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Abstract. We prove that the scaling limit for a large class of weak V(Vφ)
perturbations of the free massless lattice field φ is Gaussian with the covariance
c(V)( — Δ)~1. The correlations as well as c(V) are analytic in V. In particular the
Mayer series for the dipole gas is convergent for small activity.

1. Introduction

The authors have been pursuing a program to gain a rigorous control of
asymptotically free (AF) models of statistical mechanics and quantum field theory.
This paper finishes such an analysis for infrared (IR) AF models, such as the dipole
gas, (Vφ)4 model and related ones. We show that their correlations become those
of a free massless field at long distances: the canonical scaling limit is shown to be
the massless Gaussian Euclidean field with a definite field strength renormaliza-
tion.

In a previous paper [1] the authors studied the renormalization group (RG)
trajectory of the Hamiltonian in a general space of Hamiltonians. This analysis is
now applied to the study of the correlations. The results of the present paper may
also be interpreted as setting up rigorously the RG in a space of Gibbs states of
certain critical (massless) theories and showing the convergence of its iterations to
the state given by the massless Gaussian fixed point, in the sense of convergence of
correlations. We, however, state our results only pragmatically, as a result about
scaling limits and IR properties of the correlations.

When [1] was finished we obtained [2] where infrared behavior of the weakly
coupled (Vφ)4 model was controlled by means of a phase-cell expansion. Both
methods are similar as they are based on an analysis of contributions of different
momenta on different scales of distances. In [2] different momentum scales are
entangled in the expansion whereas we analyze the contribution of one momen-
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turn scale in a general inductive step. The price paid for greater conceptual clarity
is that we have to consider iterations of much more general class than the starting
V(Vφ) of interest. But in turn the results are quite model-independent (they apply
e.g. to the dipole gas and to the (Vφ)4 at the same time).

One should also mention here a series of papers ([3] and references therein)
which apply correlation inequalities to study the infrared behavior of massless
models. This method gives results for any values of the coupling but is more model
dependent and provides less understanding of the physics of the system. The future
lies probably in applying the RG ideas together with the correlation inequalities
(see e.g. an attempt in [4]).

Let us describe now the models that we consider, together with our results. The
reader is recommended to have a look into [1] for more details and motivations.
We state the results only for local potentials. Remark 2 below concerns the non-
local ones fitting our scheme.

Let A be a periodic cube (1̂ 41 = 1,^) in TLd and φx, xeΛ, the field with
covariance G0Λ, the inverse of

(G^)xyH-ΛΛ)xy + L-Ndξ (1)

(the infrared regulator ξ makes Go well defined), where ΔΛ is the lattice periodic
Laplacian. For each such A, let there be given a function VΛ(χ) of the vector field
χμx, μ = l, ...,d, xeA, on A. Define the finite volume state

<—>vΛ=jfS — e x P [ " VA{Vφ)\dμGθΛ{φ), (2)

where dμGθΛ is the Gaussian measure with covariance G0Λ and
Jί = jexp[— VΛ]dμGθΛ is assumed to be non-zero. We shall also use the notation
<— > ^ , where the Hamiltonian ^>

Λ{Φ) = ̂ {Φ,G'olΦ)JrVΛ{Vφ). Denote the ther-
modynamic limit (TDL) A^TLά, ξ^O of <— } V Λ by < — } v whenever it exists
(V={VΛ}) (convergence here means the convergence of correlation functions). We
define the scaling limit of < — } v as follows. Let xv ...,xμelStd be different points
with χ.eL~NZd for some N. Define

ά-2
-nmG(x1,...,xJ=limL ^ ( Π ^ W (3)

n-^oo \ί=l IV

whenever it exists. {G(x15 ...,xm)} give the scaling limit of <—>F.

The Main Result. Let d^3 and

vΛω= Σ "Gϋ, (4)
xeΛ

with v(χ) being a function invariant under rotations by multiples of f of χ and under
reflections in coordinate planes, vanishing together with the second derivatives at
zero, even and analytic in χ for \lmχμ\<B. Moreover, we assume that

(a) for\χμ\<B,\v(χ)\<η,
(b) for \Imχμ\<B, |exp[-tta)]|^exp[κ|χ2 |] with |κ |<O(l)<i Then for

B>B0 and
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(A) the TDL < — ) v = <—} v exists and the scaling limit is given by the massless
gaussian field on lRd with the covariance c(v)~1( — ^ c ) ~ \ Δc being the continuum
Laplacian.

(B) In particular, the two-point function satisfies

1 • (5)

(C) c(vλ) and <\Y\ΦXιyVλ

 a r e analytic in λe & if vλ is a family analytic in λ in some
region M, satisfying there the above requirements uniformly in λ.

Remarks. 1. The functions

v{Vφ) = λΣ{VμΦY (the anharmonic crystal), (6)
μ

and

/ r 7 l , OY^/., 1 2/Γ7 ±\i / iv JLΛΛ ( the d i p o l e gas in t h e ,_.
v ΎJ y y 2^ v μΎJ v^ μ ^ / ; sme-Gordon representation), v '

satisfy our conditions for λ positive and small and for \λ\ small or |ρ| small
respectively. In particular for the dipole gas the perturbation expansion in powers
of λ (the Mayer expansion) converges for small \λ\. In fact let v be any invariant
even function, vanishing together with the second derivative at zero, analytic in
some strip around the reals with e~v bounded by some Gaussian. Then v(λφ)
satisfies our conditions for λ small.

2. We may also consider non-local Vs corresponding to the Boltzmann
factors given by the formula (3.3) of [1], with the properties described in Sect. 4
therein, see also (2.14) below and what follows it. These Vs constitute a class
invariant under the RG. To be able to pass to the thermodynamic limit one has to
take gD

AX and VΛY (being respectively the large field and the small field data)
possessing infinite volume limits (note that they are functions of φ with finite
support, X and Y respectively).

The organization of the rest of the paper is as follows :
In Sect. 2 we review the block spin formalism and the main results of [1]

concerning the effective Hamiltonians.
Sections 3-5 are devoted to a careful study of the two-point function where the

main ideas of our method are seen without unnecessary notational complications.
Finally, Sect. 6 shows how the argument may be applied to a general

correlation: as an example we show that the scaling limit of the four-point
function is Gaussian.

