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Convergence of Grand Canonical Gibbs Measures*
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Abstract. We prove existence of Gibbs states for a large class of continuum
many-body potentials through a limit process of hard-core approximations to
the potential. Dobrushin uniqueness techniques [1] for the decay of correlations
are then extended to a very general class of continuum potentials.

Introduction

Ruelle [11] proved existence of grand canonical Gibbs states for a large class of pair
potentials in continuum statistical mechanics. In this paper we prove, by a different
method, the existence of Gibbs states for a large class of continuum many-body
potentials. The approach we take is to add a "hard-core iV-body component" φN to a
given potential V. φN has the effect of restricting the number of particles that can
accumulate in a spherical region of space of diameter r0 to no more than AT. Existence
of a Gibbs state σN for the potential V +φΉ is easily established for each positive
integer N. Using some standard theorems on convergence of probability measures,
we prove that the Gibbs states {σN} converge to a Gibbs state σ for the potential V.

We then apply these methods to extend results on the decay of averaged two
point correlation functions established by Gross [4], Kϋnsch [6], Follmer [3], and
the author [5] via Dobrushin uniqueness techniques [1]. In addition we show that
the grand canonical pressure PN for V + φΉ converges to the pressure P for V as N
approaches infinity.

Section 1. Notation and Definitions

For a Borel measurable subset A a Md, let X(A) denote the set of all locally
finite subsets of Λ. X(Λ) represents configurations of identical particles
in A. We let 0 denote the empty configuration. Let BΛ be the σ-field on X(A)
generated by all sets of the form {seX(A):\snB\ = m}, where B runs over all
bounded Borel subsets of A, m runs over the set of nonnegative integers, and
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| | denotes cardinality. For later convenience we let (Ω,S) = (X(Ud\Bud).
The measurable space (Ω,S) is the same one considered by Preston [9],
Ruelle [11], and the author [5] in their studies of Gibbs measures. For any
Borel subset A of Ud, there is a natural isomorphism between (Ω,S) and
(X(Λ)9BΛ) x (X(ΛC\BΛC\ where Ac is the complement of A (see [9, 11]). We will
identify these spaces and write

(Ω, S) = (X(A\ BΛ) x (X(Λ% BAC). (1.1)

Similarly if {At} is a set of unit cells partitioning Ud, we make the natural
identification

(Ω,S)=f\(X(Ai\BΛi). (1.2)
ί = l

Let BΛ denote the inverse projection of the σ-field BΛ under the identification (1.1), so
that BΛ is a σ-field on Ω.

A many-body potential V is an S-measurable map from the set of finite
configurations ΩF in Ω to (— oo, oo] of the form

v(χ)= Σ Σ
N=ί yczx

\y\=N

where the function φN on configurations of cardinality N is called an JV-body
potential.

Definition 1.1. For a configuration x = (χί9 χ29..., xN) in ΩF, let

rcoifmax||x.-x7.||<r0

φ N ( x ) = \ Λ

ij . (1.4)
r i v W | θ otherwise, ;

where || || denotes Euclidean distance in Ud and r 0 > 0 is fixed. A potential V which
can be expressed in the form

V(x)=V'(x)+φN(x)

for some potential V'9 and all xeΩF is called a potential with hard-core N-
component.

We define the S-measurable set RΛaΩ associated with the potential V exactly as
in [9, p. 97] (see also [5]), and we let VΛ{x\s\ as in [5], be the energy of the
configuration xeX(A) interacting with the configuration seRΛnX(Ac) outside A.

The following definition of the finite volume Gibbs measure μΛ(dx\s) with
external configuration seΩ and A a bounded Borel set is similar to that given
in [5]. Let XN(A) denote the configurations of cardinality N in Λ, and let
T:AN-^XN(A) be the map which takes the ordered iV-tuple (xί9...,xN) to
the (unordered) set {xv...,xN}. In a natural way T defines an equivalence
relation on AN and XN(A) may be regarded as the set of equivalence classes
induced by T. For n= 1,2,3,..., let dnx be the projection of mi-dimensional
Lebesque measure onto XN(Λ) under the projection T:AN ->XN(Λ). The
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measure d°x assigns mass 1 to X0(Λ) = {0}. Define, as in [5].

Udx)= Σ^x, (1.5)
n = 0 n'

where z is chemical activity. Corresponding to the potential V and seRΛnX(Λc\
define

where β is inverse temperature and ZΛ(s) makes μΛ(dx\s) a probability measure on

X(Λ). Note that 1 ̂  ZJS) < oo. ΊfsnΛcφRΛ, define μκ(ώc|s) to be the zero measure.

