / ί λ | —log8, we have
e,,o=[ί

N-j

= 2

2log(λ2/b)

, if D is smaller than
64λ 2

Combining the two estimates, we obtain the result for D < 2 with Lγ = 1. For

D > 2 , we apply T one time [this is enough since D ̂  0(l)fo],and we can apply

the estimate unless W1 and W2 cross So, in which case the estimation is performed
with respect to So. Q.E.D.

We still notep = P^i^2.

Proof of Proposition IIA. It is enough to prove the proposition with A — An@(p),
A a closed interval in W1 and l(A) > 0. Let ε0 be as in Lemma A. 1, and choose ε such
that 0<ε<ε o and ε</(^)D1 / 3. We observe that WΊ\^(p) is an open subset.
Therefore, there is a sequence (Uk)ke]^ of disjoint open intervals such that

00

= U Uk.
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In the following, for a,be@(p) we shall denote by p(]α, b[) the segment
]p(α), p(b)\_ (although p is not everywhere defined on ]α, fe[, this definition makes
sense because p is order preserving).

Let Vk = p(Uk). From Z(F^)<oo and l(W2)<oo, we deduce that there is an
integer Nί such that

Σ TO<e, /(n)<ε2 i f fc^JV±.

Let A' = A\ U Uk. We have l(A) 5Ξ 1{A') ^ 1{A) + ε and Z(p(̂ 4)) S KP(^Ί) The set

j / ' ^ FK2n^/εu ( (J Ffc J is an open subset of W2 such that

( 2 \
Z(eβ/0 < 1 H 7=:̂— \ε < 4ε if b is small enough.

V l-4]/ft/λ/
We can find a sequence (Ffc0fce]N of disjoint open intervals of W2 such that

oc

fc = O

Let N 2 be an integer such that

00

l(Vk

r)<ε2 if fc^ΛΓ2 and

Let

\ k = 0

we have l(A") ̂  /(^0 and /(p(^0) S KPi^Ί) ̂  /(pC '̂O) + 4^ P ^ Ό i s a f i n i t e u n i o n o f

closed intervals of W2 whose endpoints are in &(p~ 1 )\^/ ε . Let / = [u, υ] be such an
interval. We claim that there is a finite sequence (ws)s = 0,...,9 such that

iii) d(upuj+1)^ε2.
This is obvious from the above construction. From Lemma A.2.1, we have

which implies

/(P" x a))^( l+Ai> 1 / 3 )^) and

Therefore,

)) + 4ε ̂  (1 + A ΰ 1 ' 3 ) ^ " ) + 4s

+ 4ε^(l

, where
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The inequality in the other direction is obtained by interchanging Wγ

and W2. Q.E.D.
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