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Abstract. We consider analogs of the Lipschitz-Killing curvatures of smooth
Riemannian manifolds for piecewise flat spaces. In the special case of scalar
curvature, the definition is due to T. Regge considerations in this spirit date
back to J. Steiner. We show that if a piecewise flat space approximates a
smooth space in a suitable sense, then the corresponding curvatures are close
in the sense of measures.

0. Introduction

Let Xn be a complete metric space and Σ CXn a closed, subset of dimension less
than or equal to (n— 1). Assume that Xn\Σ is isometric to a smooth (incomplete)
^-dimensional Riemannian manifold. How should one define the curvature of Xn

at points xeΣ, near which the metric need not be smooth and X need not be
locally homeomorphic to UCRnΊ In [C, Wi], this question is answered (in
seemingly different, but in fact, equivalent ways) for the Lipschitz-Killing curva-
tures, and their associated boundary curvatures under the assumption that the
metric on Xn is piecewise flat. The precise definitions (which are given in Sect. 2),
are formulated in terms of certain "angle defects." For the mean curvature and the
scalar curvature they are originally due to Steiner [S] and Regge [R], respectively.

It is worth noting at the outset that the discussion of curvature at nonsmooth
points depends in a crucial way on the precise notion of curvature under
consideration. If, for example, one wishes to generalize the Pontrjagin forms, the
notion of "angle defect" will no longer suffice. It can be replaced by the much less
elementary "//-invariant" (see [C]).

Recall that in the smooth case, the / h Lipschitz-Killing curvature RJ is the
measure on Mn, which is zero for j odd and which for j even is given by integrating

* Supported in part by NSF MCS-810-2758-A-02
** Supported in part by Deutsche Forschungsgemeinschaft and NSF PHY-81-09110-A-01

*** On leave of absence from Freie Universitat Berlin



406 J. Cheeger, W. Mϋller, and R. Schrader

the form

Rj = {(n-j)\23π»2(j/2)\)~ "{-if2,

Σ ( - l)'π|β«(l)«(2) Λ Λ Ωπ(j- D-ϋ) Λ ω*U+ 1) Λ Λ ω«") •
π

Here the summation is over all permutations of n elements. The Ωkι are the
curvature 2-forms, indexed with respect to a locally defined orthonormal frame
ek for the tangent bundle TMn of Mn. The 1-forms ωk are the dual basis to ek. Thus
if ωkl denote the connection 1-forms, the structure equations take the form

^ (0.2)
i

dωuι =~ΣωkiAωu + Ωki (° 3 )
i

Similarly, the j t h mean curvature Hj is the measure on dM", given as follows.
Assume that {ek} has been chosen so that along δMn en coincides with (say) the
inward normal. For any 2k + 1 t^=j ̂  n set

8 Λ f c = c Λ J k Σ ( - l ) | π | O π ( 1 ) π ( 2 ) Λ . . . Λ θ π ( 2 k _ 1 ) π ( 2 J k )

π

Λ ω π ( 2 k + ! ) , „ Λ ••• Λ ω π ( j - l ) , n Λ ω

π ( j ) A " ' A « w ( l l _ 1 } , (0.4)

where now π runs through all permutations of n — 1 elements, and where

7 - 1

/c !(w-;)! , 7 odd

{(-l)k(πj/2kl2k+ 2(j-2k-l)!(n-j)l), j even.

We then put

HJ=ΣQj,k- (0-6)

The normalization is chosen such that

J Rj+ J HJ = χ(MJ)Yol(Γ~J) (0.7)
Tn~JxMJ T"-J*dMJ

for any flat Tn~j.
In particular K° is the volume, R2 is the scalar curvature and JR" the Chern-

Gauss-Bonnet form if n is even. Similarly, H1 is the area of the boundary, H2 the
mean curvature for the inward normal, etc. Note that the integrated Rj, Hj do not
depend on a choice of orientation.

Let Rc denote a piecewise flat analog of some particular curvature jR, in the
smooth case. Among the properties which Rc should enjoy are

1) It should be an invariantly defined local measurement of the intrinsic
geometry of X which vanishes if X" is flat.

2) The significance of Rc should be analogous to that of JR. More precisely,
consider some formula (e.g. Chern-Gauss-Bonnet) which expresses a certain
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analytic, geometric, or topological measurement of X in terms of JR. If this
measurement still makes sense in the singular case (e.g. the Euler characteristic)
then the formula should continue to hold with R replaced by Rc. Note that
condition 2) necessitates further similarities between R and Rc, for example the
same scaling properties and behavior under metric products. Moreover for the
Lipschitz-Killing curvatures in general there are at least three formulas to which
condition 2) applies: Chern's kinematic formula [Ch], WeyΓs tube formula [We],
and the expression for the Lipschitz-Killing curvatures in terms of the asymptotics
of the heat kernel (see [C, CMS2, Sa, SW] for details)1.

We can now state in rough terms the main result of the present work. Let Mn

be a smooth Riemannian space and let Mn

n be a sequence of piecewise flat spaces
which converge to Mn in a suitable sense (which entails a certain uniform
nondegeneracy on the simplices, see Sect. 1 for precise definitions). Let Rη and R
denote a Lipschitz-Killing curvature of Mn

η and Mn, respectively, or an associated
boundary term. Then we assert that Rη^R, where the (local) convergence is in
the sense of measures2.

To take the most elementary illustration, let M 2 be a compact region in the
plane with smooth boundary. Choose points { p J e δ M 2 and form a polygonal
approximation M2, to M2 by connecting p._ 1 to p. by a segment σf. Assume that
for all i, σ. has length η. Then the geodesic curvature of dM2 is concentrated
at {p.}. By definition, the weight (angle defect) attached to p. is

π - α t , (0.8)

where αf is the interior angle between σ , σi+v

We can assume that near p , dM2 is given by 3; =/(x), with p. located at (0,0)
and /'(0) = 0. Then as is well known, the geodesic curvature of dM2 at p is equal to
/"(0). Thus, the total curvature of a segment of length η centered at p. is

~/"(0) >7 (0-9)

Let Θj denote the angle between σ} and the x axis, j = i, i + ί. Then

ΘΓtmΘΓ^f"{0)η2lη, (0.10)

from which it follows that

The above example suggests that settling the convergence problem in general,
might just amount to calculating the poίntwίse limit of an appropriate angle defect.
But this turns out to be somewhat misleading. In the general case, the pointwise

calculation of lim RJ

η results in an expression which merely resembles, but does not

1 Indeed it was by comparing the formulas for the first variation of the surface area for smooth and
polyhedral surfaces that Steiner [S] arrived at the definition for the mean curvature in the polyhedral
case
2 In the case of mean curvatures of convex hypersurfaces of euclidean space this is contained
implicity in the work of Minkowski [Mi]. The assumption of convexity simplifies the situation
considerably in this context
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coincide with Rj. In particular the limit is not independent of the choice of
approximating sequence Mn

n (see Appendix 1).
Recall, however, our actual assertion that Rη^R in the sense of measures. This

means the following. We fix an open set U C M", and then count all contributions
corresponding to points lying in U. Thus, when the approximation becomes fine,
we are counting a large number of small contributions. So the possibility exists
that these might give the correct answer on the average, even though they fail to do
so individually. Remarkably, this averaging effect does indeed take place, and in
this sense, the convergence, Rη-+R, is not a purely local phenomenon.

We now explain the general strategy behind our proof of convergence, the
details of which will be presented in Sects. 5-8. Consider the interior term Rj. We
begin with the observation that it suffices to restrict attention to U = Br(p\ a metric
ball of radius r centered at p, and to let r ̂ 0 in such a way that η = o(r). Our main
local calculation shows that the contribution to RJ

η coming from Br(p) is

~PJr,Tη)Vol(Br(p)). (0.12)

Here P is a certain polynomial in the curvature at p of degree j/2 which depends
on r and the triangulation Tη. The coefficients of this polynomial, however, are
uniformly bounded, independent of the particular choice of triangulation (see
Sects. 4 and 5).

By duality, RJ also defines a polynomial * Rj in curvature of degree j/2:

RJ = (*RJ)ω9 (0.13)

(where ω is the canonical volume form). According to Gilkey [ G l ] (see also [D]),
among all polynomials of degree j/2 in curvature, * Rj is characterized by the
following properties (Ek denotes flat euclidean space).

1) It is invariant.
2) It vanishes if the space splits as a metric product Mj~x x En~j+1.
3) It agrees with *Rj for any curvature tensor at which Rjή=0, e.g. that of

S2 x S2 x ... x S2 x En~j (j/2 factors of S2).

There is also a similar characterization of the boundary term Hj, see [G2].
It is not at all obvious that Pj(r, Tη) has any of the above properties, nor in

particular that it is independent of the choice of triangulation Tη. But conversely, if
this independence can be established, the invariance property follows almost,
immediately. The vanishing property and normalization can then be verified by
considering special approximating triangulations and metrics, which possess
product decompositions as in 2) and 3) above.

To establish that Pj(r, Tη) is independent of Tη, we proceed in two steps.

Step 1. Consider two triangulations Tηi and Tη2 of Br(p). We will find two other
triangulations Tη3 and Tη4 of an open subset U of Br(p), such that

1) Tηs and Tη4 coincide near the boundary of U,
2) Tη3 and Tη4 agree with Tηi and Tη2, respectively, in the interior up to distances

O(ηx +η2) to the boundary.
Thus for the boundary contributions Hj to the Lipschitz-Killing curvatures

HJ

η3 = H i , (0.14)
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while by (0.12) the interior terms satisfy

(0.15)

Step 2. Using a generalization of a variational calculation of Regge (see [R] and
Sects. 2 and 3) we show that for the total curvatures

Combining (0.14)-(0.16) gives

^ + η ^ + η ή , (0.17)

which suffices to complete the proof. A similar argument establishes the local
convergence, HJ

η-+Hj, for the boundary curvatures.
We remark that for j > 2, n > 2, it is not clear a priori, that the sequence of

measures RJ

η is even bounded. Thus, (0.12) is already quite strong.3

We close this introduction with a word about the physical motivation which
underlies our work (see also Appendix 3). This pertains primarily to the scalar
curvature R2 and mean curvature H2. As is well known, these curvatures enter
into the Hubert action principle from which the Einstein field equations are
derived. Thus, it was with a view towards applications in general relativity that
Regge, [R], introduced the scalar curvature of piecewise flat approximations to a
Riemannian manifold. In this fundamental work, Regge dealt with the con-
vergence R2-+R2 at the heuristic level but did not attempt a rigorous proof.
Nonetheless, convergence seems to have been taken for granted by those physicists
who subsequently discussed "Regge calculus."

Although Regge worked in a context which was purely classical, later Wheeler
[Wh] speculated on the possibility of employing Regge calculus as a tool for
constructing a quantum theory of gravity (see also [CMS1, Fro, H, HP, HS, L2,
MTW, PR, RW1, RW2, Wei, Wa]). This approach is in some respects similar to
the use of lattice approximations in gauge theories, and thus might also be useful
for numerical calculations (for further discussions of Regge calculus in the classical
context, see [CW1, CW3, LI, WE, Wo]).

It is amusing to notice that our results immediately imply a new proof of the
Chern-Gauss-Bonnet theorem for smooth Riemannian manifolds (related to
Gilkey's characterization of the Chern-Gauss-Bonnet form in a manner analogous
to the heat equation proof). We point out that Wheeler (perhaps unaware of the
work of Allendoerfer and Weil [AW]) also asked for an analog in Regge calculus
of the Chern-Gauss-Bonnet form.

3 Relation (0.12) is one of the places where the above mentioned uniform nondegeneracy is used.
(Compare also the well known example of H. A. Schwarz see [Ra, pp. 6-7])
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The results of this paper pertain to Riemannian manifolds. However, a similar
discussion seems possible for pseudo-Riemannian manifolds, by suitably avoiding
the light cone directions.

The remainder of the paper is organized into eight sections as follows.
1. Basic Properties of Piecewise Flat Spaces
2. Linear Algebra
3. Lipschitz-Killing Curvatures for Piecewise Flat Spaces
4. Limiting Values of Face Angles
5. Statement of Main Theorem and Strategy of Proof
6. Proof Modulo Lemma on Triangulations
7. Lemma on Triangulations
8. Convergence of Boundary Curvatures
Appendix 1. Local Calculations
Appendix 2. Variable Curvature and Dihedral angles
Appendix 3. Riemannian Metric on the Space of Piecewise Flat Structures

Throughout the paper we make the following convention. We indicate the
dependence on parameters of constants appearing in an estimate by writing e.g.
c(n) for any constant depending only on n. Conversely, if any parameter within the
context considered does not appear, it means the constant can be estimated
independently of this parameter.

1. Preliminaries

For the convenience of some readers and to establish notation, we review the
elementary properties of piecewise flat (piecewise linear) spaces.

