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Abstract. We prove that the scaling limit for a large class of weak V(V¢)
perturbations of the free massless lattice field ¢ is Gaussian with the covariance
c(V)(— 4)~ 1. The correlations as well as ¢(V) are analytic in V. In particular the
Mayer series for the dipole gas is convergent for small activity.

1. Introduction

The authors have been pursuing a program to gain a rigorous control of
asymptotically free (AF) models of statistical mechanics and quantum field theory.
This paper finishes such an analysis for infrared (IR) AF models, such as the dipole
gas, (V¢)* model and related ones. We show that their correlations become those
of a free massless field at long distances: the canonical scaling limit is shown to be
the massless Gaussian Euclidean field with a definite field strength renormaliza-
tion.

In a previous paper [1] the authors studied the renormalization group (RG)
trajectory of the Hamiltonian in a general space of Hamiltonians. This analysis is
now applied to the study of the correlations. The results of the present paper may
also be interpreted as setting up rigorously the RG in a space of Gibbs states of
certain critical (massless) theories and showing the convergence of its iterations to
the state given by the massless Gaussian fixed point, in the sense of convergence of
correlations. We, however, state our results only pragmatically, as a result about
scaling limits and IR properties of the correlations.

When [1] was finished we obtained [2] where infrared behavior of the weakly
coupled (F$)* model was controlled by means of a phase-cell expansion. Both
methods are similar as they are based on an analysis of contributions of different
momenta on different scales of distances. In [2] different momentum scales are
entangled in the expansion whereas we analyze the contribution of one momen-
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tum scale in a general inductive step. The price paid for greater conceptual clarity
is that we have to consider iterations of much more general class than the starting
V(V¢) of interest. But in turn the results are quite model-independent (they apply
e.g. to the dipole gas and to the (V¢)* at the same time).

One should also mention here a series of papers ([3] and references therein)
which apply correlation inequalities to study the infrared behavior of massless
models. This method gives results for any values of the coupling but is more model
dependent and provides less understanding of the physics of the system. The future
lies probably in applying the RG ideas together with the correlation inequalities
(see e.g. an attempt in [4]).

Let us describe now the models that we consider, together with our results. The
reader is recommended to have a look into [1] for more details and motivations.
We state the results only for local potentials. Remark 2 below concerns the non-
local ones fitting our scheme.

Let A be a periodic cube (|A|=L"%) in Z¢ and ¢, xed, the field with
covariance G, 4, the inverse of

(God)gy=(=4 ), + LN (1)

(the infrared regulator ¢ makes G, well defined), where 4, is the lattice periodic
Laplacian. For each such 4, let there be given a function V,(x) of the vector field
Xuw #=1,...,d, x€ A, on A. Define the finite volume state

= — L= VAT DN, ). @)

where dug , is the Gaussian measure with covariance G, and
N = fexp[—V,ldug, , is assumed to be non-zero. We shall also use the notation
{—> 4 ,» where the Hamiltonian #,($)=3(¢,G,,¢)+V,(V¢). Denote the ther-
modynamic limit (TDL) A—Z% -0 of (—), by {(—>, whenever it exists
(V={V,}) (convergence here means the convergence of correlation functions). We
define the scaling limit of {(—), as follows. Let x,, ...,xueIR" be different points
with x,e L™VZ* for some N. Define

d—

G(xy, - r X,,) = lim L_"'"< Im] ¢Lnxi> ©)
i=1 vV

whenever it exists. {G(x,, ..., x,,)} give the scaling limit of {—).

The Main Result. Let d=3 and
V0= 2 v 4)

xeA
with v(y) being a function invariant under rotations by multiples of 5 of x and under
reflections in coordinate planes, vanishing together with the second derivatives at
zero, even and analytic in y for |Imy,|<B. Moreover, we assume that
(@) for |y,/<B, v(x)<n,
(b) for |Imy,|<B, lexp[—v(x)]l<exp [xlx*] with |k|<O(1)<%. Then for
B> B, and n<y,,
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(A) the TDL {(—),=<{—>, exists and the scaling limit is given by the massless
gaussian field on R® with the covariance c(v)”'(—4,)" ', 4, being the continuum
Laplacian.

(B) In particular, the two-point function satisfies

1
=c(v) Y (—A) ! e e 5
($.$,0, =) (=), +0(1 e y)d_m) ©)
(©) c(v,)and <]—I¢)x,>“ are analyticin Ae R if v, is a family analytic in A in some
region R, satisfying there the above requirements uniformly in A.

Remarks. 1. The functions

v(Vg)=1) (V,¢)* (the anharmonic crystal), (6)

and

(the dipole gas in the
sine-Gordon representation),

v(Vd)=1),(1-30%(V,$)* —cos(eV,$)) (7)
U

satisfy our conditions for A positive and small and for [A] small or |g| small
respectively. In particular for the dipole gas the perturbation expansion in powers
of A (the Mayer expansion) converges for small [A]. In fact let v be any invariant
even function, vanishing together with the second derivative at zero, analytic in
some strip around the reals with e™" bounded by some Gaussian. Then v(1¢)
satisfies our conditions for 4 small.

2. We may also consider non-local ¥’s corresponding to the Boltzmann
factors given by the formula (3.3) of [1], with the properties described in Sect. 4
therein, see also (2.14) below and what follows it. These V’s constitute a class
invariant under the RG. To be able to pass to the thermodynamic limit one has to
take g5, and V,, (being respectively the large field and the small field data)
possessing infinite volume limits (note that they are functions of ¢ with finite
support, X and Y respectively).

The organization of the rest of the paper is as follows:

In Sect. 2 we review the block spin formalism and the main results of [1]
concerning the effective Hamiltonians.

Sections 3—5 are devoted to a careful study of the two-point function where the
main ideas of our method are seen without unnecessary notational complications.

Finally, Sect. 6 shows how the argument may be applied to a general
correlation: as an example we show that the scaling limit of the four-point
function is Gaussian.

2. The Block-Spin Transformation

Let us consider a correlation function
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The idea of the RG is to compute (1) by successively integrating out fluctuations of
short range. Explicitly, we introduce block spins ¢!, xe L™ ANZ*:

_dr2
or=L * Y ¢...,=(Co),, 2
IYul <Lj2
and define ##, the renormalized Hamiltonian, (we drop the subscript A4) by
exp[—2H#($')]=const [ exp[ ~ #($)]0(¢" — C)D¢. 3)

For the correlation function (1), we get

FPy=L8F)gp=..=XS"F) gy, 4
n< N, where

(SF)(¢')=[ F(¢)exp[ - #($)16(¢" — CH)DP/[exp[ — #($)]6(¢" — CH)D. (5)

Iterating N times we are finally left with the zero mode integral:

<F>9e> = ISNF(CbN)dﬂLZNg(QbN)- (6)

In [1] we controlled #"#, showing that (in the A # Z* limit) it converges (in a
sense specified below) to a Gaussian fixed point. The purpose of this paper is to
control the iterations of S, given this information about #"s#.

