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Abstract. We investigate the algebras of the non-local charges and their
generating functionals (the monodromy matrices) in classical and quantum
non-linear σ models. In the case of the classical chiral σ models it turns out that
there exists no definition of the Poisson bracket of two monodromy matrices
satisfying antisymmetry and the Jacobi identity. Thus, the classical non-local
charges do not generate a Lie algebra. In the case of the quantum O(N) non-
linear σ model, we explicitly determine the conserved quantum monodromy
operator from a factorization principle together with ^ , 5~, and O(iV)
invariance. We give closed expressions for its matrix elements between
asymptotic states in terms of the known two-particle S-matrix. The quantum
^-matrix of the model is found. The quantum non-local charges obey a
quadratic Lie algebra governed by a Yang-Baxter equation.

I. Introduction

The notion of complete integrability in field theory involves the existence of an
infinite number of commuting conserved quantities. In addition to these usually
local quantities, some models possess an infinite number of non-local conserved
charges which do not commute among themselves. This raises the important
question whether the integrability of such field theories can be related to the
existence of an infinite dimensional non-abelian dynamical symmetry algebra. For
finitely many degrees of freedom dynamical symmetries are well known (e.g. the
Coulomb problem and the harmonic oscillator). In field theory, the non-linear σ
models are good candidates to possess this kind of structure.

To construct such a dynamical algebra one must find the Poisson brackets of
non-local charges [1-4] in the classical field theory and the corresponding
commutators in the quantum field theory. The monodromy matrix of the
associated linear system [3-5] (Lax pair) serves as the generating functional of the
non-local charges. This is a system of linear differential equations having the field
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equations as a compatibility condition. The monodromy matrix connects the
solutions of the linear system at plus and minus (spatial) infinity. For a large class
of integrable models the Poisson bracket of monodromy matrices can be expressed
in an elegant way using the so-called r-matrix [6]. This r-matrix must solve the
classical Yang-Baxter equations in order that the Jacobi identity holds for Poisson
brackets. In all these cases, the monodromy matrix directly provides action and
angle variable for the classical theory. In contrast to this, angle variables for the σ
models have been unknown up to now: because of conformal in variance these
models are lacking a frequency scale. So, the associated linear problem does not
have Jost solutions which oscillate at infinity. The whole monodromy matrix T(λ)
is time-independent and all its matrix elements are conserved charges.

To obtain the canonical algebra of these non-local charges in a closed form we
have investigated the Poisson bracket {T(A)® T(μ)} of their generating functionals.
We have done this for the chiral σ models where the canonical formalism is
particularly simple. To start with we compute the canonical transformation
generated by T{λ) on the field g and momentum π. From this we find that T(λ)
commutes with the densities of energy, momentum and conformal charges.
Poisson brackets between monodromy matrices can be efficiently obtained from
the Poisson brackets of the currents entering the linear system [6, 7]. In the case of
the non-linear σ models this current algebra is non-ultralocal since it contains
derivatives of the delta function.

A careful analysis of {T(λ)® T(μ)} leads to the conclusion that this object is not
uniquely defined. Moreover, there is no definition consistent with the basic
properties of Poisson brackets, namely, antisymmetry and the Jacobi identity. This
disease is related to the short distance singularities of the current algebra (non-
ultralocality) and the absence of a mass scale. On the level of the algebra of
canonical transformations induced by T(λ\ a related problem shows up: The
commutator of two such transformations is not generated by any function on
phase space, in particular not by a function of the monodromy matrices.

A natural way to regularize short-distance singularities is to introduce a spatial
lattice such that integrability is preserved. An integrable formulation of the chiral
σ model on a space-time lattice is known [8, 9]. Unfortunately, no consistent
integrable space discretization with continuous time is presently available.

It is known that there exists an infinite-dimensional Lie algebra of symmetry
transformations acting on the space of solutions of the chiral σ model [10]. This
algebra has turned out to be a loop algebra. The non-locality of these symmetries
raised the question whether they are related to the non-local charges and in
particular, whether they are canonically generated by them. Since these transfor-
mations do not preserve the basic Poisson brackets [11], the latter cannot be true.
In conclusion, this loop algebra of symmetry transformations is restricted to
solution space and cannot be extended to phase space. Moreover, the classical
non-local charges do not form a loop algebra since they do not even form a Lie
algebra.