2. The Block-Spin Transformation

Let us consider a correlation function

f[Φ*) =<F>*Λ- (1)
l
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The idea of the KG is to compute (1) by successively integrating out fluctuations of
short range. Explicitly, we introduce block spins φ\, xeL~1Λr\Έd\

_d+2

ΦX

X=L~~ Σ ΦLx+y = (Cφ)x, (2)
\yμ\<L/2

and define ^Jf, the renormalized Hamiltonian, (we drop the subscript A) by

exp [ - MM?(φ1)'] = const J exp [ - J^(φ)]δ(φλ - Cφ)Dφ. (3)

For the correlation function (1), we get

<F> j r = <SF>Λ j r = . . .=<S-F> Λ B J P , (4)

n^N, where

(SF)(φx) = JF(φ)exp[-JfiΦmΦ1 - Cφ)Dφl\exp[-JfiΦmΦ1 -Cφ)Dφ. (5)

Iterating N times we are finally left with the zero mode integral:

\ N d μ L 2 N ξ ( φ N ) . (6)

In [1] we controlled 0ln2tf, showing that (in the As ΊLd limit) it converges (in a
sense specified below) to a Gaussian fixed point. The purpose of this paper is to
control the iterations of S, given this information about @tn2/f.

Let us briefly recapitulate the main points and results of the analysis of [1].
Consider iterations of the form (1.4). It has been shown that one can introduce
"scaling fields" ψ\, zeL~ M, related in an approximately local manner to φ1, and
fluctuation fields Z x, xeΛ\LΈd, so that ^J^f is given by the following integration
over Z

(7)
with M°xy an (approximately) local kernel, xeΛ, yeΛ\LZd, and G1 being a new
covariance for the unperturbed part,

G^CGoC*. (8)

Next one separates from the integral in (7) a "marginal" quadratic piece
proportional to (φ11 G± 1φ1) (except for the zero mode contribution) and absorbs it
to dμGl{φ) turning the latter into dμ^^φ). The whole process may be iterated giving

• J e x p [ - Vn(L-d/2Vψn

Lt}m+ VMnZn)~\dμc-i{Zn)

where Gn+1 coincides with c~+1C
n+ίG0(C+)n+1 = c~^1Gn+1 on the subspace

orthogonal to constants and with Gn+ί on constants and

Vn+ \V\pn+ x) = V"+ ψψn+ x) + f (Wψn+ \ Kn+1VVψn+1),

\ Q

n = Λ?nQΓn

ίl2 in the notation of [1]).
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The following results were proven for the functions and kernels of (9) and (10),
uniformly in the volume A. The initial V° is assumed to be given by (1.4) with v as
described in Sect. 1. Given a (real) configuration χn = Vψn which is uniquely
determined by the nth block spin φn = Cnφ, we introduce a region of large fields,
Dn(Vψn\ as the smallest union of blocks of the lattice with spacing LN° (see [1],
Sect. 3) satisfying

I W I ^ ( n o + n)vexp[α£i(z,z')] (11)

for each zφDn(Vψn). Here α is taken small and v>^d2 + l.
The following sets of (complex) vector fields χn on any XcL~nΛ (X, D unions of

LNo-lattice blocks) were introduced in [1] :

μ μ if z + ZΓ"e veX}, (12)
and

(13)

It was shown that exp[—F"] is analytic on Bn(L~nΛ,L~nΛ,l) and has, for
χ = Vψn + χ with Dn(Vψn)CD, χejfn(L~nΛ\ a representation

exp [ - H*)] = Σ Π <(X) exp f - Σ ^
{Xj} j I YnXj = Q

withX,. disjoint, vXpD,Xp Y being unions of LN°-blocks. The functions gn

x

D and
V% depend only on χn\x or χn\γ respectively and satisfy the following analyticity
requirements and bounds inherited from our assumptions on v:

(ln) Q\Ό is an even analytic function on Bn(D,X, 1). IfX^ are disjoint and D1nD

= i j DnXp then for χn = Vψn + χn (on Bn\

|Π9 n x D M n
£eχp\*®nΦi> v Ψ n ) - 2 α j

L J J

Here \X\ denotes the number of L^-blocks inX. &QC) is the length of the shortest
tree on the centers of the LiV°-blocks building X and possibly other (continuum)
points.

@n(K,χ")=($dz+ \ dσ{z)\\fz\
2. (16)

\K dK J

(2n) V% is even, analytic on 2Jfn{Y) with

| ί^ |^(5" 0 + " e x p [ - 2 α i f ( y ) ] , 0 < δ < l . (17)

V% vanishes together with its second derivatives at χ = 0.

(3n)

H Π ι Π 2 ) Ώ 2 ) ~ ] (18)

for unit squares Π 1 5 D 2

(4) The infinite volume limit for cn exists. Moreover, since

the infinite volume cn tends to c(υ) when n-^co.
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In the next sections we shall make inductive assumptions about SnF, similar to
the above ones, and shall iterate them much in the same way as we proceeded
in [1].

3. The Two Point Function: A Representation for the Block Spin Correlations

Let us start by inserting the block spin decomposition

ά-2

to (2.1), getting

< Φ z > ^ = Σ y | J | < v ^ V ^ (2)
Jd

where we use the notation

ψnj=Ylψχ» (3)

. J 'j

Integrating out Z°, we obtain from (2) [see also (2.5)]

SF= Yy^^xp1 (z° ) o (4)

where, in general, we define

<f(Zn)}Zn = j f(Zn) e x p [ - F%L~d/2 Vψn

L-u + Vzn)~\dμc- i(Zn)/(f = 1). (5)

First let us consider the two point function. In this case (2) reads

GXiX2 = (ΦXίΦX2y^ = (y2ψliψli + y^ i (zJ 2 ) z o + (1 o 2) + ̂ 2XizX2)z0y^^>. (6)

Let us introduce the following notations

<4>z^ + M , (7)

Gi+ι,B = (Gn,B>z" {Λ = k9kl, B = i9ij, n<N-N0), (10)

and finally

GA =<G^_ > N-N0 . (11)

Iterating (6), we obtain

N-No-l N-No-2 N-No-1

GXiX2= 2^ y (JN,\2~*Γ Lj 1J y \GN,]
k=0 1=0 k = l+l

+ Σ \N-So+k<Ψx'ϊ-%Gk

N-s0.2+(l*>2)>a*-»l)jr. (12)
fc=0

Thus, we only need to control the iterations of <—> z { = S) on the various
functions just introduced. Let Gn denote any of the objects G^B nSN — N0. Note
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that Gn is a function of Vψn only (not of ψn) and can be extended naturally to
vector fields χn. Let