Let us briefly recapitulate the main points and results of the analysis of [1].
Consider iterations of the form (1.4). It has been shown that one can introduce
“scaling fields” y?, ze L™ ' 4, related in an approximately local manner to ¢?, and
fluctuation fields Z,, xe A\LZ", so that Z# is given by the following integration
over Z

exp[ — RA($'YID$* =constdyg, (@) fexp[ — V(L™ 2Pyl . +VM°2)]du,(Z),
7
with M2, an (approximately) local kernel, xe 4, ye A\LZ’, and G, being a new
covariance for the unperturbed part,
G,=CG,C". @)

Next one separates from the integral in (7) a “marginal” quadratic piece
proportional to (¢*|G; *¢*) (except for the zero mode contribution) and absorbs it
to dug,(¢) turning the latter into dug (#). The whole process may be iterated giving

exp[ _e@n-}— 1%(¢)n+ 1)]D¢n+ 1 =COIlStd/lC(—;nC+(d)"+ 1)
fexp[— VL™ Y2Pyyt L+ VM Z")]dp, - (Z")
=constexp[ — V""" (V" )ldug, , ("), (9)

where G,., coincides with ¢, ., C""'G(C*)"'=c, },G,,, on the subspace
orthogonal to constants and with G,, , on constants and

VIt )= iyt ) 3L K, T,

52f/n+1(0) 0
Sxox

(M"=./"QI'}? in the notation of [1]).

(10)
Vrri0)=
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The following results were proven for the functions and kernels of (9) and (10),
uniformly in the volume A. The initial V° is assumed to be given by (1.4) with v as
described in Sect. 1. Given a (real) configuration y"=FVy" which is uniquely
determined by the n'® block spin ¢"=C"¢, we introduce a region of large fields,
D,(Vy"), as the smallest union of blocks of the lattice with spacing LN (see [1],
Sect. 3) satisfying

Vil =(ng +n)" explod(z, 2)] (11)

for each z¢ D (Vy"). Here o is taken small and v>1d*+1.
The following sets of (complex) vector fields " on any X C L "4 (X, D unions of
LNoJattice blocks) were introduced in [1]:

A0 =" ) <o+, IVl <Clng +n) 4 if z4+ L7 "%,eX},  (12)
and

B(D.X,a)= ) (Vy'lx+axt,(X)). (13)
Du(Py™)c D
It was shown that exp[— 17"] is analytic on B,(L™"A,L""A,1) and has, for
1=Vy"+j with D,(Vp")CD, je A,(L™"A), a representation
exp[~ V1= X [Toiwesp[~ I Vit (14)
xXp YnX,=9¢
with X, disjoint, X ;D D, X ;, Y being unions of LNo-blocks. The functions g% and
V" depend only on x"l x Of X"‘y respectively and satisfy the following analyticity
requ1rements and bounds inherited from our assumptions on v:
(1,) g% is an even analytic function on B,(D, X, 1). If X ; are disjoint and D;ND
=) DX, then for "=Vy"+7" (on B,),
J

)

<exp [K@n(Dl, th")—Zoch(Xj)+EZ]Dijl]. (15)

Here |X| denotes the number of LVo-blocks in X. £(X) is the length of the shortest
tree on the centers of the LN°-blocks building X and possibly other (continuum)
points.

2K, "= (f dz+ afk da(z)) 2. (16)

(2,) f/;’ is even, analytic on 27,(Y) with
[Vp 6" mexp[ —20.2(Y)], 0<d<l. (17)

17;‘ vanishes together with its second derivatives at y=0.

(3.
HKnHLl(DlXD2)§-C5nO+neXp[_2OCd(D1: Dz)] (18)

for unit squares (1, 1,.
(4) The infinite volume limit for ¢, exists. Moreover, since

lcn+ 1 —cn[§C6n0+n’

the infinite volume ¢, tends to ¢(v) when n— oco.
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In the next sections we shall make inductive assumptions about S"F, similar to
the above ones, and shall iterate them much in the same way as we proceeded

in [1].

3. The Two Point Function: A Representation for the Block Spin Correlations

Let us start by inserting the block spin decomposition

¢X=L_d—;%wi»1x+(MZ°)xvaix +zp  (xX"=L7"x) (1)
0 (2.1), getting
(FY=L$pr= J;I PWKwiz2 (2)
where we use the notation
wi=11v. (3)
JjedJ

Integrating out Z°, we obtain from (2) [see also (2.5)]
SF= Zymlp}<z?\1>zo ) 4
J

where, in general, we define
fZN) gu= [ f(Z"exp[ = V(L™ V) - +V2")]du(Z(f=1). (5
First let us consider the two point function. In this case (2) reads

Griny =P80 5 =050l F 79020 D 20+ (1 2)+420,20 D g0 - (6)

Let us introduce the following notations

<Z§k>zk:Gz+1 i (7
<Zxkzxk>Zk—Gk+1 125 (8)
(zkak,j>Zk=G£l+1,ij (k>1), 9)
n+1B < B>Z" (A:kakla BZZ,U: n<N—N0)7 (10)
and finally
Gﬁ,B=<G§—N0,B>%N‘NOJt" (11)
Iterating (6), we obtain
N—No—1 N-No—2 N—No—1
GX1X2= Z kaG}lc\’k,lZ_!_ Z Z H—k(GN 12+G,Ifll,21)
k=0 k=1+1
+2E TNl -Nzx(r)lpxzv NS v Ny s
N—No—1
+ 2 VN_N0+k<in§V_>NI‘90G’1(v—NO,2+(1©2)>@N—No#- 12)
k=0

Thus, we only need to control the iterations of (—), (=S) on the various
functions just introduced. Let G, denote any of the objects G ; n<N —N,. Note
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that G, is a function of Fy" only (not of ") and can be extended naturally to
vector fields y". Let

G, (=G0 +G,(0"). (13)
Of course, G¥ ;=G , since G* , is odd. N :
We shall assume (inductively in n, k+1Sn=N—-N,) that G,exp[—V"] is
analytic on (L™ "A, L™ "A,1) and that for y"e 4(D,L™"A,1),
Gexp[-V1= ¥ ] }DHF,,Y exp[~ Y #l,

X} (Yo} YnX;=0

where X, ¥, are disjoint (built from LNo-blocks), X ;N D is, for each j, a non-empty
union of connected components (c.c.) of D, uX ;> D. Moreover, the set of points

x C{x}, x5} involved in G, (i.e. G ) satisfies xJC(uX Ju(uY,). For D=0, H gP

(14)

does not occur, for X ;nx; =0, gX =g%. 1:",,,, does not occur in (14), if Yr\x, ﬂ
Thus we see that for G" ; there is at most one F in (14), whereas for Gy!,; there may
be as many as two. g"XD and F av, implicity carry the indices k (or ki), i, (ij). Namely
for G* g We have Fn sy, etc. Equation (14) is an analogue of (2.14) for the
(unnormahzed) block spin correlations. In analogy with (1,) and (2,) of Sect. 2,
g3 and F”Y possess the following properties, to be shown inductively.