It is known that the first non-local charge exists as a renormalized, conserved
operator in the quantum O(iV) non-linear σ model [12]. Since by dimensional
transmutation a mass scale is generated in the quantum σ models, one can hope
that the problems found in classical theory are absent in the quantum case. In fact,
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we have obtained an explicit formula for the quantum monodromy operator T(λ)
which generates the quantum non-local charges. Moreover, we derive an ex-
pression for the commutator [T(λ)® T(μ)] consistent with all the properties of a
Lie algebra.

To determine the quantum monodromy operator we have used ^ , ^ , and
O(iV) invariance, time independence of T(λ) and a factorization principle for the
action of T(λ) on multiparticle states. In the classical theory T(λ) for a con-
figuration consisting of several separated lumps there is an appropriately ordered
product of the T(λ) for each lump. In the quantum theory we assume analogously
that T(λ) for an asymptotic /c-particle state is an appropriately ordered product of
the T(λ) for each one-particle state [13]. From this factorization principle and the
conservation of T(λ) in two-particle scattering one gets a set of homogeneous
functional equations for the one-particle matrix elements of T(λ). These matrix
elements fulfill additional bilinear equations due to 0* and ZΓ invariance. The
whole set of functional equations has the same form as the equations determining
the two-body S-matrix (factorization, unitarity and crossing). This observation
leads to the result that the quantum monodromy operators can be expressed in
closed form in terms of the two-body S-matrix. Explicitly we find for the one-
particle matrix elements of Tab(λ) between states with isospin labels c and d and
rapidities θ and θ'

Here y(λ) is a new spectral parameter arising in a natural way from the
factorization equations. Due to the factorization principle, the matrix elements of
Tab(λ) between /c-particle states are appropriate products of k S-matrices, in
complete formal analogy with the monodromy matrix in the statistical mechanics
of an inhomogenous vertex model on a one-dimensional lattice of k sites, the
Sad bc(θ + y(λ)) being identified with the statistical weights. In this way we have
obtained an explicit solution for the monodromy operator in the quantum O(N)
non-linear σ model including all the higher non-local charges. This solution
matches with the known first two charges [12] obtained from the classical ones by
renormalization. This comparison provides an expression for y(λ) at small λ. The
commutator algebra of the non-local charges follows immediately from the above
mentioned analogy with vertex models: Since the statistical weights, i.e. the
S-matrix, satisfy a Yang-Baxter equation, the algebra is governed by the same
Yang-Baxter equation. Hence it is a quadratic algebra in the sense that the
commutator of two charges contains terms quadratic in the charges:

LTjλ), TJλ')-] = ̂  y(A)-y(A')(Γtt(A) Wϊ-W W )

fk iniδ^{λΊ ™-SMλ)Tjλ%

A complete set of infinitesimal generators of such an algebra therefore includes
products of any number of charges.

Our results amount to the determination of the quantum i^-matrix for the
O(N) σ model. For theories like the non-linear Schrodinger or sine-Gordon this is
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the key to the exact solution of the quantum model. In the present case the
situation is different: Since T{λ) as in the classical case is conserved, it does not
provide creation and annihilation operators.

II. On the Canonical Algebra of Non-Local Charges for Classical Chiral Fields

I I.I. Chiral Fields and Loop Algebras

The chiral field g(t9 x) takes values in a compact Lie group G with Lie algebra g.
The Lagrangian reads

μ (1)

where Aμ = g~1dμg obeys the equations of motion

V = °> (2)
and the zero curvature condition

V v - M μ + Wμ^v]=0. (3)

We assume the boundary conditions

l i m A μ ( t 9 x ) = O9 l i m g(t9x) = g+. (4)
χ-> ±00 * x-* ±oo ~

The hamiltonian formulation is given in terms of the canonical variables g(t, x) and
π(t,x) = do(g~1)τ by the Hamiltonian

+ 00

H = H dxix{-πτgπΎg + dxgdx{g-')), (5)
— oo

and the Poisson brackets

x)®g(t,y)} = {π(t,x)®π(Uy)}=0,
(6)

{g(t,x)®πτ(t,y)}=δ(x-y)P,

where we have used the tensor product notation

M = {Aab,BJ, (7)

and the permutation operator Pab cd = δadδcb, with the property P(A®B)P =
The algebra of the currents Aμ follows from Eqs. (6):

{A0(x)®A0(y)}=δ(x-

{A1(x)®A0(y)}=δ(x-y)(t®A1(x))P-δ'(x-y)(g-1(x)g(y)(g)t)P, (8)

{A1(x)®A1(y)}=0.