Gn(χn) = Gn(0) + Gn(χn). (13)

Of course, Gk

n . = Gk ., since Gk

n is odd.
We shall assume (inductively in n, k+l^nύN — No) that Gnexp[ — F"] is

analytic on 0ί(L~nΛ,L~nA91) and that for χne@{D,L~nΛ, 1),

GΛexp[-K|= Σ Π f l ^ Π ^ e x p ί - Σ ^ j , (14)
{Xj},{Yσ} J σ [ YnXj=0 J

where Xp Yσ are disjoint (built from LN°-blocks), XjΓ\D is, for each j , a non-empty
union of connected components (c.c.) of D, KJX ^D. Moreover, the set of points

xnjC{xn

vx
n

2} involved in Gn (i.e. GftJ) satisfies xnjC(^Xj)u(uYσl For D = &, \\~gf.

does not occur, forXJ n x J = 0, gnχD.=gn

x

D

r FnYσ does not occur in (14), if 7 σ nx J = 0.
Thus we see that for Gk

nJ there is at most one F in (14), whereas for G*JfJ. there may
be as many as two. gn^ and FnYσ implicity carry the indices k (or fcZ), ι, (y). Namely
for G^B we haveF^ B y , etc. Equation (14) is an analogue of (2.14) for the
(unnormalized) block spin correlations. In analogy with (ln) and (2n) of Sect. 2,
gn

x

D and FnY possess the following properties, to be shown inductively.
(An) gnχ are analytic on &n(D,X, 1). They are even if Xc\xn

3 is even. Otherwise
they are odd. Equation (2.15) holds, if all or some of g^ are replaced by gn£.

(Bn) FnY are analytic on 2jfn{Y) and vanish at χn = 0. Fk

niγ are odd and Fk

n[ίjY

are even. On 23Γn{Y) they satisfy the bounds

f (15)

and

^ (16)

where δ = δ1/3.
We will also trace the change of Gn(0) with n.

(Cn)

In (15)—(17) ε > 0 may be chosen arbitrarily small if the parameters of our
constructions (see the beginning of Sect. 4 of [1]) are chosen appropriately.

4. The Cluster Expansion

Here we shall show how, given (2.13) for one value of n, we may recover it for n+1.
Since the initial steps that we take are analogous to those of [1], Sect. 3, we refer
directly to this paper. Suppressing n and replacing n + 1 by the prime, we have the
following recursion:

(1)
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Upon insertion of (3.13), this gives

«5G(0) = G'(0)- G(0) = J G(Vz)exp[- V(Vz)]dμe- ,(Z)exp [ W(0)], (2)

and

(3)
where

χ = L~d/2χ'L-ιΛVz. (4)

Using (2.14) as an input, we obtain an analogoue of (3.15) and (3.16) of [1] :

J G(χ) e x p [ - V(χ)]dμc- ,(Z) = £ ί ̂  ^ ^ , ̂  5 *H W V ^
p,{X,},{Yσ},{y«},{^} (5)

where

H -) = Π #,ω π fvσω Π (e*p c - ^.ω] -

• Π ̂ P [ - ϊ ^ ω ] Π ^ P [ - i<52 VΔ(χ)~\ • (6)

Now (5) is decoupled as in [1], Sect. 3, leading to an analogue of (3.24) therein:

w^] Σ Π
{χζ] ζ

Xζ are disjoint, u ί ζ has to contain D'u{xnj}. Equation (7) is an expression of the
type of a polymer-gas unnormalized correlation function with polymer densities

~QΪil') = Σ ί Π SφyWLt{Xp Yσ, Yx, Yβ f)
ΛX)ΛY}Vt}Vt}ΛV)

l f (Z r f )i/i e - 1 (Z l ί )/ Π exp[-w'd(χ')] (8)
/ AcX\D'

In (8) # L l is like ^ of (6) except thatZ j ? Yσ9 Ya, YβCLX and zl's in the products are
taken from IX. The restrictions on the sums in (8) are as in (3.25) of [1], Yσ playing
the same role as Ya and Yβ. The only additional restriction is that ( u l ^ u f u Yσ) has
to contain x^nLX. Notice that if xn/ xnX = 0, then ρf =ρf .

Now put

{Xζ}ΛYξ}inX' ζ ' ξ

as in (3.30) of [1]. Note again that if xn/x ΓΛX' = 0, then g'g = g'£. For the odd case
(one xγι or xn

2

+1 in X'\ g'®' will be the final g'£ already. Define also tf£x, by (9)
with the restriction uX ζ DX'nD' + 0 replaced byX / nD = 0 and x" + 1 or xn

2

+1eX'.
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Equation (7) may be rewritten as

| G e x p [ - V]dμc^Q^lW'(0) + \δ2W'~\

= Σ WβZWβ'l^M- Σ Ki (io)
{X'j},{X'σ} J σ Y'nX'j=0

L Y'nX' = 0 J

where X'pX'σ are disjoint, u I p D ' and xnj+1 lies in (vX'j)v(X'σ). Again there is no

Π ^ if I>' = 0 and no Y[g'£x,σ if x}+ 1 lies inside u i ; ,
3 <r

The last factor on the right-hand side of (10) is obtained by exponentiation of
the polymer sum outisde ( u l ^ u f u l j , see Sect. 3 of [1].

In the next step of our expansion, we shall include exp Γ — Σ Vγ,
Y'nX'j=<ί

Y'n(uX'σ)l

this factor applying the Mayer expansion to the compensating one:

into

- Σ Π^'Π^^Π(eχp[^J-Deχp[- Σ Ki (ID

{Xj},{Xσ},{Y*} j σ a [ TnX'j=0 J

where Y^nX'j = & and yα'n(uX^)φ0. Introduce

F'ir= Σ ^ Π ( e x p [ ^ ] - 1 ) ? (12)
X'ΛY'oc) αwhere X'u(u ζ') = Γ, X7n ^ Φ 0, and

?%>= Σ flί^Π(«Pra-l)+ Σ ffίίr^ΓKexpra-D, (13)

where the restrictions on the first sum are as in (12) and in the second one we
assume th2itXf

ίvXf

2v(vXf

a)=Y'9X'ίnX'2 = 09 (X'^X^nY^O and Y' is connected
with respect to X'v X'2 and Y'a.