(A,) §52 are analytic on 4,(D,X, 1). They are even 1f X nxj is even. Otherwise
they are odd. Equation (2.15) holds, if all or some of g} are replaced by 73>

(B,) F,y are analytic on 2.¢,(Y) and vanish at x "=0. F* iy are odd and F
are even. On 27,(Y) they satisfy the bounds

n,ijY

4Ty~
<L 2 " §metkexp[ — 20 2(V)], (15)
and

d
<L T T et expl — 20 (Y]], (16)
where 6 =63,

We will also trace the change of G,(0) with n.
(€,

d—s(z

IGY., (0)—Gi (Ol=CL 2 5"°+’exp[ ad(xi T x5T]. (17)

n,ij

In (15)«(17) ¢e>0 may be chosen arbitrarily small if the parameters of our
constructions (see the beginning of Sect. 4 of [1]) are chosen appropriately.

4. The Cluster Expansion

Here we shall show how, given (2.13) for one value of n, we may recover it for n+ 1.
Since the initial steps that we take are analogous to those of [1], Sect. 3, we refer
directly to this paper. Suppressing n and replacing n+ 1 by the prime, we have the
following recursion:

G )exp[—V'(¢)]=§ GIL™ "y, + V2 exp[— V(L™ V2, 1.+ V2)]dp,-(Z)
-exp[W'(0)+58*W'(x)]. (1)
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Upon insertion of (3.13), this gives
3G(0)=G'(0)— G(0)= | G(Vz) exp[ — V(V2)1dy,-(Z) exp[ W'(0)], 2
and
GO expl= V()1 = [ GG) expL = V()Idi-(2) exp[W(0) +56° W (/)]
— [ G(Vz)exp[ — V(V2)]d, - (Z) exp[W/(O)] exp[ — V' ()],

3)
where
x=L""y, ... +Vz. )
Using (2.14) as an input, we obtain an analogoue of (3.15) and (3.16) of [1]:
[ GO exp[ = V(01dp,-(2)= Y Y, Y, Y 012 (2),
B X 3 {Yoh, (Yo}, (Y} (5)
where
F(.)=T18R T Fy, 0 TTexpl— V(01— D1 (exp[—35Vy, (01— 1)
J a a B
[T exp[=V,01 [Texp[—38*V,(01. ©6)
4¢ X 4
Now (5) is decoupled as in [1], Sect. 3, leading to an analogue of (3.24) therein:
JGexpl—~Vidu-.= [T exp[-w,] ¥ [] ek ¥
4¢ Xy ¢

X ; are disjoint, uX ¢ has to contain D'U{x}}. Equation (7) is an expression of the
type of a polymer-gas unnormalized correlation function with polymer densities

R 0= ) fI1sw )'/LX(Xy w Yo Y33 10)

BAX B Y oh (Ya) (Y ) (T} v

12 R)du - (Z,5) / [T expl—w,()]. @)

Ac X\D'

In (8) %,z is like # of (6) except that X, Y, Y, ¥, CLX and As in the products are
taken from LX. The restrictions on the sums in (8) are as in (3.25) of [1], Y, playing
the same role as Y, and Y;. The only additional I‘eStI‘ICtIOH 1s that (VX )u(u Y ) has
to contain x ,r\LX Notlce that if x"* ' nX =, then g% =0¥.

Now put
Je=_X Hexgn(exp[w;g(ow152Wy’§]—1)

Xeh (YehinX' ¢

exp|— ) wA]exp[ Y (W (0)+557wy)|, )
ACX'\D’ AcX’

as in (3.30) of [ 1]. Note again that if x;* *nX’ =, then gy =gy, . For the odd case
(one x* ' or x2* ! in X'), g2 will be the final g already. Define also gjy. by (9)
with the restriction UX,DX'nD’+0 replaced by X'nD=0 and x;" " or X3 teX".
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Equation (7) may be rewritten as
[Gexp[— V]dy, -, exp[W(0)+16°W']

= X Hé;?,ﬂg}?‘} exp[ > f/} (10)
XL Xs} J Y'nX;=0
YnX'=0

where X', X/, are disjoint, UX;> D" and x;" ! lies in (UX})U(X}). Again there is no
[1g¥, if D'=0 and no ]_[g"‘° fxj* ! lies inside LX),

Jj
The last factor on the right-hand side of (10) is obtained by exponentiation of

the polymer sum outisde (UX ;)u(UX,), see Sect. 3 of [1].

S ¥]into
Y'nXj=¢6

. . . . Y'n(uXs)+0

this factor applying the Mayer expansion to the compensating one:

In the next step of our expansion, we shall include exp|—

[ Gexp[—Vdu,- ., exp[W(0)+16>W']
= o2 E Tle, [lep - Depl= 5 % 1)

XL oL Y
where Y,nX;=0 and Y;n(uX,)+0. Introduce
Fy= % gk lexpli-), (12)

X', (Yo}

where X'U(LUY)=Y, X'nY +0, and
Fie= Y g (exp[m—m Y ghghe [Texpli1-1), (13)

X' (Y} X1, X5, {Ya}
where the restrictions on the first sum are as in (12) and in the second one we
assume that X, UX,U(UX)=Y, X | nX, =0, X|0X,)nY,+0 and Y is connected
with respect to X'}, X', and Y.

Note that Fj. are odd and F%, are even. In fact Fjj. will be equal to the
final F ;’; With thls notation, (11) becomes
JGexp[=V1du . exp[W O +35°W]= 3 [1a7[1Fy, exp[ ) K@},

(Xh{Ys} J YnX;=0
(14)

with the restrictions on the sums analogous to those of (10).