A finite sίmplicial complex K consists of a finite set of elements called vertices
and a set of finite nonempty subsets of vertices called simplices such that

(1) Any set containing only one vertex is a simplex.
(2) Any nonempty subset of a simplex is also a simplex.
A j-simplex will generally be noted by σj. The dimension j is the number of its

vertices minus 1. The 1-simplices are called edges. If σ'Cσ, σ' + σ, σ' is called a face
of σ. We set άimK= sup dim σ and generally write Kn. A complex L is called a

σeK

subcomplex of K if the simplices of L are also simplices of K. We write LCK. The
k-skeleton, Σ\Kn) of Kn (0 ̂  k S n) is the subcomplex formed by the j-simplices

Let p = {pj}, 1 ̂ j^q + 1 be points in En, n>q, which lie in no (q — 1)-
dimensional affine subspace. The convex hull, σ(p) and its interior σ(p) are called
closed and open linear simplices, respectively. By regarding p. = v as vectors, we
have

Λ (1.1)
j

where {xj} consists of g+1-tuples with Xj>0 and
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The barycenterίc coordinates {xj} of qeσ(p) are independent of choice of origin
in En. A map from σq(p) to σq(pr) which preserves barycentric coordinates is called
linear.

If ev ...,£„ are the standard basis vectors in En, their convex hull is called the
standard (closed) simplex σ(n). To any finite simplicial complex with n (ordered)
vertices, we associate a closed subset SK of σ(n) called the geometric realization
of K. Namely, to each simplex σ*eK with vertices σ?l5 ...,σ? + l, we associate the
open linear simplex determined by ejί9 ...,eji + ι. The union of these linear simplices
is SK. There is a natural metric space structure, the standard metric on SK, where the
distance between two points p, q is defined as the infimum of the length of all piece-
wise smooth paths between p and q. More generally, we consider metrics ρ on SK
such that any simplex σι C SK with its induced metric is linearly isometric to some
linear simplex. The space SK, equipped with a metric of the above type is called a
triangulated pίecewise flat space (or p.l. space). Clearly, any such space is
determined up to isometry by its edge lengths, the distances between the vertices of
1-simplices. Thus, we might write (X, /) if we wish to emphasize the dependence on
the collection of edge lengths I

A simplicial cone CkCEkCEn is the intersection of k open half spaces Hj
through the origin, which lie in general position. Alternatively it is the set on which
the corresponding linear functionals are all positive. The intersection, Lk~ \ of Ck

with the unit sphere, is by definition a spherical simplex. We write Ck = C(Lk~1\
where C(L f e - 1) is flat and J}~γ carries a metric of constant curvature = 1.

Given linear simplices σιCσk, at any point qeσ1, we have the normal cone
Cλ(σ\ σk) consisting of all rays through q which are orthogonal to σι and point
into σk. CL(σ\ σk) is well defined up to isometry and independent of q. The
associated spherical simplex, L(σ\ σk) is called the link of σι in σk.

Fig. 1.1

Alternatively, for sufficiently small ε, L{σ\ σk) can be identified with the set of
points xeσk such that for sufficiently small β,

dist(x,σz) = dist(x,^) = ε, (1.3)

but with metric on this set rescaled by a factor 1/ε. The latter definition makes
sense if σk D σι is replaced by K D σι. Then L(σ\ K) = L(σι) becomes the constant
curvature analog of a p.l. space - a triangulated space of piecewίse constant
curvature = 1 . The decomposition into spherical simplices corresponds to

L(σ\K)= U L{σ\σk). (1.4)
σιCσkCK
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Let st(σι) be the set of all closed simplices containing σι as a face. Then L(σι) is
homeomorphic to the combinatorial link [the subcomplex of d(st(σ1)) spanned
by those vertices not belonging to σι~\ via radial projection.

If we glue together the cones C^σ1, σk) in the obvious fashion corresponding to
(1.4), we get the piecewise flat normal cone = C1(σι). Thus, Cλ(σι) = C(L(σ1)).

The normalized volume of L(σ\ σk\ is denoted by (σ\ σk) or simply (/, fe) and
called the (interior) dihedral angle of σιCσk (the normalization is such that the unit
sphere in all dimensions has volume 1).

If we fix an identification of L(σι, σk) with a subset of the unit /c-sphere in Ek+1,
we have the dual simplex L(σ\ σk)* given by all unit vectors making an angle > π/2
with every vector of L(σι, σk). The normalized volume (/, k)* of L{σ\ σk)* is called
the exterior dihedral angle of σιCσk.

Let CQ ε(σι) denote those points in the normal cone atqeσ1 having distance <ε
from the vertex. It is easily seen that for ε small, there are neighborhoods of q in K
of the form

E/'xCέ>') , (1.5)

where UιCσι is flat and the metric is the product metric. This local product
structure is the characteristic feature of the geometry of p.l. spaces. After splitting
off a maximal flat factor from C1, we arrive at the local normal structure

ί/'xfxC^, (1.6)

which is constant along the flat factor Uι x Fr. It follows easily that K has an
intrinsic decomposition into flat open submanifolds Σs

int of dimension s, along
which the normal cone is irreducible and locally constant. This is called the
intrinsic stratification of K and the Σs

int are called strata, compare [McC].
Recall that in general a metric cone C is a complete metric space on which R +

operates by homotheties T* (Tr multiplies distances by r). The unique common
fixed point of the action is called the vertex p. The cross-section L (the link of p) is
the set of points at distance 1 from p. We write C = C(L).

The properties of products of p.l. spaces are conveniently stated in terms of
products of general cones. Here the essential point is the existence of a space
Lλ * L2, the metric join of L1 and L2 such that the metric identity

CiL^L^CiLJxCiLJ (1.7)

holds. The action R+ on the right hand side is the diagonal action. In terms of
polar coordinates (r,x) where reR + , xeL clearly

(rvr2,xvx2)eC{Lι)xC{L2), (1.8)

where
r\ + r\ = l. (1.9)

Since (0,xj) = pj for all xp j = l , 2 , it follows that Lί*L2 is homeomorphic to
[0,1] x L1 x L2, modulo the identifications

for all x,x,
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If C(τ\ι\ C(τk

2

2) denote simplicial cones, C(τ^) x C(τk

2

2) is again simplicial. If
/{.../fcl9 l\- .ll2 denote the corresponding linear functionals, then the natural
extensions of all of these to Eki@Ekl determines C{τ\γ *τk

2

2). It follows that the join
τι{*τι

2

2 of spherical simplices τ^1, τ2

2 is again a spherical simplex of dimension
(/1+Z2 + 1). Similarly the product of piecewise flat cones CiLj, C(L2) is again
piecewise flat. In this case L1 *L2 is naturally a complex with spherical simplices
of the 3 types of simplices: τv τ 2, and τι * τ 2 .

It follows that the corresponding Euler characteristics satisfy

ί-χiL, *L 2 ) = ( l - χ ( L 1 ) ) ( l - χ ( L 2 ) ) , (1.11)

where as usual

Σ ' ' (1.12)

Finally, we claim the (normalized) measure \τt * τ 2 | of τ1 * τ 2 is the product of
the normalized measures of τ1 and τ2:

| τ 1 * τ 2 | = |τ 1 | | τ 2 | . (1.13)

Indeed, calculating the unnormalized volumes we have (j^άiτaτ^ k = j x + j 2 + l)

\rh{\-rψl2dr

•ViτJViτJ. (1.14)

We now introduce some further notions concerning p.l. spaces. We denote by
\σk\ the euclidean fc-volume of the euclidean ^-simplex to which sσk is linearly
isometric by assumption. By convention, the volume of a vertex is 1. The meshη(σ)
of a simplex is the supremum of its edge lengths. Its fatness Θ(σ) is the infimum of
\σι\η~ι, where σι is σ or any of its faces. A simple exercise in linear algebra shows
there are universal constants c(k) such that for all dihedral angles and all face
volumes of σ (7c = dimσ)

c~ \k)Θ{σ) S min (σ\ σ) ̂  c(k)Θ(σ),

(1.15)

i.e. the fatness of a simplex only becomes small, if at least one of its dihedral angles
or a rescaled volume of one of its faces becomes small and vice versa. The mesh η of
a p.l. space is defined to be the supremum of all its edge lengths, and its fatness Θ is
the infinum of \σk\η~k, where σk now runs through all simplices of the p.l. space.

A subdivision of a p.l. space K is a p.l. space K' and a homeomorphism

s.K'^K, (1.16)
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such that for every simplex σ in K\ its image s(σ) is contained in some simplex σ
of K, and s \ σ is linear. If we pull back the metric on K to K\ we obtain a
triangulated piecewise flat space (K\ ΐ) which is isometric to K. Alternatively, we
sometimes identify K with s(Kf).

We now observe that any p.l. space (K, I) has subdivisions (K'φ lη) of mesh η^O,
whose fatness Θ(η) is bounded away from zero, Θ(η)^Θo>0 (see [F, Whi] for
more complicated constructions).

It suffices to consider a standard n-simplex σ". For each vertex Vj,j=l,...,n+1,
we have a rectangular solid C. homeomorphic to a hypercube defined by

Cj{(xv...,xn)\xj^xi for al i i} . (1.17)

For ί ή=j, the opposing faces of Cj are given by the pairs of planes containing the
sets

Hij° = {(x1,...9xJ\xi = 0}9 (1.18)

Hij1 = {(xv...,xn)\xί = xj}. (1.19)

Choose a suitable smooth interpolation H^ between //V0, IΓj1 which sweeps
out Cp and is invariant under the permutations of iή=j (see Fig. 1.2).

Fig. 1.2

The collection of all hyperplanes H)tk/N, 0^/c^iV, N large, divides C} into Nn regions,
each of which is approximately a parallelopiped P. Now form the first barycentric
subdivision P' of P. This is the simplicial complex whose vertices are the
barycenters of the faces of P and whose simplices correspond to increasing
sequences of faces under inclusion. The resulting sequence of complex has the
properties claimed.

We turn to the concept of triangulations. A smooth triangulation of a smooth
manifold U is a pair {K,f} where K is a simplicial complex and / is a
homeomorphism f:sK-^U such that f\σ is smooth for every closed simplex σ
in K. A well known theorem says that any compact smooth manifold U has a
smooth triangulation with finite K (see e.g. [Mu]).

Let p be a point in a Riemannian manifold Mn. Assume exp^B^CM^ is a
diffeomorphism and that ||,R|| ^ 1 on B^p). Then it is easy to see that for all Θo > 0
there exists η(Θo)>0 with the following property. Suppose 0,qv...,qn are the
vertices of a linear simplex in Mp with edge lengths ϊijm If the fatness of this simplex
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is ^Θo and its mesh is ^η(Θ0) then the simplex with edge lengths

ltj = dist(expp 4., expp^.) (1.20)

satisfies

(1.21)

Moreover, the ltj are the edge lengths of a simplex of fatness ^ <90/2 (compare
the discussion below).

If K —• Mn is a smooth triangulation of M" as above and K' —• K is any

sufficiently fine fat subdivision, for example the one constructed above, then it is
easy to see that the conditions of the preceding paragraph will be satisfied for all
simplices with

σ?),/os(σ°)), (1.22)

where σ?, σ° span a 1-simplex of K'. For any such triangulation one can construct
an associated p.l. space

Mη = (K'9{ltJ}). (1.23)

The spaces Mη are the piecewise flat approximations to smooth Riemannian
spaces which are the central objects of study in this paper.

If M is a manifold with boundary we modify our construction and use lengths
of boundary geodesies whenever the vertices of a 1-simplex are points of the
boundary. However, one can show that the results in Sect. 8 on boundary
Lipschitz-Killing curvatures remain valid, if the approximating p.l. spaces are
constructed by using lengths of geodesies in the manifold itself only. More
generally, if Mn is isometrically embedded in a manifold Mm(n^m), then the
lengths of ambient geodesies in Mm may be used. For the particular case where Mm

is a euclidean space Em, the resulting p.l. space is called a secant approximation
to M".

The proof of our main results remains essentially unchanged with these
alternative choices of lengths.

2. Linear Algebra

Here we derive some basic formulas which are important for later sections. The
main results are (2.20) and (2.28).