Note that ¥%, are odd and F'£ι

γ, are even. In fact F'iY, will be equal to the
final F'iY,. With this notation, (11) becomes

(14)

with the restrictions on the sums analogous to those of (10).
The last step in our expansion is to extract a constant term from G.

Substituting (14) and (2.14) to (2) and (3), we obtain

Σ*V(0), (15)

and

G'exp[-Π=
j

- Σ
-ΣΣΠ^Λ',(0)expf- Σ r̂l (16)

{X'j} Y'ί j I Y'nX'j=Q J
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Set

#*. = * £ . , (17)

F * , = F ; « , - F ^ , ( 0 ) , (is)

~g'x
D'=g'xD', (19)

iϊXf does not contain both x" + 1 and xn

2

+1, and otherwise

§£'=?;?'- Σ Π^'F^(0)Π(exp[-^,]-l), (20)
{X'j},Y\,{Y«) J «

where X^ are disjoint, u I p Γ n D ' , l^nZ^ = 0 andX' is connected with respect to
X'j, Y'v and Y'a. Substitution of (17H20) to (16) gives

G'exp[-F']= Σ Π ^ ' Π ^ e x p f - Σ K ]> (21)
{Xj},{Yσ) j σ I Y'nX'j=β \

which is (3.13) for n + 1 .
One may also show inductively that for D1DD (compare (3.6) of [1])

9t'= Σ Π^Π^yσΠ(exp[-^J-l)? (22)
{XjlΛYaϊΛY*} J σ a

whereXp Yσ are disjoint, (κjXj)nD=XίnD, YaCX1\uXj andX x is connected with
respect toXp Yσ, YΛ, and c.c. of D1. Again FnYσ appears whenX 1\uZ J. contains x\
or xn

2. The proof (22) is deferred to the Appendix.

5. The Estimates

The essential feature of the RG transformation which allows inductive proof of
(AJ-(Cn) is the scaling of fields (by L~id~2)/2 and of distances (by ZΓ1). These
scalings give rise to contractive properties of the RG.

We assume (An) and (Bn), k+l^n<N — NQ, and start with ρ®' as given by (4.8).
We may follows word by word the analysis of Sect. 5 of [1]. Namely, g^ have the
same bounds as g% and the bounds on F^Y (although weaker than those for
e x p O ίy] ~ 1 a r e sufficient to produce^(5.42), (5.48), and (5.49) of [1]. This settles
the D'nX + 0 case. Consider the DfnX = 0 one (we put ρf' = QX then). For p φ 0
terms of (4.8), we obtain immediately the bound

exp [ — O((n0 + n)2)] exp [ — 8αi? (X)] G~ '*' (1)

due to small probability of large Z, see Sect. 5 of [1]. Take now p = 0. Call X small
if \X\^2d and JSf(X) is minimal for given |X|. X will be called big if it is not small.
For big X there is enough contractive strength coming from the resclaing of the
distances to extract the bound

-ίz±in+1-k) +k „ _
L 2 ozn° exp[ — 8α^f(X)]G ' ' for the odd case, ^.

_dzl2n + 2_k_ι (2)

L i {2n + 2 ' ^πo+ίexpf-gαjδf^G-W for the even case.
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For X small, the only dangerous term in (4.8) is the one with no YΛ, Yβ9 no
s-derivatives and a single Yσ with |X| = |7σ | and ^(X) = ̂ (Yσ) (there is only one
such Yσ containing xn

v x\ or both for a given X). This term is, up to a contribution
suppressed by O((n0 + n)v+dδno + n),

Let us consider the odd case first. To use more efficiently the contraction
coming from the rescaling of the fields, write

(4)

The first term is linear in χ°. Notice that the function t-*Fk

Y(tχ°) has the Taylor
series at zero starting with ί3 and for χΈ2jfn+ X(X) and ZL$- in the support of l 0 , it
is analytic for \t\<\Ldl2, say, and bounded there by twice the right-hand side of
(3.15). Hence, at ί = l , |%(χ° ) | ^2( |L d / 2 )~ 3 right-hand side of (3.15) by the
maximum principle. The first term on the right-hand side of (4) contributes to (3),

dt

which is bounded by

(

The contribution of the second one is bounded by

d-ε

(5)

(6)

(7)

both for χΈ2Jfn+1(X). Combining (6) and (7), we conclude that in the odd case

-i- + L d ~ ε -k)

| (3) |SL 2 8L 2 δ2no + kexpl-2ag?(X)~] (8)

(9)

(10)

(11)

on 2jΓn+ ^X) for L and n0 big.
In the even case we proceed cimilarly writing

dt

The first term contributes a term quadratic in χ' bounded on 2 J Γ Π + 1 ( X ) by

and a constant term bounded by, say,



542 K. Gawφdzki and A. Kupiainen

(we recall that VMZL% is small on the support of l 0). Fkl

jY contributes to (3) a term
bounded by

Altogether we obtain in the even case:

d-ε

(12)

(13)

and (3)|χ, = 0 also satisfies this bound.
The contributions to ρ^, for X small, other than (3) always gain some small

factors and we may absorb them into (8) and (13) by increasing ε.
Summarizing, for χfe2Jfn+1(X),

' ' " + 1 ^ ~ ~ •-- fo rχbig,
(14)

L 4 2

in the odd case and

( n + 1 )

for X small

forXbig,

ϊovX small

(15)

in the even case. Qχ\χ> = 0 also satisfies (15).
Having bounded §%', ρ%' and their products, we proceed as in Sect. 5 of [1] to

obtain the bound of the type (2.15) for g'χ>'s with D'nX' + 0 and their products
among themselves and with g'£'9s except that the constant E is increased. g'£x and
F'£Y are bounded immediately with the use of (14), (15) and their definitions (4.9),
(4.12), (4.13), (4.17), and (4.18). As a result we obtain (3.15) and (3.16) with n
replaced by n + 1 and

~(2n+2-k-l) ~
(16)

Now, using (4.19), (4.20), and (16) we obtain (2.15) for n +1 with some or all g'*
replaced by g'®,. and E by a big constant. Finally, the constant is brought down to
E by the use of (4.22) as in Sect. 5 of [1]. This ends the proof of (An + x) and (B n + J,
given (An) and (Bn). ( D n + 1 ) follows from (4.15) and (16).