Definition 1.2. Let {π^} denote the specification associated with β,z, and the
potential V (see [9, p. 16]) defined by

πΛ(s,A)= $μΛ(dx\s\ (1.7)
A'

where AeS and A' =

Definition 13. A probability measure σ on (Ώ, 5) is a Gibbs state for the specification

M if
φA(s,A)) = σ(A) (1.8)

for every AeS and bounded Borel set A c [Rd.

Definition 14. A function/ :ί2 -• U is a cylinder function if there exists a bounded set
B czUd such that/(s) =f(snB) for every seΩ. A set AeS is a cylinder set if the
indicator function for A is a cylinder function.

We note that any function on X(A\ where A is a bounded Borel set, has a natural

extension to a cylinder function on £2 via (1.1).

Definition 1.5. Let F(Ω) be the class of real valued, bounded, S-measurable functions
on Ώ, which can be uniformly approximated by cylinder functions.
Following Preston [9], we make the following definitions.

Definition 1.6. Let Cn be the hypercube in Ud of length In centered at the origin, and
let υn denote the volume of C^Cn_1. Let

Unm = {seΩ:\snCn\Cn_1\^mvn}.

For a given potential V9 we let

D = {seΩ:V(y)< oo for all yeΩF with j c s } .
Define

Um=Df)Unm,

and
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Definition 1.7. A Gibbs state σ corresponding to a potential V, inverse temperature
β, and chemical activity z is tempered if σ(U^) = 1.

Section 2. Gibbs States for Potentials with Hard-Core Components

In this section we prove the existence of a Gibbs state, for any β and z, associated
with a potential with a hard-core JV-component. We will refer to the following
conditions on a potential V in what follows.

Condition 2.1

a) V is stable, i.e., V(x)^ -D\x\for some D > 0 and all xeΩF.
b) For any bounded Borel set A, any xeX(A)nUo0, and any m ^ l ,

\VΛ(x\s)—VΛ(x\snCk)\^εs(k)\xl where εs(k) converges uniformly to zero for all
seUmnX(Ac)ask^oo.

00
c) Σ Σ φN(y)^—c\x\\s\ for some oO and all x,seΩF.

N=2 ycrjcus
\y\=N

ynxnsψφ

Condition 2.2 y has a hard-core N-component for some N^2.

To prove existence of Gibbs states associated with potentials satisfying
Condition 2.1 and 2.2 we verify hypotheses to theorems of Preston [9, chapter 3].
For convenience we express Preston's results in a slightly modified form using our
notation.

Theorem 2.1 (Preston). Suppose the following three conditions hold for the specifi-
cation {πΛ}:

A) Given ε > 0, there exists an m ̂  1 such that πΛ(s, Um) ^ 1 — εfor all bounded
Borel sets A a Ud and all selloo.

B) For any bounded Borel set A a Ud and any ε > 0, there exists a probability
measure ω on (Ω, BΛ) and a δ > 0 such that if AeBΛ with ω(A) < δ, then πc(s, A) < ε
for any bounded Borel set C ZD A and all seU^.

C) For any bounded Borel set A cz Ud and any cylinder set AeS and any m ^ 1,
πΛ{ 9 A), as a function on Um, is the uniform limit of a sequence of bounded S-measurable
cylinder functions.

Then the set of tempered Gibbs states for {πΛ} is non-empty. Furthermorejor each
sell^ and all cylinder sets AeS,

limπCk(s,A) = σ(Al (2.1)
fc-^oo

where σ is a tempered Gibbs state (possibly depending on s).
We verify now that potentials satisfying Conditions 2.1 and 2.2 satisfy

hypotheses A), B), and C) of Theorem 2.1 for any β and z.

Lemma 2.1. Let A a Ud be a bounded Borel set. If Condition 2.1 holds, then for all
m ^ 1 there exists a constant Dm > 0, depending only on V9 A, and m, such that

yΛ(x\s)^-Dm\x\ (2.2)
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for allxeX(Λ) n U ̂  and all seUmn X(ΛC). If Condition 2.2 is also satisfied, then there
exists a D > 0 depending only on V and A such that

VΛ(x\s)^-D\x\ (2.3)

for all xeX{A)nUo0 and all seU^ CΛX{AC).

Proof: Condition 2.1b implies that we can choose k large enough so that Ck ID A

and

VA(x\s)^VΛ(x\snCJ-\x\

for all xeX(A)nUoD and seX{Ac)nUm. The proof of (2.2) now follows from
Condition 2.I.e. Condition 2.2 implies that for m sufficiently large Um = U^ and
hence (2.3) follows. This concludes the proof.

Remark 2.1. Lemma 2.1 improves Theorem 3.1 of [5].

Remark 2.2. When V satisfies Condition 2.1, Lemma 2.1 guarantees that
RΛ^>UO0, and therefore πΛ(s, •), is a probability measure for any seU^ (see Sect. 1).

CoroDary 2.1. Conditions 2.1 and 2.2 imply that hypothesis A ofTheorem2.1 holds for
any β and z.