The main object of our interest is the monodromy matrix T(X, Y\λ) which fulfills
the equations [3-5]

^ τ(z, yμ) = - Lμ(x, λ) Γ(Y, y μ), (9)
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where

~T(X,Y\λ)=T{X,Y\λ)Lμ{Y,λ),

T{X,X\λ) = l,

Lμ(X, λ) = jj-j (λAμ(X) - εμvA\X)),

= (t,x), Y = (t',y),goo=-g11 = l,εol = l.

(10)

(11)

(12)

Equations (2), (3) are the compatibility conditions of Eqs. (9), or equivalently, of
Eqs. (10). We also introduce

T+(X,λ)= lim T(X,Y\λ),
y~> + oo

T~(Y,λ)= lim T(X,Y\λ),
χ-+ — oo

T(λ)= lim T{X,Y\λ).

(13)

> — oo
* + oo

Since L(X,λ) vanishes for |x|->oo, the monodromy matrix T(X,Y\λ) becomes
independent of t(ί') when x(y) goes to infinity. For later use, we note the
transformation behaviour of these quantities under # (parity) and 3~ (time
reversal):

L0(X,λ)-*L0{X,-λ) L0Qί,λ)-*-L0(-X,λ)

withZ = (ί, —X\ and consequently, from Eqs. (9), (10), and (11)

&\TQC,Y\λ)-+T(X,Ϋ\-λ) and Γ^^Γ^-A), (14)

^ ^ : Γ ( X , Y\λ)-+T(-X, ~Y\λ) and ^ - ^ T " 1 ^ ) . (15)

The classical equations of motion of the chiral σ models are known to possess
an infinite-dimensional Lie algebra of symmetry transformations which has the
structure of the loop algebra g(x)IR[/l] [10]. To define these transformations, we
use the functions [14]

,λ) = [T'(X,λ)TitaT-(X,λ),

va{x,λ)=τ+{x,λ)tiτ+{x,λ)rι,

where the ta are a basis of g with

lΛ>ίJ = /β tΛ
 a n d t r ( r Λ) = (5αb

Now the transformation

(16)
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(±) 2 (±)

where {Mag) (X) = g(X) VJX, λ) is an infinitesimal symmetry of the equations of
( + )

motion. This means that g — δ Mλ

ag is a solution of (2) up to terms of order δ2 if g
satisfies (2). For the generators

(±) 1 dn <±),

one finds the loop algebra commutation relations

( ± )

The transformation Mι

a reads explicitly

(Mlg) (X) = + g(X) f dzθ( ± (z-x)) [>40(ί, z), ί J . (18)
— oo

On the other hand, the chiral models possess infinitely many conserved non-local
charges Q(n) [1-4] the generating functional of which is the time independent
monodromy matrix T(λ)

oo

Defining Q^) = \xtaQ
{n), we find that the transformation generated by Q(

a

2) is

+ 00

J dzε(z-x)lA0(t,zltJ. (20)

It has been noticed [11] that the transformations (18) and (20) do not coincide. In
fact, the transformation (20), being generated by a charge, is canonical, whereas
(18) is not because it does not preserve, e.g., the Poisson bracket

{g{t,x)®g(t,y)}=0.

Both are related by

- 2{Q{2)® g(X)} = {Mι

ag + Mι

a) (X).

( + ) 1 ( ~ } 1

The Ma and Ma, taken separately, generate two isomorphic loop algebras which,
however, do not commute:

1(2)Thus Q{2) does not necessarily generate a loop algebra. To find the general
algebraic structure, we have investigated the Poisson bracket of two generating
functional {T{λ)®T{μ)}.

II.2. Poisson Brackets and Monodromy Matrices

First of all, let us look at the infinitesimal canonical transformations which are
induced on g and π by the monodromy matrix T(λ):
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Using the formula [7]

δTab^ = T~. (z, λ) T+ (z, λ), (22)

and

*LιM>λ)=

 λ

 g i z ) δ . δ ( x Σ ) 9 (23)
δπcd(x) λ2-l CJ ιd

we find

{T(λ)Θg(x)} = —2 [T-(x,λ)®g(x)T+(x,λ)~]P. (24)

Similarly, the action of the canonical transformation on the momentum π is given
by

\l\Λ,)\ζpTl \X)f— Γy L^ [X^AjTC \X)\>S) I \X, A)-rAl [X, A) Q [X)

®A1(x)T+(x,λ) + λdx(T-(x,λ)g-1(x)®T+(xAmP. (25)

The classical chiral field theory is invariant under the conformal group which is
generated by the charges

Q±(F)=-l)

+fdxF(tψ)tΐ(A0±A1)
2(t,x), {H,Q±(F)}=0. (26)

^ - oo \ ^ I

From Eqs. (8) we derive the conformal algebra

± ± (27)

where

W±{F,G) = Fd±G-Gd±F, d±=dt±dx.