To show that (An)-(Cn) hold for all n, fe+1 Sn^N-No, we have to start the
induction. For the first step [see(3.7)-(3.9)] the procedure is exactly the same as for
the next ones, except that for (3.7) we need to decouple the M kernels in the
zχn={MZ)xn as we did for the VM kernels (see (3.17) in [1]). We only have to
check, that'sufficiently small factors arise in (4.8). For G£+ 1 . one may always
extract an O((n0 + k)v + dδno+k) factor, since δJzsl0(Z)dμc- t(Z) = 0. For Gk

k

ι

+ uij k>l,
Fι

k iY provide the necessary small contributions (to control the combinatorics we
use one δn° factor). Moreover (still for k>ϊ)

(17)
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Finally consider Of+1 1 2 . Ff+ 1 1 2 Γ has extra 0{(n0 + k)vδno + k) factor in all other

terms except the one given by (here Y = A1^jA2κjχk

ί

+1uxk

2

+1, A. blocks)

F £ ? , i 2 r = Σ ίZuZDl0(Z)dμc^(Z)(M)x,u(M)x,iυ
us A i, ve Δ2

= Σ (<*~ ι + O(e-™2))(M)x>(M)χk2Vδuυ. (18)
U, V

Thus Fkk

+ι 12Y satisfies our claims and

Gf+ l f ! 2 ( 0 ) = Σ ίf+1.12y(0) = c;' Σ (M) x f u (M) 4 u

/ α φ k

1

+ 1 , x f x ) ] ) . (19)
Since

Σ(M)JM)yu = ̂ kxy (20)

{2Γk is the free covariance of zk), we obtain

|Gί'+ i , i /0)-δ H c; ^ b c f ^ l ^ ^ " " ' " " " ^ ^ ' e x p L - α φ f 1 , x f ! ) ] . (21)

In order to control Gxr as given by (3.12), we still have to estimate the
expectations <—} M N-N O J ? appearing there and in (3.11). Notice that

<->*»-»,*= ^ r j - e x p [ - VΓNo(VψN-No)dμeN_N(ΦN-Non • (22)

Both in the numerator and in the denominator we consider separately φN N° such
that DN_No{VψN-No) = A (large fields) and DN_No(VψN-No) = ΰ (small fields).

For large fields the integrands are easily bounded (with use of (ΛN_No)) by

const exp[O(κ;) J dz{Vψξ~No)2] lί + £ (φN~Nη2). (23)
A \ xeΔ )

The latter is integrable with respect to dμ^ , since

° A \xeA I

(take ξ>L~2N). Moreover, using (7) of Appendix 3 in [1], we may extract from its
integral an exp[-O((^ 0 + iV-iV0)

2v~d2)] factor ( 2 v - d 2 > l ! ) .
For small field integral, we use the small field bounds oϊ(BN_No). The constant

contribution to Gkχ__Noip bounded with the use of (21) and (Dn) goes through the
expectation <—}MN-NO J^. The results are

d~ε

' 2 " ~δna+ιί\+d(x\,xk

2)Yd+\ (25)

(26)

nN-NoΓk
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Substituting (25)-(27) to (3.12), we obtain

N-No-l

of c-i,,- Σ
fc=O

N- No -IN- No - 1 d-ε

Σ
1 = 0 k=l

N-No-l

δno + k{l+d(xk

vx
k

2)Γd+ε

+ 2N. (28)

Now

N-No-l N-No

ϊ ^kx*x*Ck —CN-No L

N-No-l

LJ y ^kxϊx^N-No Ck )• \ Z y )

k = 0

The first term on the right-hand side of (29) differs from c^lNo times the free two-
point function G°XuX2 by cΰ±NJ2iN~NoKψχf-%Ψχf-NVGN-No>

 w h i c h i s smaller than
Cy2N, compare (26). The second one is bounded, with °the use of (2.19) and

^ — a\x — y\~] (see [1]) by

C Σ γ2kδ"0+kexp[-ad(xk

vx
k

2)']SCδn°(l + d(xk

vx
k

2)yd+2-ε. (30)
/c = 0

Summarizing,

\GXlX2-c-NiNoG
o

xiJSCd"°(l + d(xvx2)rd+2-* + Cy2N. (31)

As far as the thermodynamic limit is concerned, it is straightforward to prove

by induction that gn

x

D and F*BYi as well as gn

x

D and Vy1, Kn, and cn, converge (for

n + 1 the volume dependence enters only through ^ D , F*BY, g
n

x

D, V$, δ2V^, cn and

the kernels M" all our estimates are uniform in volume). As a consequence, also

Gkj} has the limit when JV->oo (GN

ι_No{0) does since δGn{0) converge and fulfill (Cn);

the contribution of GN

ι_No to G™ goes down with N by virtue of (BJ). As a

consequence of (3.12), GXίX2 has the thermodynamic limit. Since cN_No > c(v),

(31) becomes for the infinite volume quantities

\GXiX2-c(v)-1G°XiX2\ύCδ'"'(ί + d(xvx2)rd+2-\ (32)

This gives (1.5).
The analyticity of the infinite volume limit in v also follows via a straightfor-

ward inductive argument.

6. The General Correlations

It is now rather straightforward to generalize the above analysis to a general
correlation function. In this section we will explain first the idea for the general
case and then carry out the analysis in more detail for the 4-point function.
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Thus consider iterating (3.2) and (3.4) for a general {ψj}^:

<ψ/>^= Σ v | J l l < v ί 1 « J l > z 0 > Λ j r
J l C /

= Σ Σ ? 2 | j 2 l <v, 2

2 y | / ' l <^ 1 << ( J l u , 2 ) >zo>z 1 >^

= Σ Σ Σ <G({nj},{Ij})>*»-».*
p= 1 N-No>nί>n2> ...>np {I3}P

part, of /

\I\J\ \

y-No Σ Σ ΣG({n.},{/.})) , (l)
0ΦJC/ \ p = l «i>...>np {/j} /0tN-No^'

where

Thus, to start with, let us analyze

• zfc\ Ξ /FT z k ^ /g\

\£ = J *' /z k

(we will often suppress the index k below). Expanding, as in the case of the two
point function, and gathering clusters around D' and the xk+us, we obtain the
analogue of (4.14):