The last step in our expansion is to extract a constant term from G’
Substituting (14) and (2.14) to (2) and (3), we obtain

GO)= 3 Fr ), (15)
and

Gexp[-V]= Y ﬂ"DHF exp[ Y I~/§,]

K AYs j Y aXj=0
- Hg;?;.F'y;(O)exp{— > V} (16)
(X3 Y Y'nXj=0
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Set
Fj.=Fj., (17)
Fly =Fify —Fi30), (18)
gx =9x (19)

n*1 and otherwise

W=~ Y [le8FO]]expl-71-1), (20

X5, Y1,{Ys}

if X' does not contain both x}** and x}

where X ’J are disjoint, UX ; 2X'nD, Y nX }=ﬂ and X' is connected with respect to
X, Y], and Y,. Substitution of (17)-(20) to (16) gives

Gexp[-V]= Y [13% Hﬁ}&exp[— Y f/},], (21)
X5,{rst Jj 4 Y nX)=0
which is (3.13) for n+1.
One may also show inductively that for D; DD (compare (3.6) of [1])

g= ¥ I S’:DHFHY,H(GXPE %1-1, (22)

PERTERS I,
where X ;, Y, are disjoint, (UX;)nD=X,ND, ¥,CX,\uX;and X, is connected with
respect to X ;, Y, Y,, and c.c. of D,. Agam Fn,, appears whenX 1\UX; contains x1

or x5. The proof (22) is deferred to the Appendix.

5. The Estimates

The essential feature of the RG transformation which allows inductive proof of
(A )~(C,) is the scaling of fields (by L™ “~ 2’2 and of distances (by L™ ). These
scalings give rise to contractive properties of the RG.

We assume (A ) and (B,), k+ 1 <n< N — N, and start with 9% as given by (4.8).
We may follows word by word the analysis of Sect. 5 of [1]. Namely, G2 have the
same bounds as g} and the bounds on Fg, (although weaker than those for
exp[— VY] — 1 are sufficient to produce (5.42), (5.48), and (5 49) of [1]. This settles
the D'nX +0 case. Consider the D'nX =@ one (we put 92 =@; then). For p+0
terms of (4.8), we obtain immediately the bound

exp[[ — O((no +n)*)] exp[ —82.£(X)]G~ ¥ 1)

due to small probability of large Z, see Sect. 5 of [1]. Take now p=0. Call X small
if |X| §2"~and ZL(X) is minimal for given |X|. X will be called big if it is not small.
For big X there is enough contractive strength coming from the resclaing of the
distances to extract the bound

d—e

- (n+1-k » iy '
) I 0otk exp[ —8a.Z(X)]G™* for the odd case,
I(Q)?)13’=0tex‘mslé b ( ] (2)

———~(2n+2 k=1) .

L Smtlexp[ —80.Z(X)]G X1 for the even case.
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For X small, the only dangerous term in (4.8) is the one with no Y,, Y, no
s-derivatives and a single Y, with [X|=|Y,| and Z(X ) ZL(Y,) (there is only one
such Y, containing x7, x} or both for a given X ). This term is, up to a contribution
suppressed by O((ny+n)’ "96™*"),

.[FB YG(XO)l (Zrg)dp.-(Z15). 3)

Let us consider the odd case first. To use more efficiently the contraction
coming from the rescaling of the fields, write

B00= 51 B+ PO, @

t 0

The first term is linear in x°. Notice that the function t—>FlY(tx°) has the Taylor
series at zero starting with ¢* and for y'€ 2, , ,(X) and Z, ¢ in the support of 1, it
is analytic for || <3L%?, say, and bounded there by twice the right-hand side of
(3.15). Hence, at t=1, [F(°)|<2GLY?) 3 right-hand side of (3.15) by the
maximum principle. The first term on the right-hand side of (4) contributes to (3),

g d ~
L d/ZE F?y(tXL*l-)j 1a(ZL)?)d:uc-1(ZL)?), (5)

t=0
which is bounded by
d—e

L4214 (ng+n) WL 2 0§20t kexpl —20.2(X)]. 6)

The contribution of the second one is bounded by

4y -
2R3 2 TStk exp [ — 20 2(X)], )
both for y'e2., . 1(X) Combining (6) and (7), we conclude that in the odd case

d & d—e

GN<L 2 5L 2 TP Emerkexp[ — 20 #(X)] (8)

on 24, (X) for L and n, big.
In the even case we proceed cimilarly writing

. d2
PG =S5 Pihw®)+ ). ©)
t=1
The first term contributes a term quadratic in ' bounded on 2.7, . 1()Z ) by

d—e (2n

L4 +(y+m) )L 2 T D smrtexp[ —20.2(X)], (10)

and a constant term bounded by, say,

—f 2n—k

e e i
1pmap” 2 Dm0+l exp[[ — 20.2(X)] (11)
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(we recall that VM Z, ; is small on the support of 1,). F "’Y contributes to (3) a term
bounded by

—1;—8(2n—k—z)

2R LY 4L 6 Lexp[ — 20 2(X)]. (12)
Altogether we obtain in the even case:
4 e -
BB, _olsL 4w+ 2 "V §exp[ —20.2(X)], (13)

and (3)l,, -, also satisfies this bound.

The contributions to gy, for X small, other than (3) always gain some small
factors and we may absorb them into (8) and (13) by increasing ¢.

Summarizing, for y'e2.X%,, ,(X),

.
— 11

Bel< L 2 52rotkexp]—80.2(X)]1G™ X! for X big, (14
= _E A e . .
L+ 2 k)52"°+kexp[——2a£’(X)] for X small
in the odd case and
(2n+2 k=1~
. . L 5t lex 8. 2(X)]G~ ¥l for X big,
I N R & (13)
Lz T )5”°+’exp[ 20#(X)] forX small

in the even case. gl =0 also satisfies (15).

Having bounded 0%, 0% and their products, we proceed as in Sect. 5 of [1] to
obtain the bound of the type (2.15) for g s with D'nX’'=+0 and their products
among themselves and with ¢/2s except that the constant E is increased. gjy and
F sy are bounded immediately with the use of (14), (15) and their definitions (4.9),
(4.12), (4.13), (4.17), and (4.18). As a result we obtain (3.15) and (3.16) with n
replaced by n+1 and

(2n+2 k=1 ¥

IFiQ)sL 2 " lexp[ —2aZ(Y)]. (16)

Now, using (4.19), (4.20), and (16) we obtain (2.15) for n+ 1 with some or all g’
replaced by g;(; and E by a big constant. Finally, the constant is brought down to
E by the use of (4.22) as in Sect. 5 of [1]. This ends the proof of (A, ;) and (B, ),
given (A)) and (B,). (D, , ,) follows from (4.15) and (16).