From Eqs. (24), (25) we get

{T(λ)®tv(A0±Aj(x)}=0. (28)

So the canonical transformations generated by T(λ) commute with the conformal
transformations, and, in particular, with energy-momentum.

As basis for the discussion of {T(λ)ψT(μ)} we find it useful first to compute the
Poisson bracket of two monodromy matrices on finite, overlapping intervals [α, b~]
and [c, d~\ with a < b, c<d, K = \

For reasons which become clear later, we require αφc, bφd. Employing the
method which has been developed in [7], we start from the equation

α c

•lT{x,b\λ)®T(y,d\μ)~], (29)
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where all the time arguments are equal and have been suppressed. The non-
ultralocality of the Lax pair (9), (10), i.e. the presence of spatial derivatives of the
field g{x\ is reflected by the δ' functions in the expression

1 [δ{x-y) (α(λ)

(30)

where <x(λ) = {λ2 — 1)1 λ. Inserting (30) into (29) and evaluating the δ functions leads
to

Mλ)φ)-]{na,b\λ)®T(c,d\μ)}
L

(a, x\λ)® Ί\c,x\μ)) (<x(λ) ( lOL^x, λ))

+ λ(dxT(a,x\λ)®T(c,x\μ))(T(x,d\μ)®T(x,bμ))

+ λ(T(a,x\λ)®T(c,x\μ))(T(x,d\μ)®dxT(x,b\λ))

-μ(T(a,x\λ)®dxT(c,x\μMT(x,d\μ)®T(x,b\λ))

-μ(T(a,x\λ)®T(c,x\μ))(dxT(x,d\μ)®T(x,b\λ))

-λ{T(a,x\λ)®T(c,x\μ)) (A^x)®!) (T(x,d\μ)®T(x,b\λ))

+ μ(T(a,x\λ)®T(c,x\μ)) (i®^^*)) {T{x,d\μ)®T{x,b\λ))~]P

-λμy(T(a,x\λ)®T(c,y\μ))(T(y,d\μ)®T(x,b\λ))δ(x-y)P\x

xZ
b

a

c

+ μ\dx(T(a,x\λ)®T(c,y\μ)) (T(y,d\μ)®T(x,b\λ))δ(x-y)P\lZd

c. (31)
a

With the help of Eqs. (9), (10) and the relation

A1{x) = {λ-μy1la.(λ)Lι(x,λ)-a(μ)Lι{x,μy],

the integrand / of the first integral in (31) turns out to be a complete derivative:

I = h(λ,μ)δxl(T(a,x\λ)®T(c,x\μ))(T(x,d\μ)®T(x,b\λm,

h(λ, μ) = λ(l- a(λ)/(λ - AO) = - Ml - <M/(μ ~ A)).

Taking into account the ordering of a, b, c, and d in the boundary terms, we arrive
at

{T(a,b\λ)®T(c,d\μ)}

= la(λ)a(μ)yι{h(λ,μ)(T(a,L\λ)®T(c,L\μ))(T(L,d\μ)®T(L,b\λ))

-h(λ, μ)(T(a, K\λ)®T(c, K\μ))(T(K, d\μ)®T(K, b\λ))

-λθ(d-b)θ(b-c)(T(a,b\λ)®T(c,b\μ))(T(b,d\μ)®l)

+ λθ(d-a)θ(a-c)(ί®T(c,a\μ))(T(a,d\μ)®T(a,b\λ))

+ μθ(b-d)θ(d-a)(T{a,d\λ)®T(c,d\μ))(t®T(d,b\λ))

-μθ(b-c)θ(c-a)(T(a,c\λ)®l)(T(c,d\μ)®T(c,b\λ))}P. (32)
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To obtain an expression for {T(λ)®T{μ)} we have to look at the limit where a, c
tend to — oo and b, d tend to + oo. However, we see that already for finite a, b, c, d
the Poisson bracket (32) is discontinuous at the points a = c and b = d. Thus the
limit depends on the order in which a, c and b, d go to infinity:

lim / lim {T{a,b\λ)<8)T(c9d\μ)}'
H + oo d-* + oo '
C~* — oo \ fl-> — oo

(λ-μ)<x(μ)

tim^ (bljmχ {T(a,b\λ)®Άc,d\μ)}\

(33.1)