<zj>z exp [ - Π = Σ Σ Π $% Π FΎσ

 e x P f ~ Σ '̂1> (4)
(X' ) {Y' } Y'nX'- = @

where the X'p Y'σ are disjoint, X' = κjXpD\ X'pD' = uc.c.Z>' Φ0 and
x'j = uxk+1 C Γ u ( u Y^). Again, if X^nx'j = 0, g'£' = g'^, and there is noy-product if
D' = 0 and no σ-one if x'jCX', and of course xr

InYσή=0. In order to control the
iterations of (4) (after applying S to it or to zkj+1 times it) we need to take out the
constant parts of Fr

γJs which would not contract in the iteration. We repeat the
analysis (4.15)-(4.21) for the expansion (4). For this purpose, denote explicitly in (4)
the dependence of g and F on / : g^'I, FΎ (we drop also the primes now). Consider,
for some fixed iel (we often identify below i and x\)

ΣfΣmo)) Σ Π ^ ' Π n f W - Σ vγ, (5)
j*i\YΊivj ){Xι),{Yσ} I σ [ YnX=0

which is a term we will subtract from (4); it equals

Σ <^j>z(0Kzmβyz exp [ - n . (6)

Expand now exp[ — Σ^y] i n (5), gather disjoint clusters and resum; (5) becomes

Σ Π^Π^'jexpf- Σ Vγ}> 0)
{Xι}{Yσ} I σ

with

&'•'= Σ Σ Σ m o ) Π ^ ; Λ { ' Λ Π ί ίrl{ίΛΠ(eχp[-ί;.]-i), (8)
J' {iJ}CX {ΪJ}CYCX {Xι},{Yσ} a

V= Σ Σ Σ FψK0)YlF^, (9)
J : { i J } C Ϋ { ί β Ϋ
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where {Xt}, {Yσ} in (8) are disjoint, T^nXj = 0 andZ is connected with respect to Y,
Xt, Yσ and Ya and Ϋ in (9) with respect to Y, Yσ. Also note that in (7) only one g or F
is not eft* or FYσ, namely the one for which ίeXι or Yσ.

The idea now is as follows. Subtracting (5) from (4) amounts to subtracting a
"gaussian" contribution: F\-Fψ for ίef will be 0(δno + k); (5) will be the main
contribution to (4). We now apply S to the difference, which again is of the same
form (see (10) below). We repeat this until there are x^+p + x f p in a common small
Y Then we need to subtract Fγ(0), as is evident from Sect. 5 the Fγ with Y small
will not contract in our scheme (in fact the estimates would blow up). If other such
pairs exist, we need to subtract them too. Thus, in more detail, fix i and write

< z / > z e x p [ - Γ | = Σ <V J >z(0)

+ Σ Πδf/ ' Π ^ Jexpf- Σ vX (io)
{Xl},{Yσ} I σ I YnXι=Q J

with

^hi=gV-gY\ (li)
Fy'^Fy-Fy'1. (12)

Let us consider the estimation of the g and the F. Consider Fγ first. Since the main
contribution for it is given by

F'γ,o= ΣSΠS(Uγ)zInLYUZLγ)dμc-ι(ZLy), (13)

we get easily the bound

| F ^ C | / π r | e x p [ - 2 α i ? ( Y ) ] , (14)

where CjJny| depends on the number of points, |JπY|, in InY Similarily g j 7

satisfies the bound (2.15) with a multiplicative constant C| J n X ) as in (14). For PY

J

we claim that the bound

|F /

y ' i |^C | J n y |(5« 0 + f cexp[-2α^(7)] (15)

holds. To prove this, note, that it suffices to consider (9) with FY replaced by FY 0

(given by (13)) as well as F[ replaced by FY 0, the error being bounded by (15).
Moreover, we may omit l 0 in (13), again with the error bounded by (15). This
reduces FY to F\ 0, given by

H,o= Σ Σ
K ϋ > } {YW

with Y connected with respect to Yip {<#>} running through the pairings of /.
Equation (16) follows from (13) since we have a gaussian integral left as 1O->Ί. But
(15) for F's replaced by F's is straightforward.

Consider finally g^'1'1. By (8), (11), (14) and the corresponding bound for g%'Iil,
cjx'1'1 also satisfies (2.15) with some multiplicative constant C ( Λ : n / |, which we now
take the same for g, F, F and g. For being able to iterate the bounds for g, we need
the "cocycle" property, analogous to (4.22) for g. Namely, for D'DD

~9x'I'i= Σ
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with Xj, Yσ disjoint, 7 nX^ = 0 andX connected with respect to Xp Yσ, Y and c.c. of
Df. This follows from the corresponding one for g: (proved as for \I\ = 2, see
Appendix)

which, when inserted to (8), yields (17) for g%''I>l, and then by (11) for gχfI'1.
Equation (10) is the starting point for the iteration. The main (only) contribution
in the scaling limit will be given by the first term. We shall assume, inductively
in |/|, that we can cope with it.

Thus we wish to address the iteration of the second term of (10), namely, the
application of S to it or to z3 times it as we are advised to do by (1) and (2).
Consider first case. Denote

The expansion described in Sect. 4 may be applied to (19), giving

H'e ~ Ϋ' = S(H) exp [ - F ] = Σ Π of'' Π F'Y'J
 e x P [ " Σ Kl (20)

We claim the g', F' satisfy the bounds

(α) g'χ the same as ^G~L'NoSe(X)gx, with n-*n+l, (21)

for Y big, (22)

U n y lexp[-2αif(F)]P 1° i(T) |F/' ί (0) |^(l+ε)C U n y l exp[-2αif(F)]P i j for Ysmall, (23)

Zno + k

1 } /nΓevl (24)

/\ \τ?Ίi\^r^ τ~k{d~E) Γ o r^/v\Ί ί^^^l for 7 Small, , - .
(ε) | F / Ί ^ C | / n Γ | L

 2 e x p [ - 2 α i f ( Y ) ] | ^ | / n 7 o d d (25)

In fact, (21)—(25) will hold provided we choose the constants (Cn) properly (see
below). Consider e.g. (β).

The leading term, i.e. no R, (e~^— 1) etc. factors in the cluster integral, is

Σ Σ ίUS(Uγ)UFy :UZLy)dμ(ZLY). (26)
{Yσ) {Uγ}

The G factor (recall from [1] G may be chosen big) arises as before from the
contraction of space. The only difference with our previous analysis is the
constants C ) / n y | . Let us choose (Cn) so rapidly increasing in n that

Σ Π C | / ^ ( l + β ) C W for all IQI. (27)
{Iσ} part, of 7

This is possible of course. Now the bound (22) and similarly all the others follow
by an analysis similar to that for the two point function. (We may extract the

\G No in (α) from the redefinition of K and contraction as in (β): see [1]).
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The terms (γ) in (20) are of course not satisfactory since they expand: we need to
subtract them. Let for some j there be several k in a common small Y. containing
them.