To show that (A }~(C,) hold for all n, k+1<n<N—N,, we have to start the
induction. For the first step [see (3.7)~(3.9)] the procedure is exactly the same as for
the next ones, except that for (3.7) we need to decouple the M kernels in the

=(MZ),. as we did for the VM kernels (see (3.17) in [1]). We only have to
check that sufficiently small factors arise in (4.8). For Gk +1,; one may always
extract an O((n, + k) 46" **) factor, since 8, [ z°1,(Z)du, - (Z) = 0 For G¥. | ., k>,
F! x.iy brovide the necessary small contributions (to control the combinatorics we
use one 6™ factor). Moreover (still for k> 1)
d—s

|Gk+w(0)l§c[7 D 5m0t exp[ —ad(xh "1, x5 1)]. (17)
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Finally consider G | ,,. F{% , |,y has extra O((n,+k)*0""¥) factor in all other
terms except the one given by (here Y=4,04,0ux4"'Ux} ™!, 4, blocks)

Fi&8 1oy Y 2.z, 1o(Z)dpe-(Z)(M) (M),

uedi,ved;

= Y (¢ "+ 0™ " N(M) e, (M) 1,0, - (18)

Il

Thus F¥ | |, satisfies our claims and
Gﬁ"ﬂ 120)“2Fk+1 IZY(O)_Cl;lz xku x’z‘u
+0(6"  *exp[ — ocd(x’” Lx5Th)). (19)
Z (M)xu(M)yu = jkxy (20)

Since

(7, is the free covariance of z¥), we obtain

d—s

]Gk+1 U(O) 5kzck kak |=CL e 5"0+leXP[ O“i(xk+1 §+1)]~ (21)

Yk

In order to control G, as given by (3.12), we still have to estimate the
expectations (—) - n, ,» appearing there and in (3.11). Notice that

1
v = o expl= VAN g (@Y. (22)

Both in the numerator and in the denominator we consider separately ¢¥ ¥ such
that Dy _y (Vp"~Y¥)=4 (large fields) and Dy _ (V") =0 (small fields).
For large fields the integrands are easily bounded (with use of (4, _y, ) by
const exp[O(x) jdz(VwN Noy2 (1 + Y (NN ) (23)

xed
The latter is integrable with respect to d,u(-;Nw , since

(¢N No] GN N0¢N~N0)=CN—NO J’ (VU)N—NO)Z +L2(N—No)éL—-Nod ( Z ¢¥~Ng)2 (24)
4 xed
(take &> L™ 2V). Moreover, using (7) of Appendix 3 in [1], we may extract from its
integral an exp[ — O((n, + N — N)** %] factor 2v—d?>11).
For small field integral, we use the small field bounds of (By _ y,). The constant
contribution to Gy _ ;> bounded with the use of (21) and (D,) goes through the
expectation (— ,~ -, . Lhe results are

N-—No

,GNl] ck_léklﬂx}‘x’{'éc z L (2n - l)5n0+lexp[_ad( n+1’x2+1)]
n=k
~i:f(k—l)N .
<CL 2 oo ’[1+d(x’§,x’§)]“d“, (25)
KU’QN NI‘%lPxN 80D av-ne el S (26)

de(N

]<1PAN VO N No, l>@N No%o!<CL 2 52"0+k. (27)
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Substituting (25)-(27) to (3.12), we obtain

N-No-1 N-No—1 N-No—1 Ldmeg
_ 2k o -1 I+k )
ny Z Y g kx{‘x‘z‘ck §C Z Z Y L
k=0 1=0 k=1
§H (1 d(xk, k) Gy
N—No—1

SC Y ML A, xh) T+ Oy
k=0

<CE(1+d(xy,x,) 42+ Oy, (28)
Now
N—No—1 N—No—1
Z y* kxkt"ck ‘—‘71;11\(0 Z yzkg-kx’fxé‘
k=0
N—No—1
- Y P*Taley iy . (29)
k=0

The first term on the right-hand side of (29) differs from ¢y !, times the free two-

point function G, , by ey 1y p* N TN W R 6y which is smaller than

Cy*N, compare (26). The second one is bounded, with the use of (2. 19) and
|T x| = Cexp[ —alx—yl] (see [1]) by

N—No—1

C Y p¥omr*exp[—oad(xh, x5S CO™(1+d(xh, x5) 472 7°. (30)
k=0

Summarizing,

G, v, — ey L ne GO SC(1 +d(x,, x,)) ™4 2704+ Cy?V. 31)

X1X2

As far as the thermodynamic limit is concerned, it is straightforward to prove
by induction that 72 and F4,,, as well as ¢? and ¥, K", and c,, converge (for
n+1 the volume dependence enters only through §i2, F,,, g2, V2, 8*VZ, ¢, and
the kernels M"; all our estimates are uniform in volume). As a consequence, also
G has the limit when N— o0 (GY_ v (0) does since 8G,(0) converge and fulfill (C,);
the contribution of G¥_, to G¥ goes down with N by virtue of (B,). As a

consequence of (3.12), G, ., has the thermodynamic limit. Since cy_ y, - c(v),
(31) becomes for the infinite volume quantities
G, — ) GY IS CO™(1 +d(xy,x,)) 472 7%, (32)

This gives (1.5).
The analyticity of the infinite volume limit in v also follows via a straightfor-
ward inductive argument.

6. The General Correlations

It is now rather straightforward to generalize the above analysis to a general
correlation function. In this section we will explain first the idea for the general
case and then carry out the analysis in more detail for the 4-point function.
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Thus consider iterating (3.2) and (3.4) for a general {y,>,:
<1PI>,#= Z )"J1‘<lp.}l<z?\]1>zo>gyf

JicI

= Z Z yz|JZ|<lp52yull<z}1<Z(I)\(J1U12)>Z°>Zl>ﬂ2][’

JacI JiCI\J2
11|

= Z Z Z <G({nj}a {Ij})>,@N‘Njf
p=1 N—No>ni1>ny>...>ny {I,}f’”
part. o

(]
Ly y(N~No)|1I< YNy Y Y GUni })> , (1
RN~ No

gJcI p=1 ny>...>np {I;}
where

G({nj}, {Ij})zsN—No—nl— 1<'))nl|11|2";isnl_n2_ 1<ynz|Jz|Z;§Sn2—n3— 1. o

L St 1<’))nP[Jp‘Z§2>an>Z"p—l . ">Z"‘1 . (2)
Thus, to start with, let us analyze

= (12 3)
i=1 ' /zF
(we will often suppress the index k below). Expanding, as in the case of the two
point function, and gathering clusters around D' and the x}™"’s, we obtain the
analogue of (4.14):
Gozepl=V1= 3 S laf [1F,en |~ 3 Tl