Proof For seU^ nX(Ac) and any z and β,

U'm

where Uf

m = {xeX(A):xuseUm}. As in the proof of Lemma 2.1, Um = U^ for m
sufficiently large. Hence Uf

m=Uf

O0. But U^ = X(A). Thus

for m sufficiently large because μΛ(-\s) is a probability measure on (X(A),BΛ).
This completes the proof.

Corollary 2.2. Conditions 2.1 and 2.2 imply that hypothesis B of Theorem 2.1 holds for
any β and z.

Proof. Recall that

so that

when restricted to BΛ. By Condition 2.2 F^xlί) = +oo for all |x| sufficiently large.
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for some positive integer M.
Let ω(Λ) = vΛ(A') for AeBΛ. By consistency of the specification {πΛ

p. 90]), and Corollary 2.1,
(see [9,

πc(s,A) = J πΛ(t,A)πc(s,dt).

Thus

By (2.4), Lemma 2.1, and since ZΛ(s)^ 1,

where the right side is independent of C. This concludes the proof.

Lemma 2.2. Condition 2.1 implies hypothesis C of Theorem 2.1 for any β and z.

Proof Let m ^ 1 and seUmnX(Ac). Define

Then fk(s) is a bounded S-measurable cylinder function on Ω. Also

(2.5)

From Lemma 2.1, Eq. (2.4), and since ZΛ(t) ^ 1 for all t, it follows that given ε > 0,
we can choose j ^ m sufficiently large so that

ί
X{Λ)nUej

ZΛ(snCk)

Combining (2.5) with (2.4) gives

\fk(s)-πΛ(s,A)\S J

< ε. (2.6)

vjdx) + ε. (2.7)



Grand Canonical Gibbs Measures 301

Recall that Um c U} when m Sj- It follows from Condition 2.1b that the integral
on the right side of (2.7) converges uniformly to zero for all seUmnX(Ac) as
k->oo. Thus by choosing k sufficiently large, \fk(s) — πΛ(s, A) | ^ 2ε uni-
formly in ssUmr\X(Ac). This completes the proof.

Combining the above results we have the following theorem.

Theorem 2.2. Let V satisfy Conditions 2.1 and 2.2. Then the set of tempered Gibbs
states for V at any inverse temperature β and activity z is nonempty. Furthermore,
formula (2.1) holds.

Proof. The proof follows directly from Theorem 2.1, Corollary 2.1, Corollary 2.2,
and Lemma 2.2.

Remark 23. It can be shown that, for any β and z, the set of Gibbs states for a
potential V satisfying Conditions 2.1 and 2.2 satisfies a sequential compactness
property, and that if V is translation invariant, then the set of translation invariant
Gibbs states for V is nonempty. This follows from Theorem 3.4 and Chapter 4 of
Preston [9].

Remark 2.4. In [5] we proved the high temperature uniqueness of the Gibbs state for
a class of many-body potentials satisfying the hypotheses of Theorem 2.2, via
Dobrushin uniqueness techniques [1]. The proof in [5] for uniqueness (as well as the
proofs for decay of correlations) depended on the existence of the Gibbs states
considered there. Thus Theorem 2.2 validates the results of [5].

Section 3. Gibbs States for Potentials without Hard-Core Components

In this section we prove the existence, at any temperature and activity, of a tempered
Gibbs state for any many-body potential V satisfying Conditions 2.1 and 3.1 (given
below), but not necessarily satisfying Condition 2.2, i.e., we do not assume that V has
a hard-core JV-component. The method of proof is via the limiting process described
in the introduction. We will refer to the following condition.

Condition 3.1. The specification {πΛ} corresponding to V, β, z satisfies the following.
Given ε > 0,

πCk(0,UJ^ί-ε (3.1)

for all m sufficiently large and all k = 1, 2, 3 , . . . .

Remark 3.1. Condition 3.1 may be interpreted to mean that the probability,
corresponding to free boundary conditions, of configurations of particles in Ck with
high density is small. Condition 3.1 is fulfilled for all β and z by any super-stable
lower regular many-body potential, as shown by Ruelle [11] and Preston [9,
p. 108].

Let a potential V satisfying Conditions 2.1 and 3.1 be given and let

(3.2)



302 D. Klein

where φN is given by Definition 1.1. It is easy to check that VN satisfies Conditions 2.1
and 2.2. For fixed β and z, let σN be the Gibbs state for VN, shown to exist in Theorem
2.2, satisfying

σN(Λ)=limπ^k(0,Λ),
fc^oo

(3.3)

for every cylinder set ΛeS, where {π^} is the specification corresponding to VN, β, z.
It follows from (3.3) that

σN(f)=1imπ»k(09f)
fc->OO

(3.4)

for every bounded measurable cylinder function/ on Ω, since such functions can be
expressed as uniform limits of simple functions.