Let Y1 be a vector space and let Λι(V") denote the ith exterior power of V". Let
0φωe/Γ(F") be a volume element. Then there is an isomorphism (Lefschetz
duality)

(2.1)

defined by

βω(Φi)(Φn-i)ω = ΦίΛφn-ί (2.2)

Clearly, for /cφO,

βkω=^βω. (2.3)
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There is also a natural isomorphism

y\(Λn~ \ F1))* -+Λ"- % F"*). (2.4)

Since

y. j/"*_^i(j/«*)? (2.5)

then

^ rW-1^) (2.6)

and

(β~ι)n~i\Λn~i(Vn*)^Λn-\Λn-\Vn)). (2.7)

Thus, setting

α^GCr'yft,, (2-8)
we have the isomorphism

aω\Ai(yn)^An-\An-\Vn)) (2.9)

and

αk ω = fc""i-1αω- (2.10)

If x1 5..., xm is a basis for Xm, let x*,..., x* be the dual basis. Let vv ...,vn be an
ordered basis for V" and let ω = v1 A ... Λ vn. Then

yjSJt;^ Λ ... Λvj) = (-l)τijXv*ί Λ ... Λί* Λ ... ΛI5* Λ ... Λ I £ ) , (2.11)

where 0') = 0Ί? •• ?Λ ) and

(—l)τϋ)Vjl A ... Λϋ 2 Λ ^ Λ ... AVjl A ... AΌjχ A ... Λϋn = ω . (2.12)

Set

wz = (— l)/f1 Λ ... Λΰ t A ... Λ vn. (2.13)

Then

^ 1 ( ϋ z * ) = (-l) I I w z (2.14)

and

(β-'ΓXv* A ... AV^A ... AV*A ... Avf)

= ( - l ) Φ " i ) W 1 Λ . . . Λ W J . Λ . . . Λ W . Λ . . . Λ W n . (2.15)

Thus

aω(Vjl A ...AVj^i-l^-^W, A ... A Wh A ... A W,, Λ ... Λ W | | . (2.16)

Now choose an inner product <(,) on F" and let Ω be the associated volume
element. Clearly

li 1 ήω = Ω > ( 2 1 7 )
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so that by (2.10),

| | t ; 1 Λ . . . Λ t ; j r i - 1 α o = α ω . (2.18)

Moreover, aΩ is an isometry with respect to the standard inner products. Recall
that the inner product on ΛXV") is defined by

( I ; 1 Λ . . . Λ I ; / , U 1 Λ . . . Λ M I > = d e φ , Uj). (2.19)

In particular, taking i = n — 2 in (2.9),

\\vίA...AVn\\ \\v1A...AVίA...AVjA... Λ ϋ J

= ||w f Λ Wj\\

= \\wi\\ \\w}\\sinθiJ, (2.20)

where Θtp the angle between the hyperplanes determined by wί5 w; , is defined by

(2.21

Now consider the ^-simplex σn which is determined by the {vt}. By definition
the vertices of σn are the 0-vector (origin), together with v19 ...,υn. If we set v0 =0,
the i-faces σ|Λ of σn are the sets of convex combinations

Σ Λ» A , (2-22)

where 0^j1<j2<...<j.^n, U) = (Jv~Jil yk

>0> Σ ^ = 1 Denote the
i-dimensional volume of σ1 by |σΓ|. Let the (n— l)-faces of σ" be oriented by the
inward normal. Those that contain the origin correspond to (j) = (O=jv ...J...).

Denote them by σ"~ \ / = 1,..., n. They determine elements —-w ιeΛn~ 1(Vn) in

the following sense. The subspace determined by vv...,vι,...,vn is the (n—ί)
dimensional subspace containing σ""1, the orientations are compatible, and

— || wj| = \σn~ 1 |. In the same sense, the remaining face σn

0~
x corresponds to w0,

which for any /= 1, ...,n, can be written as

wo = (-l)l+1(vi-vl)A...A(vl_l-vl)A(vl+i-vl)A...A(vn~vl). (2.23)

It follows from (2.13), (2.23) that

Similarly, σn itself corresponds to — υ ί A ... Λ υn and

|σ"|= — I I ^ A . - . A ^ I I . (2.25)
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We now explain a remarkable variational formula of Regge, [R], (the
generalization of) which will play a crucial role in the proof of our main result. Let
Θtj be as in (2.21), (0^i<jSn) and consider the quantity

Σ 0yKΓ 2U (2.26)

where σ"~j

2 = σ"~ίnσ"~1. Let the {vt} depend on a parameter t. By Leibnitz' rule,

(Σ W " 2 D ' = Σ%K2\ + ΣβyKΓ2!'- (2-27)

However, according to Regge, the first term in (2.27) vanishes identically for all
variations. So in fact

K2\'. (2-28)

— W
To see (2.28), take the inner product of (2.24) with J- to obtain

II W H

° = π Σ <*W = Σ llwjlcosβy. (2.29)

Differentiate (2.29) with respect to t, multiply by \\wj\\ and sum over; to get

0= Σ Σ K IKKIΓcosβ y - | |W i | | s inθyβy. (2.30)
j i

If we reverse the order of summation in (2.30) and use (2.29) with i and j
interchanged, we see that the first term of (2.30) vanishes. Then using (2.20) and the
relation

K / 2 | = / _ 1 ) } \\v1Λ...ΛViΛ...ΛVjΛ...ΛVn\\, (2.31)

the second term of (2.30) is seen to equal — \\v1 A ... Λ V \\ times the first term
( n - 2 ) !

of (2.27). This gives (2.28).

3. Lipschitz-Killing Curvatures for Piecewise Flat Spaces

In Sect. 0 it was pointed out that the analogs of Lipschitz-Killing curvatures for
piecewise flat spaces must exhibit the same scaling properties and behavior under
metric products as in the smooth case. In particular, the piecewise flat analog of Rj

must scale like cn~\ when distances are multiplied by c. Now as in Sect. 1, if peσ1

is a point in a piecewise flat space X", then peUιx Cf(σ% where tfcσ1 is flat,
Cj-(σ') is the normal cone, and the metric is a product. Thus, it follows that any
locally computable invariant which scales like c\ is of the form

)) k i , (3.1)
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where ψ(Cλ{σ1)) is some invariant of C1(σί). Suppose that we normalize Rj in the
smooth case by setting

RJ(M*) = PX(M*)9 (3.2)

R\Mj x En~j) = Pχ(Mj) x ωEn-3. (3.3)

Here Pχ is the Chern-Gauss-Bonnet form, and ωEn-j is the volume form of En~K
Then it follows that for RJ, we have ί = n—j. Moreover, ψ must be the analog
Pχ(C\σn~j)) of P for piecewise flat spaces of dimj, evaluated at the vertex of the
j-dimensional piecewise flat cone Cλ(σn~j).

In seeking the analog of Pχ, we begin with the case of dimension 2. Then
L(σ°) = Sβ/2π, a circle of radius β/2π. If y is a smooth riemannian 2-disc a
neighborhood of whose boundary is isometric to a neighborhood of the boundary
of Cotε{Sβl2π), by the Gauss-Bonnet formula,

$K + β/2π. (3.4)
In ψ

Thus, in the piecewise flat case we should have

PJt(C1(σ°)) = l - ^ . (3.5)

There is another way of arriving at this conclusion which generalizes immediately
to higher dimensions. It is easy to see that for any i-simplex we have

Σ(0,/)* = l , (3.6)

where the sum is over all /-dimensional exterior angles, (0, i)*, of σ\ Then for any
piecewise flat space, we have the obvious formula

χ(M«)=Σ(-l) i Σ (0,0* = Σ Σ (-l)mθ*, (3.7)
σι σ°Cσί σ° σ°Cσi

where (0, i)* is the exterior angle of σι at σ° C σ\ So we will set

Pχ(C1(σ°))= Σ (-l)'(0,i)*, (3.8)
σ°Cσι

and more generally

Pχ(CV"J))= Σ (-iy-{n-j)(n-jjr. (3.9)

This formula was emphasized by Brin [Br] and Banchoff [B]. 4 Moreover, the
analog of Rj to which it leads via (3.1)—(3.3), was shown by Wintgen [Wi] to arise
in the generalization of Chern's kinematic formula to piecewise flat spaces (see
[CMS2]).

It is not immediately obvious that the linear expression (3.8) is intrinsic, nor in
particular that it vanishes for cones isometric to En. More generally, the precise
behavior of the expression for piecewise flat cones which are close to En is difficult
to discern. For this reason, it is desirable to express (3.8) in terms of interior

4 It appears to go back much further
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dihedral angles (compare [Me]). Such an expression can be obtained from the
formula giving the relation between the values of a solid angle and its dual.

Let the convex combinations of vv ..., vt span a cone C in E\ Let v* denote the
outward normal to the hyperplane Hj spanned by vv ...,vp ...,vi9 which points to
the side of H opposite to that of vj. The intersection of C with the unit sphere
S[~ * C Eι determines a solid angle with value (0, ΐ). The dual cone spanned by the
{v*} determines the dual angle

(0,0*. (3.10)

Moreover, Eι is divided in T closed cones C which intersect only along their
boundaries. These are spanned by all subsets

Vjl9...9Vjl9 v l , . . . 9 v * _ l 9 (3.11)

where

{*!,...Λ-J = ί/Ί, •••,.//}*. (3-12)

is the set of indices complimentary to {j\,--,Ji}. Then apart from the cases
corresponding to (3.9), (3.10), each such C is the metric product of the cones
determined by vjl,...,vji and v*ί9 ...,^*t_z. If N,Nλ denote the cross-sections of
these cones, then the cross section of the product cone is N * JV1, the metric join of
JV, iV1, whose (normalized) volume, by (1.18), satisfies

| N * ΛΓ1! =(0,ί)(I,0*. (3.13)

Thus, by adding the volumes of all such regions we arrive at the well known
formula

(O,0 + (O, ί- l ) (/- l ,0* + (O,i-2)(ϊ-2,0* + ...+(O,0* = l (3.14)

(the sum is over all cones as above). In the same way, we have the more genral
relation

(3.15)

If we substitute (3.15) in (3.14) and iterate, we arrive at the relation

(0,ί)* = l-Σ(-l) I(0^\)(ίi^2)- (ίi-i»y. (3 1 6 )

where the sum is over all

ι ; 1 . . . ί ; f l C i ; 1 . . . t ; f l . . . ί ; ί 2 C . . . C t ; 1 . . . t ; i l . . . ι ; ί l 5 (3.17)

0 < i 1 < z 2 < . . . <iv Thus, the expression in (3.8) becomes

Pχ(C\σ°)) = φ(0) + Σ(-^l + ̂ h)(hJ2)''Sι-vh)Φ(h)^ (3.18)

where

φ(j) = l-χ(L(σJ)). (3.19)

We can also rewrite (3.18) as

Σ (3.20)
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Suppose in particular that σ° is an interior point of a manifold Mn which is flat
near σ°, then

Σ (h>n) = U (3.21)
σιiC σn

and

(-l)WO-H-ir 1 Σ Uι>n)

= 0. (3.22)

Similarly, (3.20) vanishes if σ° is a boundary point near which M" is isometric to a
half space.

In view of (3.18), the definition of RJ given in (3.1) can also be written as

Rj= £ {φ(n-j) + Σ(-l)l(n-j,n-j + ίi)...(n-j + ίι_vn-j + ίι)
σn~J

•Φin-j+i^σ"-^. (3.23)

We can use (3.23) to see that Rj has the same behavior under metric products as in
the smooth case. Let Xn\Xn2 be piecewise flat spaces. As explained in Sect. 2,
Xni x l " 2 has a piecewise flat stratification such that

Σ\Xnί xXn2)= IJ Σk(Xnί) x r~k{Xn2). (3.24)
k

If σ\eΣ\Xni\ σi~keΣi'k{Xtl2\ then

CL(σ\ x σ ι

2-
fc)^Cx(σ*) x C 1 ^ " ' ) , (3.25)

where the product is the metric product. As in (1.7),

L{a\ x σi

2-
k) = L(σk

ί)*L(σi

2-
k). (3.26)

Thus, L(σ^ x σ1^'') inherits a triangulation the simplices of which are joins τ^*^
of spherical simplices τ\\ τa

2

2 of L(σ\) and L(σι

2~
fc). By (1.13), the normalized volume

of τ"1 * τ2

2 is given by the product of the normalized volumes of τ\\ τ2

2. Moreover,
as in (1.12)

χ(A * B) = - χ(A)χ(B) + χ(A) + χ(B), (3.27)

from which it follows that

φ(σk

1xσ'-k) = φ(σk

ι)xφ(σi

2-
k). (3.28)

This is the first step in proving

Pχ(CHσ\ x σi-k)) = Pχ(C1(σ\))Pχ(C1(σi~k)). (3.29)

To proceed with the proof, we look at the contribution [see (3.18)] to the left hand
side of (3.29)

( - 1) V i x σj2~ k > σϊ1 x °i+ h ~kί)-

... (σ*1 ̂ x σ f ' - 1 " ^ 1 , σ\ x σ2

+ ίι" kι)φ(σ\ι x σ{+ iι"kι), (3.30)
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given by a sequence

σ\ x σ{~k C σ\' x σ{+ h " k ι C ... C σ\ι x σ{+ iι ~kι (3.31)

of length /, which is strictly increasing, i.e.

The projection of the sequence (3.31) onto each of its factors defines two strictly
increasing sequences

σ*Cσf C . C σ f ,
(3.32)

Now fix the sequences in (3.32) and consider the family of all sequences of the form
(3.31) which project onto these two fixed sequences. Apart from the factor (— 1)',
all of these give the same contribution as the term in (3.30), since by (3.26), and
(1.14)

(σj1 x σj

2

2, σ{[ x σj

2

2) = (σ{\ σj^){σJ2, σj

2

2). (3.33)

Now an easy argument by induction shows that £ ( — l ) z = ( — l) / l + /2, where the
summation is over the members of this family. Indeed, subdivide this family
according to the form of σ^"1 x σ^1 1"1"*1"1. There are three possibilities

(Λ \ Pi — l \s Qi — l

(2) σ^xσψ~\

(3) σ'^xσ"*.