X3 (Y5 Y'AX;=0

where the X/, Y, are disjoint, X'=0X) DD’ XnD'=ucc.D'+@ and
xp=uxit! CX’u(u Y’) Agam if X;nx; =0, g’XD —gXJ, and there is no j-product if
D'=0 and no g-one if x;CX', and of course x;NY, +0. In order to control the
iterations of (4) (after applying S to it or to Z&* { times it) we need to take out the
constant parts of F, ’s which would not contract in the iteration. We repeat the
analysis (4.15)—(4. 21) for the expansmn (4). For this purpose, denote explicitly in (4)
the dependence of g and F on I: g%, F} (we drop also the primes now). Consider,
for some fixed ie I (we often identify below i and x¥)

Z( Z F(Yij}(())) Z ngD I\{ij) HFI\(U) exp[ Z ﬁy}, (5

JFiI\YDiuj X1}, (Yo} 1 YnX=90

4)

which is a term we will subtract from (4); it equals
Y. <22 0Kzn )z exp [ = V] ©)
JFi

Expand now exp[—Zf/Y] in (5), gather disjoint clusters and resum; (5) becomes

Z H_DIIHFY,eXP Z f/}'a (7)

X} {Yo) 1 { YnX;=0 }
with
whi= Yy Y Y FPOIIg"“TIF® [Texp[- ¥ 1-1), ©)
JHACX GHCYCX (X, (Vo) «

o

Fi= Y Y T RO, 0

J{iBcY @jcYcY (Yo)disj.
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where {X 3, {Y,} in (8) are disjoint, Y,nX, =@ and X is connected with respect to ¥,
X, Y and Y, and Y in (9) with respect to Y Y,. Also note that in (7) only one g or F
is not g:! or F{_, namely the one for which ieX,orY,.

The idea now is as follows. Subtractmg (5) from (4) amounts to subtracting a
“gaussian” contribution: Fy— F}' for ie Y will be 0(3"**); (5) will be the main
contribution to (4). We now apply S to the difference, which again is of the same
form (see (10) below). We repeat this until there are x“* 7+ x**? in a common small
Y. Then we need to subtract F3(0), as is evident from Sect. 5; the Fy, with Y small
will not contract in our scheme (in fact the estimates would blow up). If other such
pairs exist, we need to subtract them too. Thus, in more detail, fix i and write

{zppzexpl— IN/J = Z*: 22D A0) <z 2z €xpL — f/]
+ 2 Il e~ ¥ Rl 10

X1}, {Yo} 1 YnX;=0
with .
e R (11)
FLi=FL_FLi, (12)

Let us consider the estimation of the § and the F. Consider FZ first. Since the main
contribution for it is given by

Fi’ 0= Z H—[S(U ZinryLo(Zoy)dp-(Zyy), (13)

0}

we get easily the bound
FY<Cppoy expl — 220 2(V)], (14)

where C;.y; depends on the number of points, [INY], in INY. Similarily g g
satisfies the bound (2.15) with a multiplicative constant C,;y, as in (14). For Fy i
we claim that the bound

P51 < C oy expl — 20.2(Y)] (15)

holds. To prove this, note, that it suffices to consider (9) with Fy, replaced by Fy
(given by (13)) as well as F} replaced by Fy ,, the error being bounded by (15).
Moreover, we may omit 1, in (13), again with the error bounded by (15). This
reduces F} to F} ,, given by

F{r,o: Z Z Hﬁ‘y’ﬁo, (16)
(<Y (3o
with Y connected with respect to Y, {{ij>} running through the pairings of I.
Equation (16) follows from (13) since we have a gaussian integral left as 1,— 1. But
(15) for F’s replaced by F’s is straightforward.

Consider finally & "%, By (8), (11), (14) and the corresponding bound for ga**%,
gy "' also satisfies (2.15) with some multiplicative constant C/x,, ;, which we now
take the same for g, F, F and §. For being able to iterate the bounds for g, we need
the “cocycle” property, analogous to (4.22) for §. Namely, for D'>D

gr =Y Ilax" I1Fy.[T(expl-73,1-1) (17)

XhYoh (Yo} j o
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with X, Y disjoint, ¥ nX ;=0 and X connected with respect to X, Y, Y and c.c. of
D'. This follows from the corresponding one for g: (proved as for [I]|=2, see
Appendix)
a;'= e dle, Tlewl=V,1-1 (18)
(X1} {Y o} (Y 5}

which, when inserted to (8), yields (17) for g% "%, and then by (11) for gy "L
Equation (10) is the starting point for the 1terat1on The main (only) contrlbutlon
in the scaling limit will be given by the first term. We shall assume, inductively
in |I], that we can cope with it.

Thus we wish to address the iteration of the second term of (10), namely, the
application of § to it or to z, times it as we are advised to do by (1) and (2).
Consider first case. Denote

-ZH~D“HF“6XPE ZV] (19)
The expansion described in Sect. 4 may be applied to (19), giving

He V' =SHyexp[— V=Y [1g2 " [[Fiiexp[— Y 4] (20)
We claim the g, F’ satisfy the bounds

(o) gy thesameas 1G~L ™™g with non+1, (21)
Stk ey
(B) [FY | =Cpppy Gt Mo Mexp[ - 2“3(1/)]{ i¢ Y} for Y big, (22)
. 57'10‘*1(
0 IFOISU G,y expl-22{” | | for Yemal, @3
. 5™*K)  for Y small
I,i /Il < d—e¢) ’
(6) [Fy ON=C L™ exp[— 2063(}’)]{ } IAY even. (24)
Sno+k
i —E(d—a) _ 0 for Y small,
(g) IFy 1= CrapL expl ZaZ(Y)]{ . } IAY odd. (25)

In fact, (21)—(25) will hold provided we choose the constants (C,) properly (see
below). Consider e.g. (B).

The leading term, i.e. no R, (e~ - 1) etc. factors in the cluster integral, is
Y Y TS0 Z 1 du(Z,y). (26)
(Yo} (U,)

The G factor (recall from [1]; G may be chosen big) arises as before from the
contraction of space. The only difference with our previous analysis is the
constants C,;.y. Let us choose (C,) so rapidly increasing in n that

Y, TIC., s(+eCy forall ICI. (27)

(I} part. of T
This is possible of course. Now the bound (22) and similarly all the others follow
by an analysis similar to that for the two point function. (We may extract the

1
=2 L . .
1G M in (o) from the redefinition of x and contraction as in (B): see [1]).
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The terms (y) in (20) are of course not satisfactory since they expand: we need to
subtract them. Let for some j there be several k in a common small Y; containing
them.