— oo \ c~> — oo

^ Γ Φ / n A T / , , \ Γ)~] /"2^ O\

lim / lim {T(a,b\λ)®T(c,d\μ)}\
> + oo b-> + oo '

\ > — oo /

T(μ)®7XA))P, (33.3)
,(μ-λ)a(λ) v ^ ^ (λ-μ)a(μ)

lim / lim {T(α,bU)®T(c,<i|//)}\
α - * — oo \ c-+ — oo /

n \ ( , T(λ)® T(μ) - L - Γ(μ)(g) T(λ)) P. (33.4)

The origin of these discontinuities is the short distance singularity of the classical
current algebra displayed by the δr functions in Eq. (30). These δ' distributions act
in Eq. (29) on monodromy matrices which do not vanish at the end of the interval.
They give rise to the boundary terms in Eq. (31) and to the step functions in
Eq. (32). The conclusion is that the Poisson bracket {T(a,b\λ)®T(a,b\μ)} is not a
uniquely defined object, be the interval [a, b~\ finite or not.

Poisson brackets must fulfill the antisymmetry property

P{A®B}P=~{B®A) (34)

and the Jacobi identity. None of the four expressions (33.1)—(33.4) satisfies
separately Eq. (34). If instead we take the infinite volume limit letting a = c9 b = d,
a-* — oo, b-> + oo and defining 0(0) to be some number 0^0(0)^ 1, we obtain a
one-parameter family of solutionsλ:

lim {na,b\λ)<$na9b\μ)}=f(λ,μ)lT(λ)®T(μ)9P'], (35)
a~* ~ oo '
b-^ + oo

where

1 This result has been obtained independently by L. D. Faddeev and V. E. Korepin (private
communication)
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This result is antisymmetric for any choice of θ(0). The only antisymmetric
expression one can get taking linear combinations of Eqs. (33.1)—(33.4) coincides
with Eq. (35) for 0(0) = 1/2. In order to fulfill the Jacobi identity, f{λ,μ) must be of
the form

f(λ,μ)=l/(β{λ)-β(μ)), (36)

where β(λ) is an arbitrary function of λ (this is the general solution with the form
f(λ, μ)P of the classical Yang-Baxter equations [6]). However, for no value of θ(0)
one can recast f(λ,μ) from Eq. (35) in the form of Eq. (36). In conclusion, there is
no definition of the Poisson bracket of two monodromy matrices {T(λ)®T(μ)}
consistent with the basic properties of Lie algebras.

Usually, to a well behaved Poisson bracket algebra of charges there cor-
responds an isomorphic commutator algebra of infinitesimal canonical transfor-
mations generated by these charges. Thus, one could try to define the Poisson
bracket {T(λ)(ψT(μ)} by its connection with the commutator [ΛΓ(λ)®JV(μ)]} where
N{λ) denotes the canonical transformation induced by T(λ). For the chiral field g
we have [see Eq. (24)]

^ (37)

and the action of N(λ) on π has been given in Eq. (25). Observe that these
transformations are uniquely defined and can be applied repeatedly on g(x) and
π(x). To obtain the commutator [JV(A)®iV(μ)], we first compute

N{λ)®T-{x,μ)=- u * u[_T-(x,λ)®T-(x,μ)T+(x,λ)-T-(x,μ)®T(λ)-]P, (38)
α(ΛJ [μ — A)

N(λ)®T+(x,μ) = - _Jf-_[Γ-(x,A) T+(x,μ)®T+(x,λ)- T(λ)®T+(x,μ)-]P
«W(μ-λ) ( 3 9 )

These expressions fulfill the correct differential equations and boundary con-
ditions, e.g. for Eq. (38):

dx(N{λ)® T~ (x, μ)) = (N(λ)® T" (x, μ)) (1® L,{x, μ))

+ (ί® T- (x, μ)) (NW^L^x, μ)),

lira (N(λ)®T-(x,μ)) = 0.

From Eqs. (37), (38), and (39) we then get the result

diJ(x) = a ( A ) ̂  _ λ) iTcb{λ) (NJμ) gi,(x)) - (a - c,b - i)]

An analogous formula holds for the application on πu. To define e.g.
{{Tab(λ\ Tcd(μ)},gfίi7.(x)} through Eq. (40), there must exist a function ^abcd{λ9μ\g9π)
such that

x) = {FalJλ9 μ \ g> π\ Qij(x)} . (41)
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In turn, this would require the integrability condition

δ δ δ δ

or equivalently,

{{J^, πjy)l gi3(x)} = {{F, ft .(*)}, πk,(y)} (42)

to hold. However, (42) is true only for λ + μ = 0. Thus, in general no such function
J* exists. In other words, ίN(λ)(ψN(μ)] is a canonical transformation which is not
generated by any function on phase space, in particular, not by a non-local charge.