By induction assumption, the contributions to ]ζ(— l)z = ̂ ](—1)(— l) z~ 1 from the
cases (1), (2), and (3) are ( - 1 ) ( - l)h +h~2, ( - 1 ) ( - l) / l + Z2~ * and (-1)(-1) ' 1 +h~\
respectively, adding up to (— l) / l + Z2. Therefore the sum of (3.30) over this family
corresponds to exactly one contribution to the right hand side of (3.29), proving
equality. Hence,

Rj(XnixX"2)= £ Rk(Xni)'Rj~k(Xn2), (3.34)

where the equality is in the sense of measures. This is the same relation as holds in
the smooth case.

Corollary 3.1. Let Xn=Xn~mx Em. Then Rk(Xn) = 0 for k>n-m.

We can also give an expression for (3.18), solely in terms of even dimensional
interior angles,

Pχ(C\σ0)) = χ\0) + £ ( -1)'(0,2i1)(2i1,2/2)... (2i,_ 1? 2 ^ ( 2 ^ ) , (3.35)

where



Curvature of Piecewise Flat Spaces 423

Let fc = [w/2]. If it<k, we set

z1(2g = χJ-(2i ί)- Σ {2il92k)χ1(2k). (3.37)
σ 2 i ! C σ 2 k

Then (3.35) can also be written as

Σ (-l)'(0,2i1)...(2i l_1,2i/)zl(2i i). (3.38)

The expressions (3.35), (3.38) were originally derived in [C] by heat equation
methods. We note that these methods formally imply (3.29) (see [C, p. 111]). Note
that (3.35) reduces to (3.5), for n = 2. In the same way, we have the alternative
formulas

Rj= Σ (-mn-j,n-j + 2i1)...(n-j + 2ίι_vn-j + 2iι)
0<l,2iι<j

|σ"- Ί , (3.39)

and

RJ= Σ |zV"-0+ Σ (-iy(n-;,n-7
{

i,_ vn-j + 2i;.)χ1(n - + 2i,)l \<f~J\, (3.40)

In particular, suppose the p.l. space is also a topological manifold with boundary.
Then for n — k odd, χ±(k) is zero if σk is not contained in the boundary and \
otherwise. Therefore, for j odd, the only nonzero contributions to Rj come from
simplexes σn~j contained in the boundary. These simplices contribute half the
corresponding (/—l)st Lipschitz-Killing curvature of the boundary. The corre-
sponding fact in the smooth case is well known.

In order to prove that (3.23) is equivalent to (3.39) we note first that it suffices
to consider the case of a cone whose cross section is a single spherical simplex,
τ " " 1 . To see this, consider two piece-wise flat cones A, B which intersect in a
piecewise flat cone of lower dimension. Then if ψ denotes either the expression in
(3.18), (3.35), the relation χ(XvY) = χ(X) + χ(Y)-χ(XnY) gives

ψ(AuB) = ψ(A) + ψ{B) - ψ(ΛnB). (3.41)

Then the equivalence for ^-dimensional cones follows from the equivalence for
(n— l)-dimensional cones, the equivalence for cones with cross section τn~1 CIS"" \
and induction.

To obtain the equivalence for cones with cross-section τ"~ \ we will show that
(3.18), (3.35) have the same derivative when the edge lengths of τn~ * are varied. The
derivative formulas are also important for later sections. It then suffices to observe
that both expressions vanish for the limiting case in which τ " " 1 is a hemisphere.

Let τ"~ ι be a 1-parameter family of spherical (n— l)-simplices, having normal-
ized volumes (0, n)t. Then according to a classical formula of Schlάflί, [Scl, Sc2, K],
the derivative, (0, «)', is given by

(0,n)'= Σ (0,n-2)(n-2,n)\ (3.42)
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Now differentiate a 1-parameter family of expressions as in (3.35) by employing
Leibnitz' rule. The result is a sum of terms, each of which involves a product of
angles, precisely one of the factors of which, say (2ίj_v2iJ) is primed. Divide the
collection of all such terms into two disjoint subsets, S1 and S2, according as to
whether i =f= i._x +1 or i. = i._x +1, respectively. Using (3.42), for each term in Sί

we can write
(2/,_ v 2ί,)' = (2ίj_ 19 2ίj-2)(2ij-2,2ij)', (3.43)

with the appropriate sum understood. It is then apparent that each term in Sx is
cancelled by a unique term of 52. Moreover, all terms of S2 except those starting
with (0,2)', are cancelled in this fashion. Thus, the derivative of the expression in
(3.35) is given by

Σ '0,2)'(2,2i2)... (2z _ 1, 2iι)Δ{2iι). (3.44)
ίι<k

Note that we can rewrite (3.44) as

PZ(C> 0))' = - Σ(0,2)fPχ(C1(σ2)). (3.45)

If we apply the same considerations to (3.18), we also find terms involving ij = ij+1,
for which we have

f -' '-^ i (3.46)
(i J - 1 ,/ i -,+l)- = 0.

Thus, the (ij_ί,ij_1 + 1)' play no role and an argument analogous to that above
gives

Σ ) . . . ( i J _ 1 > i / ) 0 ( i / ) . (3.47)

Again the unprimed part of the expression represents the negative of weight
assigned by (3.18) corresponding to Pχ for the normal cone to C^r1). By induction
we can assume that (3.18), (3.35) agree for cones of dimension (n — 2) and it follows
that the expressions in (3.18), (3.35) coincide.

Note that if the cone corresponding to ί = 0 is actually isometric to En, it
follows that all normal cones to the C(τx) are isometric to En~2. In this case, we
have for all it,

Pχ(Cλ{σiι)) = 0. (3.48)

Thus, the first derivative (3.47) of (3.35) vanishes at a flat configuration. More
generally, we have

Proposition 3.2. Let Cn

t be a 1-parameter family of piecewise flat cones, such that
CQ is isometric to En or to a half space. Then at t = 0, the first fe — 1 derivatives of the
expression in (3.35) vanish, (fc = [n/2]). Moreover, the kth derivative is given by

(-1)*£(0,2)'(2,4)'... (2k - 2,2k)'Pχ{C\σ2k)). (3.49)

Proof. An argument like that above shows that for j<k, the/ h derivative is the
sum of all terms of form

Σ( - 1Γ(0,2)αi(2,4)α2... (2m - 2,2mf™Pχ(C\σ2m)). (3.50)
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Here the α's represent derivatives and

α1 + . . . + α M = . / . (3.51)

As above, the contribution from all terms involving each fixed set of α's vanishes at
t = 0, as a consequence of the flatness of the normal cones. For j = k, the same holds
for all such groups with the exception of (3.49).

Proposition 3.2 is crucial for showing that in the context of the convergence
problem described in Sect. 0, as η-+0, the measures RJ

η stay uniformly bounded.
We now wish to calculate the variational derivative of the analogs of the

Lipschitz-Killing curvatures. Since our result follows from that of Regge, (2.28), it
is not entirely local. Rather it involves something analogous to Stokes' theorem.

Lemma 3.3 (Generalized Regge). LetXn

t be a 1-parameter family of piecewise flat
spaces. Then the variation of the total (interior plus boundary) Lipschitz-Killing
curvature is given by

(RJ)'= Σ ^ ( C V D K I ' . (3.52)
σn J

Proof In view of (3.45)

= - Σ I Σ (n-j,n-j + 2)'\σ"-J\)Pχ(C\σ"-J+2))
σn-j + 2 [σn-JCσn-j + 2 J

= 0, (3.53)

since the term inside the curly brackets vanishes by (2.27).

4. Limiting Values of Face Angles

We begin with the following model problem. Consider a geodesic triangle σ2 in a
2-dimensional space of constant curvature K, with side lengths ί/., tlp tlk9 where
max(l.,lj,lk) = i. Let αf(ί), cn.{t)9 αk(ί) denote the corresponding angles. We wish to

calculate lim α.(ί) up to terms of order t2, under the assumption that
t-*o

0 < α0 < α^O) < π - α 0 , (4.1)

for some α0. It will suffice to assume i£>0, since the case K<0 is analogous and

K = 0 is trivial. Set |/xZ ίί = sf. Then by the spherical law of cosines

COSS, — COSS COSSK

cosα,(ί)= r1

= — {(1 - sf/2 + sf/24) - (1 - sj/2 + 4/24) (1 - s2

k/2 + st/24)}
SjSk

•(l-sj/6)(ί-s2

k/6) + O(s3). (4.2)
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By the Euclidean law of cosines,

2 , 2 2

cosα.(0H ^ + k \ (4.3)
2sS

Using these relations, the right hand side of (4.2) simplifies to

cosα.(0) + (cos2α (0)— 1 ) ^ - +O(s3) = cosα.(0) — s in 2 α.(0)^- +O(s3). (4.5)
i ι 6 ι ι 6

Now if a + 1 , - 1 ,

cos ~ 1 x = cos ~1 a τ = ^ (x — a) + ca(x — a)2, (4.6)

where ca is a constant depending on a. Thus, by (4.1), if α = cosα.(0), and x is the
quantity in (4.6), we get

a.(t) = αt.(0) + ̂ sinαi(0)X/./fcί
2 + O(K3/2t3). (4.7)

Note that α.(0) is the angle opposite the side of length l.t, in the euclidean
triangle σ2

e with sides of length l.t, Ijt, lkt. The area of this triangle is Isinα^OJ/^ί2.
By the Gauss-Bonnet formula for geodesic triangles

- α .(0)) + (ak(t) - αfc(0))

i ^ l l ^ + OiK312^) (4.8)

Thus, the content of (4.7) is that the angle differences, α(ί) — α(0) are apportioned
equally among the three angles.

Now consider a geodesic triangle with sides γ., yp γk of length l.t, Ijt, lkt in an
arbitrary Riemannian manifold M". Let K be the sectional curvature at the vertex
Pί,t opposite γ. of the plane section σ, spanned by the tangent vectors to y., yk.
Assume for convenience that the exponential map, expp. t, is a diffeomorphism on
a metric ball B1(pi t) of radius 1, centered at put. Let R denote the full curvature
tensor of Mn and VR its covariant derivative. Assume that

l . (4.9)
Bi(Pi.t)

In the general case, these normalizations can be achieved by rescaling the metric.
In Appendix A2 we show that the estimate (4.7) continues to hold (with the
constant in the error term O(t3) controlled by the geometric bounds we have
assumed).
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5. Statement of Main Theorem and Strategy of Proof

We now come to the main theorem (concerning the interior term) to be proved in
this work.5 Let M" be a Riemannian manifold and let Mn

η be a p.l. space of mesh η
obtained from a smooth triangulation of Mn and the resulting geodesic distances
(see Sect. 1). For any open, bounded set U let

U^Rj(U) (5.1)

be the signed measure obtained by integrating the / h Lipschitz-Killing curvature
form of Mn over U. For given Mn

ψ we define another signed measure

υ^Riμj) (5.2)

as follows. By the equivalent formulas (3.23), (3.37), and (3.38) the combinatorial/11

Lipschitz-Killing curvature for M" is a sum of combinations Pχ(C1(σ"~ 7)) from
each n—j simplex σn~j. Define RJ

η(U) to be

ΣPχ(CHσn~j))Vo\(σn-inU). (5.3)

In the statement of Theorem 5.1, we will assume that a given U has a regular
boundary in the following sense: The volume \Tr(dU)\ of the set Tr(dU) of points of
distance less than r to dU tends to zero with r. With these conventions, we have

Theorem 5.1. There isc = c(\\R\\9 \\ VR\\, Θ) and η0 = ^ 0 ( | | J R | | , || VR\\9 <9)>0, such that

whenever η^η0 and MJJ has fatness ^.Θ. In particular, as η tends to zero, RJ

η{U)
converges to RJ{U), whenever {Mn

η} is a family with fatness bounded away from zero.

We will begin by explaining Theorem 5.1 in the 2-dimensional case. Not
surprisingly, this is a straightforward consequence of the Gauss-Bonnet formula
for geodesic triangles. It follows even more directly from (4.7). Let M2 be a
piecewise flat approximation to the triangulated Riemannian manifold M2. Let
the fatness be Θ. If α is an angle of σ2, let ocη denote the corresponding angle
of σ2. Since for each σ°

Σ o « = 2π, (5.5)

we obtain from (4.7)

, σ°)| + O(η3). (5.6)

If U C M 2 is an open set with smooth boundary, summing over σ°CU easily gives

(5.7)

It is tempting to explore the possibility of generalizing the above argument
directly to higher dimensions (see Appendix 1 for further discussion). Instead we
will proceed as follows.