Denote I;=1NY; and write

XI1ge M TR expl- X B1=Fyr O X g
-H F;{}’f’iepr YHI+Y n G Fliexp[ =Y 131, (29)

where of course g2 I\'»! are obtained from applying S to (19) with I replaced by
I\I}, and if i¢ I\I}, the i-index is superfluous. Again (28) is derived by first writing
the first term on the right-hand side as

Y18 "o 1 F exp[— Y. 4], (29)
with e.g.

Fyti=Y PO [T Pyt (30)
(Y, disjoint, Y connected with respect to Y}, Y,). There is again only one term in the
products in (29) different from the g, F’ on the left-hand side in (28), namely, the
one with X, (or Y,) containing Y, (1f Y,nX =0, then gi"Hi=gPMoi=gp Ll
similarly for F’s). This is why we may deflne the new g, F on the right-hand side of
(28) in the second term. The point of (28) is that

F/I i,j__ F;I i F/yI]J, i(O)ZF;,Ij”i—F/YI]j’ i(o)’ (31)

which by (24) has now contracted.

Equation (28) will now be repeated to the second term on its right-hand side
until all (y)-type F’s are subtracted (the first terms on the right-hand side are
treated mductlvely) There might be many such subtractions and they contribute
new terms to the gy, F y- These may be bounded using the G-factors in (a) and (B):
the more contributlons to gy or Fy, the bigger X or Y has to be. The reader may
easily convince himself that after all the subtractions we have obtained

Hexp[— V=Y 158 T Fiexp[— Y 41, (32)

~rD I

where we suppress the i, j, etc., such that g satisfies (2.15) with the constant
k1

Ci1.xp» and denoting by .#(J) the biggest number of disconnected blocks in x;" 7,

5n0+k
FASCy 50 expl -2z | 3

gm;ﬁ-k
§C,,nYlL*(d_e)exp[—2oc§f(Y)]{ } for Ysmall, InYeven. (33)

The iteration may proceed now. For S(z;H) we may derive an analogous
expansion as for H, now with g2/, F2-1%7_Similar bounds follow for them (with
suitable (C,)) and then applications of S are controlled as before. There are a finite
number of steps when z, are added and after a finite number of steps all x*? are in
the same block, whence the iteration is as that of the two-point function. To see
how this process may be carried through in detail to prove the triviality of the
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scaling limit, let us restrict ourselves to the four-point function. To extend this
analysis to a general correlation is just a matter of bookkeeping.

Thus take [I|=4 in (1) and consider the first term ; the second one will turn out
to vanish as N—co. Take the p=1 term first. This is given by

N—No—1

Z ”/4n<SN_NO_n_1<Z?<I“ x">Z”><2N N, (34)

n=0
By (10) we may write
<Z';?...Z§:;>Z,.6Xp[ Vn+1]— Z <Zyl n>zn(0)<Zi;Z§y>zne-%H+Hn+1efl7n+l(a35)
H,, _V"“—an HF" exp[— pH1], (36)

where we suppress I, i.

We already know how to control the first term from the analysis of the two-
point function [see (5.25), (5.19)]:

SV TN S = G T g+ O (L d (X)), (37)

i<“¥”‘\”>Z“( ) ﬁl/m“\”|<cano+” exp[—yd n+1 r21+1)] . (38)
Since
Y, 728 mexp[ — 2ud(x}, XS CO(1 +d(xy, x,) 7T (39)
n=0
Yy (L d(x xp) TS C8(1 +d(x x) TR, (40)
n=0

we get from the first term in (35) a contribution to (34),

N—No—1
> 2 7 T g7 T ey + 001 +d(x;, )" 2(1+d(x,, x,) 47279

pairings n=0
(41)
H, ., will be studied as explained above. Denote x~xy if x and y lie in the same
small Y. Let m, be the first m such that for some i,j, x" " '~x7"" ' We may
assume that the present i coincides with the original one. We write
H,, exp[— V"] =8""" """ Yexpl = V™1 =F ) X175 " [1F.y
exp[— ) Viil+ H e "M=(FU (0)G ,+Hml)exp[— V“‘].
(42)

nu mY mik

The first term is again of the two point type whereas to H™ we apply §™7™,
where m, is for the next pair: x{2” '~ x727!; note that this might correspond to
two new X;’s or one new collapsmg in the next step to the small set where x["2 and
X2 lie. Thus

my—myg— 1

N m‘Hml Z Z m1+IJYp S"lrnHAPGntlJrl).kl+S(gmz*1)’ (43)
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We estimate the two-point terms

IF3, 4 oy (O SCEt nLC v atmtemn, (44)
KSN—NO—ml—p—1Gm,+p,kz>52N-Nox>| éCL—(d—S)(mﬁp—n)(l +d(kax+p’x;n1+p))—d+s
S +dlxp X)) ™", (45)

which imply that the first piece in (43) contributes to (34) (if n>m, the analysis is
ply 1
similar)
my o my—1
Z C,y4n5no+n Z L(—d+£)(l-n)(1+d(x;:,x;t))‘d+s
n=0

I=max (n,my)

SC"(L+d(x; %)) 21 +d(x, X)) 427, (46)

and we are left with S(flmz_ 1)EI—_ImZ. Let us consider the (more complicated) case
where (i'j')N(ij) =0, i.e. a totally new pair of points collapses to a common small Y.
(The other case where first three and then four points collapse is left to the reader.)
We write (Y; D {ij}, ¥, D {i’j'} small)

A,,exp[— V1= Y [13%> [ Fhy, exp[— Y. V4]
=FJ O X [Ta> " [T Fily expl— X Vi 1+ Hi exp[— V]

with, subtracting once more, (47)
e "= Y T1a" VP, exol=1;]
=Fut, O X [1g%:> 1 F,y, exp[— 2 V]
+ X 115% 7 T Fry, exp[= 2 4] (48)

(In (47) g, F are not those of (4); we are suppressing the indices of all the previous

subtractions) In (48) we note that FL4 =F,/,- and of course

Fuy =Fpy, =FJly,if Y,n{ij}=0. Thus the last term in (48) indeed has in F!

myY

and F,’,,ZY2 a subtraction at zero. Equations (47) and (48) may be expressed as
+H,, . (49)

Let m; now be the first m such that all X"~ ' are in the same small Y. We have

Hy, =F}l 3,06y, 15+ Fily (006, i

m3—1
SmTmH, = Y Y (F (0STT™G,,  + Fif, §7™G

qY2q
q=my Yiq,Y24

)+S(H,,_,). (50

qij

Again the two-point function pieces give a contribution that can be absorbed to
the O(—) term in (41), whereas H, . =S(H,,,_,) is given by

a,, =2 [17° [1Fmyexp[— Y. ™1, (51)
Y
with
|F iy S CSMotn L= 2ma=m @9 exp[ — 26 2(Y)]. (52)

Iteration of S*H,,. is now as in case of the two point function, yielding

KSN—NO—mg—1Hm3>gN_NO”I§C5n0+nL—2(m3—n)(d—e). (53)
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Summing this over n with y*" produces the O(—) term in (41). Equation (41) is thus
our bound for (34).