Denote Ij — InYj and write

where of course g'0*1^1^ are obtained from applying S to (19) with / replaced by
I\Ijy and if iφl\lj9 the /-index is superfluous. Again (28) is derived by first writing
the first term on the right-hand side as

Σ Γ W '-'Π F/;^exp[- Σ Vy], (29)

with e.g.

/ Σ Π ^ / Λ ' (30)

(Yσ disjoint, Y connected with respect to Yp Yσ). There is again only one term in the
products in (29) different from the g\ F on the left-hand side in (28), namely, the
one withXj (or Yσ) containing 1} (if YjnX = Q9 then ^ ' J / "/ = ̂  Λ / /' ί = ̂  / ί ;
similarly for Fs). This is why we may define the new g, F on the right-hand side of
(28) in the second term. The point of (28) is that

F / ; u j = F/; ι - F// f(0) = F / ι - F//' ((0), (31)

which by (24) has now contracted.
Equation (28) will now be repeated to the second term on its right-hand side

until all (γ)-type F s are subtracted (the first terms on the right-hand side are
treated inductively). There might be many such subtractions and they contribute
new terms to the g'x, F y . These may be bounded using the G-factors in (α) and (β):
the more contributions to g'x or F y , the bigger X or Y has to be. The reader may
easily convince himself that after all the subtractions we have obtained

where we suppress the i, j , etc., such that g'x
Λ satisfies (2.15) with the constant

| J n X | , kC| J n X | , and denoting by Jί(J) the biggest number of disconnected blocks in xkj+1,

° 1 for Ysmall, InYeven. (33)

The iteration may proceed now. For S(zjH) we may derive an analogous
expansion as for H, now with gx'

IuJ, Fγ'IuJ. Similar bounds follow for them (with
suitable (Cn)) and then applications of S are controlled as before. There are a finite
number of steps when Zj are added and after a finite number of steps all xk+p are in
the same block, whence the iteration is as that of the two-point function. To see
how this process may be carried through in detail to prove the triviality of the



Decay of Lattice Dipole Correlations 549

scaling limit, let us restrict ourselves to the four-point function. To extend this
analysis to a general correlation is just a matter of bookkeeping.

Thus take |/| = 4 in (1) and consider the first term the second one will turn out
to vanish as N-+oo. Take the p = 1 term first. This is given by

N-No-l

Σ ΛΛn/ς<N-No-n-

n = 0

By (10) we may write

<z" x ? . . .z^) z n exp[- V» + ΣΣ2 <%%>zΦK&Sx>zn+ , ,

ϊ > + 1 ] , (36)

where we suppress /, i.

We already know how to control the first term from the analysis of the two-
point function [see (5.25), (5.19)]:

^ ? ; ( 3 7 )

: l ^ g cδ"°+" e x p [ - *d{x\+\ xγ ^ . (38)

Since

00

xj)yd + 2 ' \ (39)

^ ) ) - d + 2 - ε ^ (40)
n = 0

we get from the first term in (35) a contribution to (34),

ΓΣ Γ Σ \^c;2^n^rn^
airings L n — 0pairings

(41)

Hn+ x will be studied as explained above. Denote x&y if x and y lie in the same

small Y. Let mί be the first m such that for some ij, x^1"1 ^xj1"1. We may

assume that the present i coincides with the original one. We write

exp[- Σ K^
(42)

The first term is again of the two point type whereas to Hmi we apply sm2~"'1,
where m2 is for the next pair: xψ~1 zzx"'1'1 note that this might correspond to
two new x, 's or one new collapsing in the next step to the small set where x™2 and
xj2 lie. Thus

Sm2—Hm=mi f ' Σ ^ 1 + J , y p (0)S m i - '- '- 'G I I 1 1 + P ( H + S ( H m 2 _ 1 ) . (43)
P=0 Yp



550 K. Gaw^dzki and A. Kupiainen

We estimate the two-point terms

ί p p

 + nL{-d+ε)(mί+p~n\ (44)

\/oN-No-mi -p- I/-* \ \ <T Γ1 T ~(d~ε)(mί+p-n)(-ι , j( rm+p Λ.m1+p\\~d +ε

^ C ( l + d ( j ί , x ? ) ) " d + β , (45)

which imply that the first piece in (43) contributes to (34) (if n>m1 the analysis is
similar)

π=0 ί = max(«,mi)

^ ^ x J Γ ^ 2 - * , (46)

and we are left with S{Hm2_^) = Hm2. Let us consider the (more complicated) case
where (i'/)n(i/) = 0, i.e. a totally new pair of points collapses to a common small Y.
(The other case where first three and then four points collapse is left to the reader.)
We write (Y1D {(/}, Y2D {ϊf} small)

= ίϊ ay,(0) Σ Π 9xf'iΊ> Π K{γσ exp [ - Σ Vy] + H^ exp [ - P * ]
(47)with, subtracting once more, v }

ΣίV]. (48)

(In (47) g, F are not those of (4) we are suppressing the indices of all the previous
subtractions.) In (48) we note that F^2{2=Fζ/2γ2 and of course
¥lmLrF™??σ = ?Zγs i f M * / H 0 τ h u s t h e last term in (48) indeed has in FI

miYi

and FI

m2γ2 a subtraction at zero. Equations (47) and (48) may be expressed as

K = W1rJβ)Gm^ r+KίrJP)GmΛ.iJ + Hm2. (49)

Let ra3 now be the first m such that all x™~ * are in the same small Y. We have

S^-^Hm2^
mΣ Σ (F^lqΦ)S"-^GqiΊ, + Fi

q{2gS"-^Gqij) + S(Hm3_ί). (50)
q = m2 Yίq,Y2q

Again the two-point function pieces give a contribution that can be absorbed to
the O ( - ) term in (41), whereas Hm3 = S(Hni3_1) is given by

K= Σ Π ^ 3 D Π ^ 3 y e x p [ - Σ ^ W 3 ] ? (51)
{Xj),Y

with

|i?

m3yl^cJM 0 + "L~ 2 ( W 3 ~" ) ( d " ε ) exp[-2αi f (7)] . (52)

Iteration of SkHm3 is now as in case of the two point function, yielding

N N l 5 J 2(m3-«)(d-e)β (53)
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Summing this over n with y4n produces the 0( —) term in (41). Equation (41) is thus
our bound for (34).