5 In Sect. 8, we show how to modify our arguments to obtain the analogous result for the boundary
curvatures, Hj, H{
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Consider first the case Rj(Mj). Fix a vertex σ° of our triangulation, and let L
denote the induced triangulation of Sj~x CMσ0 by totally geodesic simplices. As in
Proposition 3.2, we can consider the function Rj(C{J£)) on the space of all
piecewise flat cones C(JSf), having the same combinatorial structure as C(L).
Coordinates on this space can be taken as edge lengths of the spherical complex L,
or in notation of Sect. 3, the angles denoted by (0,2). According to Proposition 3.2,
the function R\C{£?)) has a critical point of order (j/2—1) at the flat cone C(L).
Moreover, let C(Lη) denote the nearby piecewise flat cone obtained from MJ

η at the
vertex σ° correspodning to σ°. Then Rj(C(Lη)) can be estimated by Taylor's
theorem. For each angle (0,2) at σ°, set

{092)t = (092) + t{(092)η-{092)}. (5.8)

The (0,2), determine a 1-parameter family L(t) with L(0) = L and L(l) = Lη. Each
pair of faces τ ί

2 / c~3Cτ ί

2 f c"1CL(ί) determines a dihedral angle (2k — 2,2k)t. The
derivative (2k — 2,2k)'t is given explicitly by (A 1.17) (with n replaced by 2k). For our
purposes it is enough to note that

(2/c-2,2fe)ί= Σ ^ ( ( 0 , ^ - >(0,σ2

(2k-1))](0)σ;

2)', (5.9)

where the (0, σf)t correspond to the edges τj of τ2k~ι and the coefficients ft are
smooth and bounded by some c(Θ). Thus the expression in (3.48) of Proposition
3.2 can be regarded as a certain polynomial of degree j/2 in the (0,2)' = (0,2)η

— (0,2), whose coefficients are smooth bounded functions of the (0,2) for fatness
><9>0. But by (4.7) and (A2.2)

mσfY^K^σfW^dWRUVRlθyη3, (5.10)

where σf is a 2-simplex at σ° (\σf\^cη2) and Kι the sectional curvature at σ° of the
plane spanned by the corresponding geodesic directions.

Applying (5.9), (5.10), Proposition 5.2 and Taylor's Theorem in the form
(A2.ll), we obtain

Proposition 5.2. There is an estimate

\Rj(C(Lη))-PM0, σ\),...,(0, σf2k_ 1 }),-ί- |σ?|,...,-
K/2k-l

( 2
2

( 2 2

(V)
(5.11)

where Pj is a polynomial in the Kt\σf\ with coefficients which are smooth functions
of the (0, σf) for fatness > Θ. Moreover, the function Pj depends only on the
combinatorial structure of L.

Let Dj(σ°) denote the "dual cell" to σ°, the set of points closer to σ° than any
other vertex. Let \Dj(σ°)\ denote its volume and * Rj(σ°) the Chern-Gauss-Bonnet
density of Mj (j even) at σ°. If it so happened for example that the polynomial P
satisfied

(5.12)
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our main result would follow. But this is not the case. What we can say is that
Pj/\Dj(σ°)\ is a polynomial of degree j/2 in the curvature tensor R at σ°, whose
coefficients are bounded in terms of Θ. In order to arrive at Rj from Pp we must
add the contributions of many different vertices. Specifically we consider a normal
coordinate ball Br(p\ such that r and η/r both are small. The portion of our
triangulation T lying in Br(p) induces a triangulation T of a subregion of Br(0)
CMp, the vertices of which are the inverse images exp" ^σ 0) of the vertices of T. The
map expp also induces an identification of Mj

σo with Mj

p for each vertex σ° C Br(p). If
we replace the sectional curvatures which are substituted into P. at σ® by their
corresponding values at p and the values of the coefficients by their corresponding
values for f, we introduce an error which is Sc(\\R\\,\\VR\\,Θ)rηj. Call the
resulting polynomial PJ(σ°, p) and set

^(r,Γ) = |BΓ(p)Γ1 Σ PJ(CP). (5.13)
σgC Br(p)

Here the notation ^ ( r , f) indicates that & depends on r and the given
triangulation. Since

H<CBXp))^c{Θ)\BXp)\η-\ (5.14)

estimate (5.13) and our arguments combine to give

^ l \\VR\\9θ)(η + r). (5.15)

Note that the orthogonal group of Mn

p acts on polynomials in R and also on the
lifts via exp ~1 of triangulations of subsets of Br(p). It is an immediate consequence
of construction that

(5.16)

for g in the orthogonal group of Mn

p.

We can now state the basic assertion of this section.

Proposition 5.3. There is an estimate

fcY (5.17)

where c = c(\\R\\, |||7R||,6>)<oo and Θ is the fatness of the triangulation.

It is essentially obvious that (5.17) implies our main result, Theorem 5.1, by

choosing r= ]/η (see Lemma 6.2). Here we reduce the verification of (5.17) to the

statement that lim ̂ j(r, f) exists and is independent of the particular sequence of

triangulations used, as long as the fatness stays bounded away from zero.

Lemma 5.4. Let Tv T2 be triangulations of Mj as above. The estimate (5.17) is
implied by the estimate that for all such Tv T2 with mesh ηx and η2 and fatness

0, there is a c = c(\\R\\, | |P7*||,Θ)<oo such that

) (5.18)
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Proof Since the discussion is local, it suffices to restrict attention to metrics on
euclidean space Ej. Let R be a curvature tensor at the tangent space Ej to the
origin 0cEj. Let {gR} denote the set gR of Riemannian metrics whose curvature
tensor at 0eEj is R. Then for each R, {gR} is nonempty. Thus we obtain a
polynomial R^0>j(R,r, f). Since the 0>j(r, T) are bounded independent of T (the
fatness is bounded away from zero), it follows from (5.18) that lim ^j(r, f) exists.

If we take T1 = f,T2=gTin (5.18), and apply (5.17) it follows that this limit is an
invariant polynomial in R. Moreover, if the metric g on Br(0) splits isometrically as
Mj~ * x IR, then by taking T of the form T=T1xT2 and using Corollary 3.1, we see
that 0>\r9 T) vanishes. Similarly, let g = hx ...xh9 with j/2 factors which are
2-dimensional of constant curvature, and let T be of the form T=Sx ... x S (j/2
factors). By use of (3.34) and the 2-dimensional case verified at the beginning of this
section, an obvious calculation shows that lim <PJ(r9 T) = * Rj for such g and T.

According to the result of Gilkey [Gl] , these three properties characterize the
Chern-Gauss-Bonnet form. So the proof is complete.

Observe that the definition of the polynomial ^J(r9 T), and the rest of the
discussion generalize immediately to the case R\Mn). The normal cone to a
simplex σn~j becomes well defined once one picks a vertex σ°Cσn~j. Thus, as a
replacement for C(L) one can simply use the normal cones corresponding to all of
the vertices of σn~j and average the resulting polynomials to form &>j(r9 T). The
contribution due to each normal case is O(ηj) and this is multiplied by
\σn~j\ = O(ηn~j). To generalize Proposition 5.4 one uses the full statement of
Gilkey's theorem for arbitrary j .

To close this section, we note the following important bound on the
measure RJ

η.

Lemma 5.5. Let UCM. Then

\Ri(U)\£c\\R\\sl2\Tη{U)\, (5.19)

where TJU) = {x\dist(x,U)^η} and c = c(\\R\\, \\VR\\, Θ).

Proof. T h e c o n t r i b u t i o n t o RJη(U) c o m i n g f r o m a n y p a r t i c u l a r σn j C U i s b o u n d e d
by c(\\R\\,\\VR\\,θ)\\R\\3l2ηn since

\(O92)η-(θa)\ύc{\\R\\9WRlθ)\\R\\η2 ' (5.20)

by our previous arguments. The number of such simplices in U is certainly

bounded above by times the number of σn in Tη(U). The latter is

bounded by c(Θ)η~n\TJU)\, which gives (5.19).

6. Proof Modulo Lemma on Triangulations

In the previous section we associated a polynomial έPj(r, f) of degree j/2 in
curvature to a real number r and triangulation T of mesh η of the ball Br(p).
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According to Lemma 5.3, the fact that lim 0>j(r,f) = *RJ follows from the

η/r^O

statement that lim <Pj(r, f) exists independent of the particular choice of T. We
r-+0

η/r^O

begin this section by recalling the (quite standard) argument by which the above
equality implies our main result. We then proceed to establish the hypothesis of
Lemma 5.3 modulo a lemma on triangulations (Lemma 6.3) to be proved in
Sect. 7.

Lemma 6.1. Let Mn be a Rίemannίan manifold with \\R\\ < 1 . Let μ be a (signed)
measure on Mn such that for some r less than the ίnjectίvity radius of Mn

fμ,r(x) = μ(Br(x))/\Br(x)\, (6.1)

defines an integrable function with respect to the Riemannian measure ω. Suppose

\fμ,r(x)\<C' ( 6 2 )

Let UcMnbe contained in a compact set and let \ Ts(d U)\ denote the volume of the set
of points Ts(d U) at distance ^ s from d U. Then there is a constant c(n) such that

(6.3)

Proof. Define subsets Sv S2, f C M x M by

51 = {{xvx2)\x1eU,x2eBr(x1)},

52 = {{xvx2)\x2eU,x1eBr(x2)}, (6.4)

r = {(xltx2)\x1eTr{dU),x2eBJx1)}.

Then

(6.5)

Consider the measure μ x ω on M x M. Note that by (A2.6) (or by Rauch's
comparison theorem, see [CE])

Br{x)
- 1 ύc(n)r\ (6.6)

where Vr denotes the volume of the ball Br(0) c E". Then by Fubini's theorem,

— μxω(S,)= f—-—dμ = μ(U)(ί±c(n)r2), (6.7)
Vr υ Vr

\-μ x ω(S2) = f /μ, r(x) Vψ$- dω = J fμ> rdω±c- c(n)r2 \ U\, (6.8)

1 - r2). (6.9)

Combining (6.1)-(6.9) completes the proof.
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Corollary 6.2. Theorem 5.1 is a consequence of (5.17).

Proof. Take first μ = RJ

η(η<r) in Lemma 6.1. By Lemma 5.4 the term μ(U) on the
right hand side of estimate (6.3) may be bounded by C(||JR||, || VR\\,Θ)\U\ inde-
pendent of η. Therefore

(6.10)

Similarly, we can take μ = Rj and we first recover the obvious result that

\SfR>.rCO-iRJ ^c(\\R\l\\VRlΘ)(\U\r2 + \Tr(dU)\). (6.11)

Now (5.17) reformulated in terms of the quantities just introduced easily gives

(6.12)

Combining (6.12) with the estimates (6.10) and (6.11) just stated, proves Corollary
6.2, if we take r = η1/2.

We can now proceed in two steps. In doing so, we will formulate everything in
the tangent space En

0 at p. We start with a basic lemma on triangulations of
βr(0) = exp;1BΓ(p)C£Λ

0.

Lemma 6.3. Let Tt and T2 be two triangulations of subsets of En

0 containing Br(0) of
mesh ήv fj2 (fj1^ή2), respectively, and fatness ^.Θ>0. Then there exists c(Θ)>0
and triangulations f3 and Γ4 of open subsets of Br(0) of mesh ^2ήι

 an^ ^i*
respectively, and fatness ^ c(&) such that

(i) 7|=7;+ 2J/=l,2)onB r_8,.2(0),
(ii) T3 and T4 agree near their common boundary.

Granted Lemma 6.3, the proof of Theorem 5.1, can now be completed for the
case of the Gauss-Bonnet form Rn(Mn). By our previous discussion (Lemma 6.2), it
suffices to establish (5.18):

Proof of Estimate (5.18) (j = n). Let Tγ and T2 be triangulations of Mn of mesh
ηvη2 (η1^η2), respectively, and fatness Θ>0. Let 7; = exp~17] ( ί=l,2) be their
lifts to the tangent space of p. By (1.22) there is easily seen to be
c = c(\\R\\,\\VR\\,Θ)<oo such that their meshes ήvη2 {^SήJ and fatness Θ
satisfy

whenever r ^ l . By Lemma 6.3 we can modify these on Br(O)\Br_8ηJO) to obtain
T3, T4 which agree near their common boundary in Br(0). By the piecewise flat
Chern-Gauss-Bonnet formula, [see (3.7), (3.8), (3.10)], we have in particular

) = const = Rll(71

4) + flϊi(δT4), (6.13)

which implies

f f (6.14)
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since T3 = T4 near dT3 = dϊ4. But by Lemma 5.4

\R%ΊU-R\Tι + 2)\^c(\\R\\9\\VR\\9Θyl9 1=1,2, (6.15)

which suffices to complete the proof.

Remark 6.1. In view of the fact that for Mn closed Rn{Mn) = χ(Mn\ Theorem 5.1
yields a new proof of the Chern-Gauss-Bonnet formula for closed smooth
manifolds (the results of Sect. 8 yield the formula for smooth manifolds with
boundary).

In order to generalize the above argument to give a proof of (5.18) for j + n
(j even) we need a replacement for (6.13), the topological invariance of Rn + Hn.
The appropriate replacement turns out to be Lemma 3.3 (the generalized Regge
lemma). In fact, iϊj = n, (3.52) of Lemma 3.3 simply reduces to the statement that
Rn + Hn is an invariant, independent of the piecewise flat metric.