Estimation of the other terms in (1) proceeds similarly. Consider e.g. p=2,
II,|=II,]=2, given by

Z Z '},2(”1+"2)<SN No=m = 1<Z;:'1 o S'lt T 1<Z;z‘2 ;3'2>Z"Z>Z"1>.9?N Nos# *

N—No>ny>ny ordered
pairings

(54)
Here §"17"27 1<anz 23,0 2 =Gy, 0 WE have already computed:
G = nl,kl(0)+Gn1,kl’ (55)
with
|Gy 0) = € T 0| S CO™ (1 2, x2) ™47, (56)
and
Gou= ZHQ”D klnFnly exp[—-ZVﬂ, (57)
with
d—e
LN e ) A S ] (58)
and the usual bounds for g.
Thus
<me Zym nl,kl>Z"1=Gn1,kl(O)<Zx"1 x"1>Z"1+<Zx”1 Zm n1 KDz - (59)

The first term contributes, by (56) and Sect. 5,

n; kl(0)<zx"x x"1> _C Jn;x"xx"xg-nzx"zx"z
+(9(5"°+"2(1 +d(x;, x71)” SR d(x2, X)), (60)

and upon summation over », and n, in (54)

Z ( Z ( _1‘/n1x"1x”1 nzl‘/nzx"zxrz))

+ 01+ d(x, %) 21 +d(x x) 42T+ O <= ()], (61)

whereas, defining
}qn1 _L(d &) (ny— "2)<Zn1,zmem kl> , (62)
it has the expansion (36) with analogous bounds. Thus

I<SN_N0_n1_lHnl+1>@N"N°,}f|§C5n0+n2 Z (1+d(x;'1,x;l1))—d+s

pairings

(L +d(xp2, X)) 4re, (63)

and combining (63) with (62) and (59) these terms in (54) can again be absorbed to
the O(—) in (61). Similar analysis is now carried out by inspection to the
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other p, {I;} combinations in (1). We get

N-No—1 N—-No-1
By b= Z < Z Cu 1‘7nx?x?)< Z cn_lgvnx;;x‘}')

pairings n=0 n=0

+0@(1+d(x, %)~ (1 +d(x, )72 + O} <> {kiY) }

+00"), (64)
where the O(y") comes from the last contribution in (1). Proceeding as in (5.29) and
taking N— oo, we obtain

<¢x1 vy =clv)” g Z [GOijG()kl

pairings
+ O (1 +d(x, x,) ™ (1 +d(x, X))+ 0} <= (kD]
(65)
In the scaling limit (1.3) the O(—)’s drop away and
Glxyx)=cv)™? Y, (=4)ai (=405 (66)
pairings

which was the claim.
Appendix

Here we prove that (4.22) for n implies the same relation for n+ 1. The repetition of
the arguments of Appendix 2 of [1] gives

gri=Y Ha;:ings;‘, Zn(exp[ vy 1-1), (1)

(X1}, {Xo} 1 Yo} «

where X, X are disjoint, ¥, CX"\(UX)u(uX,), uX,D2X'nD" and X" is connected
with respect to X, X, Y, and connected components of D|. To proceed further, we
need relations inverse to (4.12) and (4.13). These are

gx= ) Fy H(exp[ vy -1, 2
Y, {YinX
and
giv= Y FRIlexwl-RI1-v+ % FyFy [Texwl-F -1,
Y, {Yo}inX o Yi,Y5,{Y}inX a
YinY,=90
3)

with X connected with respect to Y (Y,, Y,) and Y, in both (2) and (3). It is easy to
see that (4.12) and (4.13) as well as (2) and (3) establish one-to-one relations
between (g;%) and (Fy). In order to show that one is the inverse of the other it is
then sufficient to prove that substitution of (4.12) and (4.13) to (2) and (3) yields
initial (¢%y). But, with X connected with respect to X, ¥, and Y,

)3 g, TTexpl¥; ] —Dl;[ (exp[—74,1-1)

X1, {Yo},{Yp}inX o
YonX1%0

- > CU e Ta-vx,. o =gk @

X1,(Yy,...,Yp)inX I a=1
X conn. withrespecttoXjand Y,
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(UX, Y)=1if X Y=+0 and vanishes otherwise). Similarly, with X connected with
respect to X, (X,), ¥, and ¥}
gix, [1@xp [ 1= [ (expl~ Ve, 1=1)

[

X1, {Yo}, {YplinX

YonX1*0
+ > g g, [Texp Vi 1= D[ T(expl—¥4,1-1)
X1, X2, (Yo}, {Yp}inX a B
X1nX2=0,Y,n(X1uX2)*0
l)l ¥ -
= ) b 11 0=V Y,
X, (Yyg,.ooy Y,)inX
X conn. withrespecttoXjand Y,
(_l)l k1 1 UX X 1kl
+ Z ngxlg,xz ﬂ( —UX,vX,, a)) =Uijx -
X1,X2,(Yy,..., Y )inX . o=1
X conn. withrespecttoX;,2and Y, (5)

XinX2=0

Insertion of (2) and (3) to (1) yields
gi= Y T8 Y TIFss, (exp[=R1-1), ©)

Xy 1 (YohiYy o
with X, disjoint, UX,DX'nD’, Y, Y, CX;\UX and X’ connected with respect to X,
Y., Y, and connected components of D',. This proves (3.39) for n+ 1 except for the
case when XL x4 e X' In the latter case, using (6), (4.18), (4.20), and (3.6) of [1]
we obtain

o= % Il T1Fs, [Texpl=15.]-1

X {Yoh{Youd j

= % g Tlexp[=1;,1- DF5(0),

(X} {Ya, Y

where in the first sum the restrictions are as in (6) and in the second one X, are
disjoint, ¥, CX"\UX, and X' is connected with respect to X, Y, Y and connected
components of D}. The part of the second sum with YnX, =@ cancels the constant
term in Fily, see (4.18), whereas the one with YNX %@ provides the correction for
the g with x}!, x3"'eX, appearing in the flrst sum, necessary to convert it

into gy, see (4.20). Thls completes the proof of (4.22) for n+1.
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