One of our starting points was the question whether the classical algebra of the
non-local charges is a loop algebra or some other type of infinite-dimensional Lie
algebra. Our result shows that this question is not posed correctly: It is not even a
Lie algebra.

II.3. Integrable Chiral Fields on the Lattice

Since the short distance singularities of the current algebra make it impossible to
properly define {T(λ)(g)T(μ)}, it is natural to introduce a space discretization in
order to regularize the short distance behaviour. It is crucial that such a lattice
version be integrable in the sense that it admits a Lax pair. A formulation with
both space and (euclidean) time discretized is known [8]:

& = Σ ti{gn+μg^). (43)
μ=l,2

Here n = (nvn2)eZ2, l = (l,0), 2 = (0,1), and 0neGL(N,IR). One can write the
system of difference-difference equations [9]

where

The corresponding compatibility condition precisely gives the equations of motion
associated to the Lagrangian (43): ΔμJn μ = 0. Here AμΨn = Ψn— *Fn .

An infinite number of conserved currents follows by expanding

into a power series in λ. In the limit where both space and time become continuous
one recovers the euclidean version of the chiral model [Eq. (1)]. However, keeping
space discrete and letting the time spacing Δ tend to zero, one gets

^ ( ί ) = tr[flfII+1(ί)flfIΓ
1(ί)] + y t r ^ ( ί , W ) + O(^ 3). (44)

Here gn(ή = gn with t = n2Δ and A0(t,n)= g^it)- I t : m u s t ^Q noted that the

O(Δ3) term in Eq. (44) contains up to three time derivatives. If one drops in Eq. (44)
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the 0(Δ3) terms and then sets t — Δt\ one gets the system investigated in [15]:

V)) +1trA'0

2(t\ n). (45)

Moreover, if one now lets the space be continuous (x = nδ, <5->0) in Eq. (45), Eq. (1)
is recovered provided a singular scale transformation is carried out, namely
x' = x/δ. In conclusion, a consistent integrable space discretization of the chiral
model with continuous time is not presently available.

III. Non-Local Charges and their Algebra in the Quantum O(iV)
Non-Linear σ Model

The quantum O(JV) non-linear σ model has been studied in several approaches
(ί/N expansion, perturbative expansion, factorizable S-matrix method). From
these investigations, the following picture emerges: the quantum spectrum
contains a JV-plet of massive scalars transforming under the fundamental repre-
sentation of O(JV) [16]. The mass is dynamically generated through dimensional
transmutation. The scattering of particles is governed by a factorizable S-matrix
the two-body S-matrix reads [17]

sclC2, c i c i ( 0 ) = K c A ' ^

where e.g. \6\c\, θ'2c'2yin is an incoming two-particle state with isospin indices c'v c'2
and rapidities θ'vθ

r

2 such that θ'2>θ\ (similarly Θ2>θί in the out-state). The states
are normalized according to

From factorizability, unitarity, analyticity, crossing and absence of bound states

one gets . . . Θ2

), σφ)σ(-θ)= —
ίπ-θ

N-2)

(47)

#̂)= \nr; v; τ; \ \ΓΊ " 7". Δ^N-D-

It is known that the first non-local charge exists in the quantum σ model as a
renormalized conserved operator which implies factorization and absence of
particle production [12]. Moreover we will assume that the whole classical
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monodromy matrix has a quantum counterpart

TJλ) = δabί + λ ^ + λ ^ + ..., (48)

where the 1$ are quantum non-local conserved charges which are obtained from
the classical ones by renormalization. In particular:

+ 00

= - j dxA0(x),

fdyε(x-y)A0(x)A0(y)-Z f dxA1{x) + J f dxA0(x)} .
— o o — o o

Here {Aμ)ab = 2njϊμnb, l ^ α , b^iV, and na is the usual sigma field, Z is a
renormalization factor. The action of T ^ and T*2) on an asymptotic fc-particle
state 10^...0Λc f c> i n reads [12]

out

τ^\θlCl...θkckyin = Σ\θΛ-θΛ>in Σ Λ , w . (50)
out |^j out j = 1

m ί-4 Σ (
out I i<jforin

t i > j for out

(51)
k

+ Σ
i = l L V'L j + ί /

where the matrix fJl acts on the isospin indices of the / h particle only:

Here as everywhere in the sequel, θt<θj for i<j.
In this chapter we shall show that the quantum T(λ) can be determined from ^ ,

ZΓ and O(iV) invariance, time independence and from the assumption that its
action on /c-particle states obeys a certain factorization law. Moreover, the
commutator [T(A)(χ)T(μ)] turns out to be uniquely determined by these principles.