Proof of Estimate (5.19) (j Arbitrary). Let g denote the Riemannian metric on
Br(p) and let g denote the induced flat metric at En

Q, the tangent space at p. Let
Dt :En

0-+En

0 denote dilation by t and define gt by

j (6.16)

Then gx=g and gt extends smoothly to [0,1] in such a way that g o ^
By construction, the curvature K(ί) of gt satisfies

\\r(t)R(t)\\£WR\\,

where R is the curvature of g. Furthermore for given Θ and r^r0 (\\R\\, Θ\ if the
triangulation T defines a p.l. space with geodesic distances defined by g and of
mesh η and fatness ^ Θ inside Br(0), then the p.l. space obtained by replacing g by
gt has mesh η(t) inside Br(p) satisfying

η(t)S2η. (6.18)

Let Tx and T2 be as above and choose T3 and T4 again in the same way. Employing
Lemma 5.4 once again, it suffices to establish (5.18) for T3, T4. Let 7J(ί) (Z = 3,4)
denote the piecewise flat approximation for the geodesic triangulation with respect
to gt and having the same vertices as expo(7J). Note that near the boundary T3(ί)
and T4(ί) coincide for all t and for ί = 0, both are flat in the interior. Thus

- Rj(T3(0)) - HJ{T3(0))]

, (6.19)

where we have used

(6.20)
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and

H\T4{ή) (6-21)

By (3.52)

R\T,(ί)) + H'(7J(1)) - Mη(O)) - HJ(Tt(O))

= ί Σ P χ ( C > Γ J ) ) K " T ^ (6.22)
0 σn~J

As in Sect. 5, for O ^ ί ^ l

\R\C\σ^~j))\^c(Θ)\\R(t)\\j/2ηj(t)^2jc(Θ)\\R\\j/2ηj, (6.23)

where the last estimate follows from (6.17) and (6.18). Moreover, since (6.16) gives

gt = exp* (g + A(t)r2 + B(t, r)r3), (6.24)

where \\A(ή\\, \\B(t9r)\\ can be bounded by \\R(t)\\ and \\F(t)R(t)\\ respectively, it
follows easily that

\σ?~j\'^cηn~jr2. (6.25)

The crucial point is that Qxp~1\Br(p)CEn

0 preserves lengths up to a factor
(1 + O(r2)). Combining (6.19), (6.22), (6.23), and (6.25) gives

1 '~4 ~ " ~ ' ; / V , (6.26)
\BMι 3

which suffices to complete the proof.

Remark 6.2. Note that for each individual σn~j we have only

(6.27)

which, after dividing by \Br(p)\, is not negligible. Thus it seems that the generalized
Regge lemma (4.43) is definitely required to show that the total contribution due to
these terms vanishes.

7. Lemma on Triangulations

In this section we prove the lemma on triangulations as stated in Sect. 6, Lemma
6.3. The proof uses only elementary facts about general position of subspaces
of En. The main point is to do the constructions in such a way that they are
independent of the number of vertices (i.e. so that the effect of moving many
vertices does not become cumulative). We begin with some definitions. Let
$\\$\2CEn be affine subspaces and let $\\$\2 be the parallel subspaces through
the origin, OeEn. Write S\ι(\\δS\2 {βl\$\2 are ^-transverse) if the following holds

A) 1

B) 0 < δ < $ {S\\ S\2) = $ (β\\ Sk

2

2),

C) dist(4\4 2)>(5, if fe1+fe2<w
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Here

$.(ik\i2

2)= min cos~1(e1,e2), (7.1)
(eι,e2)

where \\ej\\ = 1 , e.t(β\^ΓΛ$k

2

2)Lc\$kJ.
Now let σkCEn denote an open simplex with closure σk = σkκjdσk.
Let \_A] denote the affine subspace generated by the points in the set AcEn.

Suppose σkj has mesh ηpj=l,2 and η1 ^η2. Write σ\1(\\δσ
k

2

2 if

A') dim([σfc

1

1] n [σfc

2

2]) - max(0, k1 + k2 - n),

C)

whenever σ' 7 C σkj and /x + /2 < w.

The intersection C = σkίnσk2 of arbitrary closed simplices is a closed, convex
polyhedral cell To obtain a triangulation of C, we can form the first barycentric
subdivision C as follows. For each face CaCdC choose an interior point
paeCaCCa. The simplices of C are spanned by all sets pai, ...,pat, where

c β i c c β i + 1 α = i t—l).

The following lemma controls the fatness of C'.

Lemma 7.1. Given Θ, η, <5>0, there exists c(k,Θ,δ)>0 with the following
properties. Let σ\\σk

2

2CEk, k = max(kvk2) have fatness ^Θ and mesh ηλ and η2,
respectively, with ηx ^η2. Assume further that σk

1

ίή\3σ
k

2

2.
(1) Then if σ^Cσk^ and σ^nσz

2

2Φ0, in fact σι;nσl2 = Clί + l2'n + 0 and

l2-n. (7.2)

(2) For all nonempty Clί + h~n as above, there exists peCh + h~n with

dist(p,dCh + l2-n)>c(k,Θ,δ) η1. (7.3)

(3) // C is formed using the points p of (7.3), then each simplex ψm of C has a
fatness which satisfies

Θ(ψm) ^ \ψm\/η™ ^ c(k, Θ, δ). (7.4)

Proof We can assume that σ^1 has one vertex at the origin. Let σkj (/= 1,2) be any
simplices as above with σ^φ^σ^2. We begin by establishing the following:

Claim. The set {σ^nσ2

2} of all possible intersections is unchanged, if we add the
(possibly empty) condition that σ2

2 has mesh at most c(Θ) (1 +δ)ηx for a suitable
c(Θ).

Proof of Claim. In fact, for each σ2

2 we can find a simplex ω 2

2 which is similar
to σ2

2, such that σ^φ^ω 2

2, σ^nωk

2

2 = σ\ιr\σk

2

2 and for each (fc2 — l)-face
ωk2~1Cώk

2

2, we have dist(σ f e

1

1 ,ω^ 2 " 1 )^^ 1 (see Fig. 7.1).
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Fig. 7.1

It follows there is a point geωk

2

2 such that its distance to all k2 — 1-faces of ωk

2

2 is
5 (̂1 +δ)η1. Consider the compact set of simplices σkl of fatness ^ Θ, mesh 1 and a
fixed vertex. The positive continuous function

/(σ*2) = inf
geσk2 <

sup d i s t ^ σ * 2 " 1 ) (7.5)

attains a positive minimum
1

and σk

2

2 have fatness ^(9, and mesh 1, 2 (1 + δ), respectively.

. and c(Θ) satisfies the claim.
c(Θ)

Now consider the compact space S(Θ,δ) of all pairs σ\\ σk

2

2 such that
α) σ*1 has a fixed vertex at OeEk,
β) σ* k

γ) σ
We are now ready to establish l)-3) of Lemma 7.1.:
1) Since S(Θ,δ) is compact, it suffices to show σ'/nσ^ΦO implies σ^nσ^Φθ.

For then |C ί l + /2~"| is a positive continuous function on a compact subset, and
hence attains a positive minimum.

But if σ ' / n ^ Φ O , then for some σJJCσ1/ we have σ ^ n σ ^ φ O . Let ro,. be
maximal with respect to this property. Assume m1 <ZX and pick geσ^nσ™2. Near

1 h 1 h *has a product neighborhood σ^1 x C o ε(L 1 X ), where L is the link! p ^ o ε

of σ^1 in σ^1. Now since σ™1(\\δσ™2 and σ ^ n σ f φ θ , we must have m1 +m2^n. But
then the transversality condition on the planes [σ^1] a n d E^ 2 ] impϋes that the
orthogonal projection of σ™2 onto the subspace $n~mι through g and orthogonal

to is an open set
xCoε(Lh~m~1) n ^

of $n~mι containing g. But this easily implies that

o , ε ( L ) n ^ Φ 0 and thus σιfnσ%2Φΰ. This contradicts the maxi-

mality of mv Therefore m1 =l2 and similarly m2 = l2.

2) Clearly each m-cell Cm satisfies

ICI^ίT (7 6)
Moreover, the number of faces σι^nσ2

2 of Cm is ^ 2 k l + k 2 + 2. Let peCm be at
maximal distance ρ from dCm. Then if TQ(C) denotes the set of points of distance
^ ρ from CcdCm, we have

cmc
Clearly

Combining (7.6)-(7.8) give
m - l

(7.7)

(7.8)

(7.9)

from which (7.3) follows.
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3) Relation (7.4) follows from (7.2) and (7.3) by induction.
To proceed further, we make note of another compactness property.

Lemma 7.2. Fix Θ, η and r > 0. Let Kn C En be a euclidean simplicial complex of
fatness ^ Θ and mesh η such that every point of Kn is contained in a closed
n-simplex. Then the number # (r) of simplices of Kn which are contained in a ball
Br{p) satisfies

(7.10)

In particular, if we consider all such complexes containing a fixed vertex p, then the
set {st(p)} of all stars of p, forms a compact space in a natural way. Thus the number
of distinct combinatorial structures on {st(p}} depends only on Θ.

Proof Relation (7.10) is immediate from the definition of Θ. The compactness of
{st(p)} follows since each configuration is determined by at most Φ ί σ 1 ) ^ ^ ^ " 1

edge lengths, which vary in the interval [r]Θ,η].
The basic induction step of our argument to prove Lemma 6.3 can now be

described. Let K\, Kn

2 C En. Assume that every point of K" is contained in a closed
rc-simplex. Let K" and Kn

2 have fatness ^Θ and mesh η1Sη2 respectively. Fix
σ\^K\ and 6\eEn. Let K\ denote the complex obtained from K\ by moving σ\
to σJ, while keeping the other vertices of K\ fixed. Let L2 C Kn

2 consists of those
simplices σι

2 such that σ ί

2 n β 2 ^ i ( ^

Lemma 7.3. For all Θ,ψfε>0 there exists δ(Θ, ψ,ε)>0 with the following property.
Let Kn

v K\ be as above. Assume that for some i^O all σ\~1C&ί(σj) satisfy

<'^L2. (7.11)

Then there exists σ°v with dist(σj, σ°) < ε η 1 such that for all

Since (7.11) and (7.12) actually involve conditions on the subspaces [V]
generated by the simplexes σ\ to prove Lemma 7.3, it will be convenient to begin
by considering arbitrary subspaces Eh~ιcEι\El2 through OeE". Set EhnEl2 = G\

Lemma 7.4. // Eh'x(\\Eι\ either Ellf\λEh or lx+l2<n, ί = l and
άim(Eh~1Γ\G1) = 0. In the latter case, let | | # | | = 1 , Lg] = G1 and choose
he\_EhvEhY, \\h\\=i. Setting E[' = ]_g + εhvEh~γ~] we have E^E12 whenever
ε>0.

Proof. Either Ell^Eh or ί^l and /: + l2-n<t. If ί > l , then

0 < i - l = d i m ( £ / l " 1 n G i )

n, (7.13)

where the last equality is implied by the transversality, Elί~1(\\Eh, of Eh~x

and Eh. Since (7.13) contradicts /1 +/ 2 — n<t, in fact ί = l . The rest is obvious.
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Now let Eh~ιQEι\ Eh be as above with Eh~ι(\\Eι\ Elί(\\Eι\ Let
δh~1Cδι\ SΪ2 be parallel affine subspaces. Assume that I1 + l2<n and that
S>ll~1nS>h = 0. Then $1ICΛ£12 is either empty or a single point w. In the latter case
let veSh~x be closest to w. Let / z e [ £ h u £ Z 2 ] \ \\h\\ = 1 . Set

(see Fig. 7.2 with Zx = / 2 = l, n = 3). The following lemma is obvious.

Lemma 7.5. For ε>0, δι

ε

1nδl2 = ύ.

Fig. 7.2

/ o/ Lemma 7.3. Let X", i£2,
 σ°v ®> Ψ a n c * ε ^ e g i v e n It will suffice to show

that there exists σ°v δ>0 as in (7.12), where δ might depend on Kn

v Kn

2, and σ°.
Then a straightforward compactness argument based on Lemma 7.2 shows that δ
can be chosen to depend only Θ, ψ, and ε.

Choose orderings σ2 1 <tf2?2, . . . ,σ 2 m 2 of all simplexes of L2 and σ^"/ <crI

1~2

1

< ... < σ ^ of the (z — l)-simplexes of δsί(σj). Each z-simplex σ\ α C 5ί(σJ)\δsί(σ?) is

the convex hull {σ?,^"1} of σ° and some unique σ1^1 e 3sί(σJ). Let

^Γ^KT/lC^HK,!] and 42 = [<J-

Let ^} ε i 1 be obtained from S\ by applying Lemma 7.4 and (if necessary) Lemma
7.5 successively with ε M small. Let pίΛ be the point in S\tχ l closest to σj. Then
[ P i , i u σ i 7 i 1 ^ σ 2 I ^ e P e a t the argument with σ21 replaced by σ2 2 and σj
replaced by p x x to obtain pί2. If ε1 > 2 is chosen sufficiently small, we will have
both [Pi > 2

u σ i7 i 1 ]Φ σ 2, i a n d [Pi 2 u σ Γ i 1 ] ' t ι σ 2 2 Proceeding in this fashion, we
obtain p1>WI2 with [Pi ? m 2 uσ ι

i y i

1 ]φL 2 . Repeating the argument with σ\~2\ . . ^ σ 1 ^ ,
(at each stage choosing εα ^ sufficiently small so as not to destroy the transversality
already achieved), we obtain σ j = p m i > m 2 with [σ°uσJc~

1]φL2, for all α.
We can now give the proof of Lemma 6.3.