Estimation of the other terms in (1) proceeds similarly. Consider e.g. p = 2,
|/ 1 | = |J2| = 2,givenby

Σ Σ y « » ' + ^ < s w - w --'- 1 <^ l Z Ξj 1 s--" i - 1 <z;μ;ϊ 1 > z - I > z . 1 > Λ W - W o J P .
N — No > ni > Π2 ordered

pairings

(54)

Here Sni~"2~\z"J,2z"xl2}zn2 = GniΛl we have already computed:

Gnι,kι = Gnukl(Q) + Gnukl, (55)

with

|GBI. H ( 0 ) - C ^ ^ J £ C I " ° + »'(1 +d(xl\xrV+c, (56)

and

GBl,«=ΣΠ^ HΠ^yσexp[-Σ^]. (57)

with

| F « y | £ &>+»L'-T '"' - " 2 ) l r n ( M ) l e χ p [ - 2 α ^ ( y ) ] , (58)

and the usual bounds for g.
Thus

i^VτGnukiyznι = G B I > H ( 0 ) < Z - ^ 1 > 2 B l + < z " i 1 ^ 1 G Π i > w > z n i . (59)

The first term contributes, by (56) and Sect. 5,

y 2 , x t ; 2 ) y d + ε ) , (60)

and upon summation over nί and n2 in (54)

y Cc"1^" c " 1 ^
La VSi ^ f l i ^ i ^ S i t y«2^2 X?2

i + "2pairings L\«i + "2

+ 0(^(1+φ i,x J.))-' i + 2 ( l+φ i ( ,x i ))- ' i + 2 - ε + ̂ {ί> } o {W}))], (61)

whereas, defining

it has the expansion (36) with analogous bounds. Thus

pairings

^ ί ,x? 1 ))- < ί + β , (63)

and combining (63) with (62) and (59) these terms in (54) can again be absorbed to
the Θ(-) in (61). Similar analysis is now carried out by inspection to the
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other p, {/,.} combinations in (1). We get
/N-No- 1 \ /N-No- 1

= Σ Σ c;^nx?J Σ
n=0

{kl})

(64)

where the &(γN) comes from the last contribution in (1). Proceeding as in (5.29) and
taking JV-»oo, we obtain

j L^Oij^Oklxi...φX4y=φy2

pairings

J
(65)

In the scaling limit (1.3) the Φ( — )'s drop away and

G(x1...x4) = φ ) " 2 Σ t-AXXί-ΔXkXι, (66)
pairings

which was the claim.

Appendix

Here we prove that (4.22) for n implies the same relation for n + 1 . The repetition of
the arguments of Appendix 2 of [1] gives

d'xDi= Σ Π C Π f e Σ Π(«p[-^y.]-D, (i)
{Xι},{Xσ) I <r {Yσ} «

where Xt,Xσ are disjoint, 7αCX/\(uX/)u(uXσ), uXpX'nD' andX' is connected
with respect toX ί ?Xσ, Ya and connected components of D'v To proceed further, we
need relations inverse to (4.12) and (4.13). These are

9a = Σ ^n(«P[-^J-l). (2)
Y,{Y*} in X a

and

Σ

(3)

with X connected with respect to Y (Yv Y2) and Ya in both (2) and (3). It is easy to
see that (4.12) and (4.13) as well as (2) and (3) establish one-to-one relations
between (gf^x) and {F'£Ύ\ In order to show that one is the inverse of the other it is
then sufficient to prove that substitution of (4.12) and (4.13) to (2) and (3) yields
initial (g'£x). But, with X connected with respect to Xv Ya and Yβ,

Σ 9ΪXi Π(exp[^J- l)Π(exp[- Kfl- D
Xi,{Y«},{Y/j}inX α β

YαnXi*0

Σ ^ Γ - β « . \\{\-υ{XvYσ))VY<r = g% (4)
Xi,(Yi,...,Y r)inX ' • σ = l

I c o n n , with respect to Xi and Yσ
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(U{X9 Y) = 1 if X n Γφ 0 and vanishes otherwise). Similarly, with X connected with
respect toX 1 ? (X2\ Ya and Yβ

/ Q i ίx I I v P L Y j | / I I v ^ ^ p L Y n J /
Xi, {Yx), {Yβ] in X <x β

+ Σ Q'kQ'k Π (exp[ί j " 1) Π (exp[ ~ ^ ] - 1)

= Σ ÛXi Π (l~U(XVYσ))VYσ
Xi,(Yi,...,Y r)inX ' σ = l

X conn, with respect to X1 and Yσ

+ Σ iz^9a1β'jx2 Π (1 - UQC^Xv Yσ))VΎ<r = g'i% •
Xi,X2,(Yί, . ,Yr)inX I' 1 2σ=l

X conn, with respect to Xi 2andYσ (5)
X1nX2=& ' V }

Insertion of (2) and (3) to (1) yields

Ox'1 =ΣU0XD; Σ Π F'BX (exp [ - KJ ~ 1), (6)
{Xi} I {Yσ}ΛY«} σ

withX; disjoint, u I p Γ n D ' , Yσ, 7αCXJ\uX and X connected with respect ioXb

Yσ, Yα and connected components of D'v This proves (3.39) for n + 1 except for the
case when x\+ \ xtι

2

+1eXf. In the latter case, using (6), (4.18), (4.20), and (3.6) of [1]
we obtain

Ox '= L 1J
{Xl}ΛY<r},{Yoι} j

- Σ g'i
{ΛΊ},{Yα},y α

where in the first sum the restrictions are as in (6) and in the second one Xt are
disjoint, YαcX'\vXι and X' is connected with respect to Xl9 Yα, Y and connected
components of D'v The part of the second sum with Yr\Xι = 0 cancels the constant
term in F'™Yi see (4.18), whereas the one with YnXι + 0 provides the correction for
the g'χ with xlί

1

+1,xn

2

+1eX, appearing in the first sum, necessary to convert it
into g'χ\ see (4.20). This completes the proof of (4.22) for n + 1 .
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