The factorization law is based on the following property of the classical
monodromy matrix [1] : let the field n(x) form two separated waves, i.e.

n(x)=

for x^

n2(x) for x^

constant for A < x < B.

Then

TJλ;n) = Tjλ;n1)Teb(λ;n2), (52)

where T(λ nf) denotes the classical monodromy matrix evaluated for n^x) only. In
[13] a quantum version of Eq. (52) has been introduced and studied. The action of
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the quantum T(λ) in the in and out Fock spaces is assumed to be

τjλ)\θίCι...θkCk\uι= Σ τaaι(λ)\θιCly τaiaβ)\θ2c2y...τa^lb(λ)\θkcky, (53)
ai...ak- l - 1

N

7 1 / <] \ I f\ f\ \ \ Λ r-ΓΊ ( Λ \ I Γ\ \ rr-i / 0 \ I /Ί \ rr\ ( 'WX (\ \ ίZ. Λ\

abW\V1C1...ϋkCk)in = 2 J •*α1bWI"lCl/ -*α2βΛ '̂ 2C2/ " V - i W I % / V^̂ )

Inserting Eq. (48) into Eqs. (53), (54) we obtain power series expansions of these
equations, reproducing to order λ1 the property that isospin is an additive
quantum number. To second order in λ we get for, say, an outgoing 2-particle state

+ Σ (CTiOKWz^))- ( 5 5 )

In fact, this formula is fulfilled by T ( 1 ) and Γ<2) as given in Eqs. (50), (51). Actually,
a corresponding equation for in and out states with any particle number holds. We
take this as additional justification to use the factorization law (53), (54) as the
starting point of our considerations. Due to the isospin covariance of T(λ) and its
conservation, its one-particle matrix elements are of the form

Tad, Jλ, θ) = <5αΛc/i(^ θ) + δabδcdf2(λ, θ) + δacδbdf3(λ, θ), (56)

where the functions fv f2, f3 are to be determined. It has been shown in [13] that
the conservation of Tab(λ) in 2—»2 particle scattering, i.e.

Σ c l C 2 , i 4
dιd2

= Σ oM<θιCvθ2c2\
dιd2

leads to the following relations:

+ f3(θ2)f1(θ1)σ2(θ2-θ1),

where the argument λ in the f. has been suppressed. Inserting Eqs. (47) into
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Eqs. (57), one arrives at the following set of functional equations:

Ml θ)=- — ^-^ f2(λ, θ),

2 • ( 5 8 )

Here y is a function of λ only.
The ft are further restricted by the invariance of the theory under 3P (parity)

and 2Γ (time reversal), <β (charge conjugation) acting trivially in this model. The
quantum analogue of Eq. (15) is the existence of an antiunitary operator τ =
such that

or

Projecting this equation on one-particle states one gets

^fd=TaLJλ,θ)TclM(λ,θ). (59)

In a similar way parity invariance implies

or

This gives on one-particle states

Wfi = Taf,J-l -θ)Tce_bd{λ,θ). (60)

Inserting Eq. (56) into Eqs. (59) and (60), we find the following nontrivial relations:

(61)

(62)

0=f2(λ, Θ)f3(-λ,-θ) + f3(λ, Θ)f2(-λ,-θ), (63)

1 = f2(λ, θ) f2( -λ,-θ) + f3(λ, Θ)f3(-λ,-θ). (64)

Taking the factorization Eqs. (58) into account, Eqs. (61) and (63) imply γ*(λ) = γ(λ)
and y(—λ)= —y{λ), respectively.

We also get from Eqs. (62) and (64)

-A,-fl). (65)

Comparing Eqs. (47) with Eqs. (58) and (65), we see that they just differ by the shift
θ-+θ + γ(λ). So σ2(θJ

Γγ(λ)) is a particular solution of Eq. (65). The general solution
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reads

ft{λ, θ) = σ.ψ + y(λ))eiφ^θ\ i = 1,2,3, (66)

where φ(λ, θ) is a real function of λ and θ for real λ and θ with

φ(-λ,-θ)=-φ(λ,θ).