Proof of Lemma 6.3. An obvious compactness argument shows that for all Θ >0,
there exists /(<9)>0 with the following property. If σkCEn has fatness Θ and
mesh ηv and each vertex of σk is moved by at most f(Θ)η1, the resulting simplex
ωk has fatness ^ 0/2.

Similarly, (using Lemma 7.2), given Θ,ψ>0, there exists g(Θ,ψ) with the
following property. Let σk be as above and let Kn C En have fatness (9 and mesh
η2^γ\v Assume that every point of Kn is contained in a closed ^-simplex and that
σk(\\wK

n. Then if each vertex of σk is moved by at most g(Θ,ψ)η1, the resulting
simplex ωk satisfies ωk(\\ψj2K

n.
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Now, as in Lemma 6.3, let K" be complexes such that every point of Br(0) C En is

contained in an ^-simplex of K" and every rc-simplex of K" intersects Br(0). Let K"

have fatness Θ and m e s h ^ , with ηί^η2 Define subcomplexes of Kn

v Kn

2 as

follows.

L\ = {σιCK\ I σιCBr(0)9 η, ύdist(σ\ dBr(0))Sη2},

M\ = {σι C K\ I σι C σ" C 5,(0), σ"nL"2 Φ 0} ,

'; + 0}.Q\ = {σι C K\I σι C σ" C 5,(

Fig. 7.3

Let £ ι (T) denote the /-skeleton of the complex T.

Choose an ordering of the vertices of P" . We are going to move each vertex in

order a distance at most dt, i = l,...,n, to obtain complexes Kn

vK
n

10, ...,Kn

ίn_1

which will agree with K\ outside of Q\. When all moves are complete P\ Π _ X C

Kn

ln_1 will be in general position relative to Kn

2 by a definite amount. Set

(7.14)

By Lemma 7.3, if we move the vertices of P" by at most d0, we can insure that

for some

(7.16)
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For i = 1,..., n~ 1, we inductively define

(7-18)

Then do^d1 ^...^dn_ί and by (7.14) and the definition of ηv the fatness of

6) n

K\ j is at least —, for all z. It follows by Lemma 7.3 and induction that we can

insure that

ΣΪPΊJ^Kl, (7.19)
and for j > i

Thus,

with

ψ=±min{ψo,...,ψn_1). (7.22)

Now use Lemma 7.1 to form the barycentric subdivision of P\ n_ ιr^Ln

2. Extend
(^ΐ,n- i n A ) ' t o a subdivision of M\ as follows. Let p1 denote either the barycenter
of some (7ιeM"2\L"2 with σinLn

2ή=0, or a vertex of {P\ n _ 1 πL" 2 ) / lying in some
σιCdLn

2nMn

2. Subdivide each σnCMn

2\Ln

2 by forming all simplices with vertices
pl\...,pij, where iί<...<ij. The resulting triangulation Kn

2 extends Kn

2\Mn

2; (see
Fig. 7.3). Similarly, using (Σ\,n-ι w e construct K\ which extends ^ I \ 6 I J W _ ! and
agrees with (V\ w_ 1πL" 2) / near 3X". This completes the proof.

8. Convergence of Boundary Curvatures

Let Mn be a Riemannian manifold with boundary. As described at the end of Sect. 1
we can consider smooth triangulations of M" and form corresponding piecewise
flat approximations Mn

η. It is convenient to assume that Mn is given as a subset of
the interior of larger Riemannian manifold V71. Thus we have ambient geodesies
between closeby points of dMn, even if dMn is not convex. All curvature bounds
we assume will refer to Vn.

Now recall from Sect. 3 the definition of the total exterior/11 Lipschitz-Killing
curvatures Hj = Hj(Mn). It is the contribution to (3.23), (3.38), or (3.39) arising from
those σn~j simplices which belong to dMn

n. In analogy to what was done for Rj and
RJ

η we now define measures

U^H\U), U^HJ

η(U), (8.1)

where U is a bounded open (bounded) set of dMn. Again, we will assume that the
volume of Tr(U) in δMn, the set of points in dMn with distance ^ r to the boundary
of U in dMn, goes to zero with r. The second fundamental form of dMn will be
denoted by //.
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Theorem 8.1. There are constants C = C(| |JR| | , \\VR\\, \\II\\, | | F / / | | , 0 ) and

ηo = ηo(\\Rl \\VR\\, \\II\\, | | F / / | | , <9)>0 such that

\H{{U)-H\U)\^c{\U\ γη + \T^{dU)\) (8.2)

whenever η^η0 and Mn

η has fatness ^Θ. In particular as η tends to zero, HJ

η(U)
converges to Hj(U) whenever {Mn

η} is such that η-^0 with Θ(η)^Θo>0.

By our previous results on interior Lipschitz-Killing curvatures and the
remark following (3.39), it suffices to restrict attention to the case where j is even.
The idea of the proof is the same as for the interior curvatures, but now we use the
extension of Gilkey's characterization of the Lipschitz-Killing curvatures to the
boundary terms. The polynomial *Hj(p) [see (0.4)] is characterized by the
following properties.

1) It is invariant under the orthogonal subgroup of O(Mn

p\ which leaves the
normal direction invariant.

2) It vanishes if the manifold Mn splits locally and metrically as
S 1 x . . . x S 1 x M n - ' - 1 C/+1 factors S1).

3) It agrees with * HJ(p) for the family of curvature tensors obtained from the
spaces S1 x ... x S1 x S2 x ... x S2 x Dj~2k [n-j factors S\k factors S2 (2k^j),
Dj-2k = xmit disc in E-7""2*].

The above characterization follows immediately by combining Theorem 2.2b
of [G2] with the argument of [D], in which the interior curvatures Rj are
characterized as in Sect. 1.

As in Sect. 5, we begin by considering a metric ball Br(p)cdM and proving
the existence of a polynomial J f j(r, f) in R, II, such that the following lemma
holds (the lift f is defined below).

Lemma 8.2. There is a polynomial JfJ(r, T) in R, II such that

(8.3)

where c = c(\\R\\, \\ VR\\, \\II\\, || VII\\, Θ) and

\^J(r,f)\^c(\\R\\,\\Π\\,Θ). (8.4)

This yields

Lemma 8.3. For any U C dMn there is a uniform hound of the form

|^(C/)|^c(||^|| + ||//||2P|7;(t/)|, (8.5)

where c is as in (8.2).

Now, the application of a straightforward extension of Lemma 6.3 to the
boundary case, yields the following analog of Lemma 5.4

Lemma 8.4. There is a constant c as in (8.2) such that if the triangulations Tv T2

with mesh ηvη2 have fatness ^<9>0, then

\jT\r, 7i) - jT\r, T2)\ ̂  c {^-^ + r . (8.6)
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If we assume the above lemmas, the proof of Theorem 8.1 can be easily
completed.

Proof of Theorem 8.ί. The verification of 1) and 2) of Gilkey's axioms is
completely analogous to the argument for the interior case. To check the
normalization, as in the interior case, we are reduced to S2 x ... x S2 xDj~2k

(k factors S2) and the boundary term for the Chern-Gauss-Bonnet form. However,
since the interior of Dj~2k is flat, the interior terms vanish in both the smooth and
piecewise flat case. Thus the equivalence of the boundary terms follows from
Chern-Gauss-Bonnet theorem in the piecewise flat case, together with the explicit
evaluation of the boundary term for dDJ~ 2k in the smooth case. This completes the
proof.

Since Lemma 8.3 is an immediate consequence of Lemma 8.2, it will suffice to
verify Lemmas 8.2 and 8.4.

First, we begin the construction of the polynomial JfJ(r, T). Let exppx be the
exponential map of dMn. Let Mp CMp denote the half space {(x, tN)}9 where x is
tangent to dMn, N is the inward unit normal, and t > 0. Define a local diffeomor-
phism φ : M* -*M by

φ(x, tN) = expe x p p x tN. (8.7)

Using φ9 we can define the lift f, of T to Mp .
The construction starts with the evaluation of the pointwise limit of

P χ{C\σn~j)) at a vertex px of σn~jCdMn. Here a new point will arise. To calculate
Pχ(σn~j) we compare with the decomposition normal cone to 0eMp induced by
the triangulation f. As before, we view all dihedral angles as functions of the (0,2)
angles, but now we must take into account the fact that there are three distinct
types of (0,2)'s.

Let pv p29 p3 be the vertices of σ2e T9 with p1edM. Let α̂  be the corresponding
angles, and α̂  the angles of the Euclidean triangle with the same edge lengths.
Then if p 2,p 3eint(M), as in Sect. 4,

Similarly if p 2, p3 e δM,

= \K\σ2

= O(ηz).

= O(η2),

+ O(η

+ O(η

3)

3)

ane section determined bv σ2, in the

(8.8)

(8.9)

metric
induced on the boundary.

Now suppose that say p2edM and p3eint(M). Let γ19 y2^lz denote the edges of
σ2 where yv γ2 are interior geodesies and y3 is a boundary geodesic. Let γ3

denote the interior geodesic from px to p2. Finally let β. denote the angles of the
triangle with sides y. and β* the angles of the Euclidean triangle with the same edge
lengths. Then
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A standard calculation in normal coordinates shows that

= O(η), (8.10)

where c = c(\\R\\, \\VR\\, \\II\\, \\VU\\,Θ) and j 3 is the length of^3. As in Sect. 4

{β.-βD^Klσ^ + cη3, (8.11)

and by another standard calculation

where lj is the length of y.. Thus,

(8.13)

Now suppose we attempt to calculate the limiting value of Pχ(CL(σn~j)) by
using (3.49) as in Proposition 3.2. Since the right hand side is only O(η) and not
O(η2\ it is not immediately obvious that we obtain a polynomial of degree j in η,
when σn~jCσn and σ" contains several interior vertices.

Proof of Lemma 8.2. Let σn~jCdM, and let σ° be a vertex of σn~j. We define a
1-parameter family of metrics gt near σ° as in (6.16). By means of the correspond-
ing 1-parameter family of piecewise flat approximations Mη t we can connect
Mη = MηΛ to the flat configuration on M*o. As in (3.44) we write

Pχ(Cλ(σn-j))= - } χ ( σ " - V " - ^ 2 y P χ ( C V " J + 2 M . (8.15)
o

Since the case7 = n — 2 follows from (8.7), (8.8), (8.13) as in the interior case, we can
assume by induction that

Pχ(C\σ"-i+2)) = O(ηj-3). (8.16)

In view of (8.9), this implies

K"^σ?- J '+ 2) /P ; c(C 1((7?-^ 2)) = O ( ^ - 1 ) , (8.17)

provided σn~j+2CdMn. But if σn~j+2(tdM, then Pχ{C\σn

t~
j+2)) which is constant

on σ"~j+2 can as well be evaluated at an interior vertex σ^Cσ""-7. Then our
arguments for the interior case together with (8.12) imply that

χ ) . (8.18)

Since

{σn-jσn-j+2y=ί0(ri) 1 vertexeint(M)
( t ' < j W ) 2 verticeseint(M), (*Λ*}

we see that (8.16) continues to hold in this case (and in particular, that those

σn-j+2 Tffifa 2 vertices in the interior make a negligible contribution). The
remainder of the construction of #?j and of the proof is a routine generalization of
what was done in the interior case. Hence the details will be omitted.
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Fig. 8.1

Proof of Lemma 8.4. The boundary of Br(p) can be written as Br(p)uS as in Fig.
8.1. By a boundary version of Lemma 6.3, proved by similar arguments, we can
find T3, T4 which agree near 5, and such that Tt = Tί + 2 on Br_8rj2(p). By Lemma 8.3
we can replace T1? T2 by T3, T4. Since T3, T4 agree except at interior points of
M + or <3M + , it follows that

(8.20)

By arguing as in the proof of (5.19) [see (6.17)-(6.26)], it follows that

(8.21)

But RJ

η3~RJ

η4 by our result for the interior case. Since T3 = T4 near 5, the equality
of the contributions to HJ

η3, H
J

η4 coming from Br(p) follows. This suffices to
complete the proof.

Appendix 1. Local Calculations

Recall that for j = 2, n = 2 the proof of Theorem 5.1 was based on a purely local
calculation, (4.7). Moreover in this case we obtain an error which is O(η). However,
for 7^2, n>2 we used a different argument which did not require complete
knowledge of the polynomial P. of (5.13). We needed only the fact that P. (exists
and) gives Lemma 5.5. But, forj'^2, n>2 the error in Theorem 5.1 is only O(η112)
for U with smooth boundary. One purpose of this appendix is to bring into focus
the difficulty in extending the local argument and improved error bounds to higher
dimensional cases. We will concentrate on the case j = 2 which is for the most
part typical.

The choice of the particular polynomial P2 can be viewed as depending on a
convention concerning the value of the dihedral angle (σ"~2, σn) along
σ"" 2Cσ"CM". Observe that (σn~2,σn) varies over σn~2 and the precise pointwise
value depends on the explicit choice of (n— l)-faces σ""1, σn

2~
1Cσn, with

σn

1~
1nσ2~

1 =σn~2. However, at the vertices σ? of σ"~2, the tangent planes to
σ\~ \ σn

2~
1 are determined by the tangent vectors to the (geodesic) 1-skeleton of σn.

Thus, dihedral angles (σ"~2, σ")σ9 are well defined at the vertices σ?Cσ"~2. In the
definition of P we have, in effect, put:

1
Σ (A1.1)
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(compare the discussion preceding Proposition 5.2). Simple examples show that
typically

Since also (σ"~2, σn)σQ — (σn~2,σn)η = O(η2\ this variation is not negligible in the
limit [a variation which is O(η2) is qualitatively consistent with a choice of higher
dimensional faces σι having principal curvatures which are O(η)].

The point of the preceding section is the following: Finding a local proof of
Theorem 5.1 [yielding an error O(ηJ] is equivalent to "correctly" defining the
dihedral angle (σ"~2, σ") (or what is essentially the same thing, making the correct
choice for the faces σn~1). Unfortunately we don't know how to do this (see below
for a more precise discussion).

We now give the explicit formula for P2 (the derivation is at the end of this
appendix). Fix σ°Cσn~2CMn. Let vί9...9υnCMσO be the tangent vectors to the
edges of the lift exp'o^σ"), \\vj\\ =lj = \σ)\. Thus the i-faces σ[jy containing the origin
are identified with

— υ1 A ... Λ δ ^ Λ ...Avjn_....vn. (A1.3)

Following the notation of Sect. 2, the (n — l)-faces are denoted by — w. and we
(n— 1)!

assume that say [see (2.20)]

Then the contribution to R2(Mn

η) due to σn~

1

(1 ύhj\ t,s^ri). For each fixed σn, the expression in (A1.5) depends on the choice of
σ° C σ", but the sum over σn is independent of this choice.

Although (A1.5) is linear in curvature, we know of no region U for which it can
be used to show directly that R2(U)~R2(U). For example, if U = st{σ°\ R2(U) can
be obtained from (A1.5) by summing over i,j. This gives

Although (A1.6) is also not obviously related to the scalar curvature, as
mentioned above, we could still succeed in finding a local proof of Theorem 5.1 by
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"correctly" redefining the dihedral angle (σ"~2, σn). More precisely it would suffice
to have for each σn~~2Cσn, a number Θ(σn~2,σn\ such that

A) Θ(σn~2,σn) = O(η2).
For fixed σn~2,

σnz>σn~2

C) The sum of Θ(σn~2,σn) and the expression inside the first summation in

(A1.6) is equal to [see (A1.14) below]

} < w Λ w , wb Λ Wi/Riv , v , Vj, vh). (A1.7)

As mentioned above, we don't know how to find Θ(σn~2,σn) satisfying A)-C).
We point out that in view of (A1.5) Theorem 5.1 has a somewhat unexpected
equivalent reformulation. To explain this, we first consider an arbitrary vector
space Fn with inner product g. Let f*e(Fm)* be the dual of / with respect to g. Let
/ :Fm-^Fm be the identity transformation and fv ...,fNeFm. Then it is easy to see
that

tτB= J
ί =

for all symmetric bilinear forms B, if and only if

ί = l

Now let Fn = Λ2(En) and 5 = ,R [the curvature tensor viewed as a symmetric
bilinear form on Λ2(En)~]. The equivalence of (A1.8) and (A1.9) allows us to
combine Theorem 5.1 with (A1.6) ( and rescale). This gives

Theorem Al.l. Let T be any triangulation of En of mesh 1 and fatness ^ Θ. Then

lim <wt, wk) <ws, wk) ^°' W"l (v, A vt)®(v, Λ vtf

Consider in particular, a triangulation T which is periodic, i.e., invariant under
a lattice Zn C En. Then the quantity under the summation is invariant under 7Ln and
we obtain the following exact formula for the (finite) sum over Σ2/Έn (where Σ2 is
the 2-skeleton).

Corollary A1.2. Let T be as in Theorem Al.l and invariant under a lattice Zn. Then

< w " W k K w " W k } < ^ >WW\ h
•(ΌsΛVt)®{vsΛVt)*

= /. (Al.ll)
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A simple triangulation to which Theorem A 1.1 applies is obtained by taking
the barycentric subdivision of a paralellopiped as the basic unit. At an early stage
of our work, we verified (Al.ll) for this example by a straightforward but
laborious computation.

We close this appendix with the derivation of (A1.5) (the derivation extends
with trivial modifications to the case j > 2).

It is apparent from (2.19) that if

and

then

since Wis the cofactor

G

matrix

<v»

W=

of G.

Vj> =

Set

Nl

0

.. Λ

11̂-11

0

cosα^

\
(A1.17)

where cosΘ . = l,

s=\\vίΛ...Λvn\\2.

Now suppose that, vv...,vn depend smoothly on a parameter t. We must
calculate the derivatives Θ\. in terms of the α^ . If we define the matrix P by

P = s1 / 2 (| |ι;1Λ...Λί5....ίί r..t;J0ί J.), (A1.20)

then by (A1.20), we also have

It will suffice to give a formula for P. To this end, differentiate (A1.14) to get

W'G+WG' = sΊ. (A1.22)

Multiplying on the right by - W=G~ί

9 gives
s

— 1 s'
W'= WGW+ - W. (A1.23)

s s

Also, since

W=LXL, (A1.24)
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we have

Equating the diagonal terms, in (A1.23) and (A1.25) gives

1

s

J. Cheeger, W. Mϋller, and R. Schrader

+ -W =2L'L =
Idiag L Jdiag

where we have used [ P ] d i a g = 0. Then

LΓ LΓ\-- WG'W
2 s idiag

•Hi" diag

diag

2 s

diag

2 s

By (A1.25)

P=W'- LL~1W- WL~ γL .

Substituting (A1.23), (A1.27) into (A1.28) gives the desired formula

- 1 1 Γl
P= WG'W+ - W\- WG'W

s 2 \s

(A1.25)

(A1.26)

(A1.27)

(A1.28)

L'2+-L-2\-Wσw] W. (A1.29)
diag ^ L5 Jdiag

Appendix 2. Variable Curvature and Dihedral Angles

In this appendix we give a proof of estimate (4.7) for the case of nonconstant
curvature. It is obtained from the following estimate (A2.1) by a standard
argument, the details of which will be omitted.

Let τ s denote the plane section spanned by yj(s) and T, the radial vector in
normal coordinates. Let P(τs) denote its parallel translated to the origin along the
radial geodesic to yt.(s).

Then for some universal constant c, the angle ^ (P(τs), σ) formed by P(τs) and σ
satisfies

(All)

(A2.2)

The estimate (A2.1) is, in turn, implied by
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together with (the lower half of) the bound

d

dx.
l - c f 2 < (A2.3)

for the normal coordinate field - — . [Estimate (A2.3) is implied by the Rauch-
dxk

Comparison theorem, see [CE], but we will give an elementary, self-contained
derivation.]

To prove (A2.2), (A2.3) at a point q, it is convenient to choose normal
coordinates, such that q lies on the x1-axis. Let the coordinates (r, Θj)(2Sj = n) be
defined by

xί=r,

Xj = r tan Θj9 j = 2,...9n.
(A2.4)

Note that r is not the usual polar coordinate except along the x r axis. Then
(A2.2), (A2.3) are equivalent to

(A2.5)

(A2.6)

(A2.7)

(A2.8)

r(ί cr2):

(1-cr2)^

vt d

< δ

δθi

7
τdΘt

''k
<

VII

^(1 + cr2),

[see (A2.23) for the connection between (A2.2) and (A2.8)] which we now will

establish. Note that the restriction of to the x.-axis is a Jacobi field. Hence
dΘt

 λ

along the q-axis we have the Jacobi equations

with the initial conditions

<3

r = 0

We will use Taylor's formula in the form

n l Ji

/('•)= Σ ττf(k\o)+
1

( n - l ) ! Jo

A2.9)

(A2.10)

(A2.ll)
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As above, let P denote parallel translation to the origin along the x,-axis. Then
by (A2.9HA2.il)

ds

(A2.12)

Since P is an isometry,(A2.12) gives

' δ

dΘ,
ds. ( A l l 3)

Let z{r)= sup

and therefore

dΘi

. Then upon integration, estimate (A2.13) leads to

^ z ( r ) g r ( l - c'r2)~1 <>

To obtain the lower bound, we estimate (A2.12) as

(A2.14)

( A l l 5)

( A l l 6)

and insert the upper bound (A2.15) on the right hand side. To prove (A2.6), we
write

Hence

P V;
dθ

r

ύc' [ sds ^ cr2

from which (A2.6) follows. Next, along the Λ^-axis,

δ _ _ 1 d 1 δ

(A2.17)

(A2.18)

( A l l 9)
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Combining (A2.12) and (A2.17) (or equivalently, performing a partial integration),
we obtain

(A2.20)

from which (A2.7) follows, if we again use the upper bound of (A2.5). To prove the
final estimate (A2.8), we use again the Jacobi equation

= VT RIT,

dΘi

ι'dΘiJ'τdΘj "w.
(A2.21)

The relation Vτ—- =V Γ, T, the upper bound in (A2.5) and (A2.6) then combine
d Θ i aβΓ

with (A2.21) to give

(A2.22)
d

cΘj
< c' \r +
~ V

V δ
d

We employ this estimate as follows. Since along the X-axis

δ _ 1 δ

we have

(A2.23)

= VτVe = 0,

Therefore

Let now z{r) = sup
0gs§»

to give

V a

(A2.25)

. Then the relations (A2.22) and (A2.25) combine

r3 r2

J + ~2
(A2.26)

from which (A2.8) follows. The equivalence of the estimates (A2.2)-(A2.3) and
(A2.5)-(A2.8) now follows easily using (A2.23).



452 J. Cheeger, W. Mϋller, and R. Schrader

Appendix 3. Riemannian Metric on the Space of Piecewise Flat Structures

In this appendix we describe some additional properties of p.l. spaces. They come
into play if one attempts to quantize gravity by using these spaces as an
intermediate step in arriving at a continuum theory (see e.g. [CMS1]). We will
begin by characterizing those p.l. spaces which have the same underlying simplicial
complex. Then mimicking the procedure which makes the set of all Riemannian
metrics on a manifold an infinite dimensional Riemannian space (see e.g. [E]), we
shall make this set a noncompact Riemannian space. This leads to a volume form,
allowing one to consider "functional integrals" and statistical mechanics of p.l.
spaces. The construction, however, has a certain nonuniqueness which can be
thought of in terms of an analog of the conformal group.

As in Sect. 3, let σn be a ^-simplex in Ek with vertices given by the vectors vo = 0,
vv ...,υn. The matrix

is positive definite and

det0 y = (|σ"|n!)2. (A3.2)

In terms of the edge lengths

I{Uj)=\\v,-Vj\\ (O^Ujύn), (A3.3)

we have

gtJ = §(/ 2 (0,0 + 12(O, j) -I2(i, j)). (A3.4)

Conversely, given a function /( ) = 0 o n the edges of the ordered standard
^-simplex sσn, an easy argument by induction shows that the values of /( ) form the
edge lengths of a simplex σn in En if and only if gtj as defined by (A3.4) is positive
definite. By a well known theorem in linear algebra this holds if and only if

(det^..),, e / >0 (A3.5)

for every nonempty subset / of (1,..., n). In that case, by (A3.2), the left hand side of
(A3.5) is (|/|!)2 times the volume squared of the |/|-simplex formed by v0 and vt

(ίel). The polynomial inequalities (A3.5) in the edgelengths form the higher
dimensional analogues of the triangle inequalities.

We recall that the set of all positive definite n x n matrices form a symmetric
space P. If a and a! denote two elements of the tangent space at g = {g^}, i.e. a and
a! are real symmetric matrices, we define

Gg(a,af)= Σ gSug^tidetgJ1'2 (A3.6)
ίj,k,l

to be the metric on the tangent space at g. Here gij is the inverse of gtj. [The factor
(detg 7 )

1 / 2 was carelessly omitted in [CMS1]. It improves the short distance
behavior of the theory.]

Now let ζ be the space of ordered rc-simplices with given edge lengths and let
σ"e ζ. Define an isomorphism from the isometry classes of such σn into P by (A3.4).
The pull back of the metric to ζ via this isomorphism gives a metric which is
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independent of the ordering. Thus it makes the set of all unordered rc-simplices a
Riemannian space which we denote by ζ. Now fix the combinatorial structure Kn

and let the metric structure (Kn, ΐ) vary. Assume each simplex is contained in a
^-simplex. There is a natural embedding

Here λ(σn)>0 are arbitrary and λζ denotes the metric ζ scaled by λ>0. The
Riemannian metric ζ(Kn,λ(-)) in the collection of all {{Kn, I)} is induced from this
embedding, making it into a finite dimensional Riemannian space.

Due to the arbitrariness of the λ(σn\ our construction is not unique. The
nonuniqueness is best described in terms of the conformal group, defined in this
context to be the set of all positive valued functions Q(σn) on the rc-simplices of Kn.
This group obviously acts as an effective, transitive transformation group on the
set of all such metrics ζ(Kn,λ( )) by

Q{')λ( )). (A3.7)
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