In this way, we have explicitly determined the quantum monodromy matrix up to
a phase: In one-particle states,

Tad,bM>θ) = Sad!bc(θ + y(λ))e'«λ'θ\ (67)

and we recall that the action of Tab(λ) on arbitrary /c-particle states is given by the
factorization laws (53), (54). We notice that the crossing relations for the S-matrix
together with Eq. (60) lead to the equation

Tac(λ)Tbc(λ) = δabί for γ(λ) = y{λ) + iπ,

which can be considered as the quantum analogue of the orthogonality of the
classical monodromy matrix.

As a check, we compare now the action of Tab(λ) on one-particle states as given
by Eqs. (50), (51) with our expression (67). One gets from Eqs. (50), (51):

+ δadδhc2iλ ί 1 + ^(N-2) (in - 0)1 + O(A3). (68)

On the other hand,

\imsad,bc(θ+y)=δabδcd,

so we expand Eq. (67) into a power series in y " 1 around y~ι = 0 . F r o m Eq. (47)

and Stirling's formula we have

) , (69)

θy-2 + O{y-2>)).

We recover Eq. (68) if we identify in Eq. (67)

^ and φ(λ,θ) = O(λ3). (70)

This latter equation suggests that φ(λ, θ) vanishes identically. As it is the case for
the two-body S-matrix, we would then obtain the minimal solution for the
monodromy matrix as well.

Our next task is to compute the algebra of the quantum monodromy operators
Tab(λ). We observe that their matrix elements between fc-particle states read
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= δ(θ'1-θ1)...δ(θ'k-θk) Σ Sac,uaici(θί+y(λ))
k - l — 1

{ΊM] (71)

This formula formally coincides with the monodromy matrix in statistical
mechanics for a line of k sites [18]. The Sab cd being identified with the statistical
weights, the indices α, b, c, d label the link states. From the Yang-Baxter equations
for the S-matrix

saa>, Ay - /) sca», bc»(y) s^, bΆY)=sa.a»t ,AY) s^t

one can derive for Ta{cΊ b{c] the commutation relation

SiJM(7(λ)-y(λ')) tT(λ)®T(λ')\(tmn = [τμ ')ΘTU)] Λ Λ ^, m π (y(A)-y(A')) . (73)

Here the tensor product is over the O(N) indices, and in Fock space the operator
product is understood. In this derivation, the phase φ has been assumed to vanish.
A non-zero φ(λ, θ) produces on both sides of Eq. (73) the same factor

e x P I * Σ Φ(h θn) I, thus leaving the commutation relation (73) unchanged. Finally,

insertion of Eqs. (46) and (47) into Eq. (73) leads to the result

ITJλ), TJλ'K = - ^ —L^-iTjλ)TJλ')-Tbc(λ') TJλ))

i n i W ) ^ " ^ ^ T ^ ' ( 7 4 )

The Yang-Baxter equation (72) guarantees that the algebra defined by Eq. (74)
satisfies the Jacobi identity - in contrast to the classical case. It must be pointed
out that the commutator of two monodromy operators Ta b(λ) is not a linear but a
quadratic expression on the T's [Eq. (74)]. Thus the coefficients T^\ n=l...oo
[see Eq. (48)] do not form a basis of the Lie algebra. One must also include
products of the T$ with any number of factors in order to close the algebra. One
may ask whether a suitable function of the non-local charges satisfies some simpler
algebra without quadratic terms on the right-hand side. A natural choice would be
Q(λ) = logT(λ) [Eq. (19)]. To the leading orders in λ we get

QW = Ti2)-±(Tiί))\ etc..

It follows from Eq. (74) for the first non-local charge

(3)--L-nil)3~\-δ Γ O ( 3 ) - J - O ( 1 )

όad ll^ad J °adlMbc ll^bc

ba 12 ^ba J υbcλMcd 12 V-cd

ΓQ(2) 0(2)π =

 2 π ί f _ i n ( i ) n d ) 2 i 1
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Hence, by this transformation one does not get rid of the non-linear terms on the
right hand side.

An abelian subalgebra follows as usual by taking the trace in group space,
Tα β(λ):FromEq.(73)

Expanding Eq. (74) around y~1 = 0 to order γ~1 and using Eqs. (70), (48) we find

Since 7^c

υ are the isospin operators, it follows that the antisymmetric part of Tbd(λ)
transforms under the adjoint representation of O(iV).
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