For simplicity in notation in what follows, let

Lemma 3.1. Let V satisfy Conditions 2.1 and 3.1 with β and zfixed. Letf be a bounded
measurable cylinder function on Ω. Then given ε > 0,

(3.6)

for all N sufficiently large, uniformly in k.

Proof. From (1.6) and (1.7),

j
X(Ck)

where Z£ k (0) is the normalizing constant in (1.6) corresponding to the
potential VN. To simplify notation in what follows, let us denote Z^ = Z^k(0),
Zk = ZCk(0), and vk = vCk. With this notation,

vk(dx). (3.7)

By the triangle inequality and since Zk^Z" and exp[ -βVN{x)~] ^

^ f

vk(dx)

7N
^k

X(Ck ) \

Performing the integrations on the right side of (3.8) and using the definitions of Zk
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and Zfc, we have

ί
e x p [ βV ( x ) ] —j-L P ' V - ; J Λ I M Λ Λ * — > / 1 "fc t (3 9j

zk

It follows from the definitions of φN and Um (which depends on V) that given any m
we can choose N large enough so that

k U' k

The desired conclusion now follows from (3.7), (3.9) and Condition 3.1.

Lemma 3.2. Let Vsatisfy Conditions 2.1and3.1 with β and z fixed. Then the sequence
{σN(f)} is a Cauchy sequence for every bounded measurable cylinder function f on Ω.

Proof For any M, N9 j , and k

\<(f) - πf(f)\ ί \πN

k(f) - πf(/)| + |π?(/) - πf(f)\. (3.11)

By Lemma 2.1 {π£(/)} is a Cauchy sequence in N (uniformly in k) for each bounded
measurable cylinder function /. Thus

| π f ( / ) - π f ( / ) H 0 as M, JV-»oo,

and the rate of convergence is independent of/. By Theorem 2.2 {πf (/)} is a Cauchy
sequence in k for each fixed TV and hence with N fixed,

•πΐϊ/")->() as Lj^oo.

Thus by first choosing large values of M and AT, and then sufficiently large values of/
and &, the left side of (3.11) can be made arbitrarily small.

By the triangle inequality,

* K(/) - <(/)l + KCO - <(/)| +l<(/) - M/)| (3.12)
From Theorem 2.2 and the preceding arguments, it follows that by choosing M and
N sufficiently large and then k and j depending on M and JV, each term on the right
side of (3.12) can be made arbitrarily small. It follows that {σN(f)} is a Cauchy
sequence. This completes the proof.

Theorem 3.1. With the same hypotheses as in Lemma 2.2, there exists a unique
probability measure σ on (Ω, S) such that

N-+OO

for every function feF(Ω).

Proof. As in (1.2) we write

(Ω,S)=f[(X(Λi),BΛi). (3.13)
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For any subset K of the positive integers we let Bκ = B y Λ so that Bκ is the σ-field
IEK

on Ω generated by the factors

ieK

in (3.13). Let us denote the restriction of σN to 5* by σ*. By Lemma 3.2 {σ*(A)} is a
Cauchy sequence for each AeBκ. Thus by the Vitali-Hahn-Saks Theorem
[2, p. 160], there exists a unique countably additive probability measure σκ on
(Ω,BK) such that

lim σ%(A) = σκ(A)
JV->oo

for every AeBκ. Since linear combinations of indicator functions of sets in Bκ are
sup-norm dense in the set of bounded immeasurable functions, we also have
σ*(g) -> σκ(g) for every /^-measurable bounded function g. The family of measures
{σκ}, where K runs over finite subsets of the positive integers, is consistent.
Furthermore, for each factor (X(A^9BΛ) in (3.13), BΛi is generated by a locally
compact topology on X(A^. Thus by Kolmogorov's consistency Theorem (see for
example [7, p. 251]), there exists a unique probability measure σ on (Ω, S), whose
marginal distributions consist of {σκ}. Furthermore σN(g) -> σ(g) for every bounded
measurable cylinder function g. Since such functions are sup-norm dense in F(Ω), it
follows that σN(/)->σ(/) for every feF(Ω). This completes the proof.

Corollary 3.1. With the same assumptions as in Theorem 3.1, σ(U^) = 1, and for any
bounded measurable cylinder function g,

]imπCk(0,g)=σ(g).
fc-» oo

Proof By the triangle inequality,

\σ(g) - π C k ( 0 , 0 ) | ^ \σ(g) - σN(g)\ +\σN{g) -πN

k{g)\

+ |πί rte)-πC k(0,0)|. (3.14)

By first choosing N and then k sufficiently large, each term on the right side of (3.14)
can be made arbitrarily small by Theorem 3.1, Theorem 2.2, and Lemma 3.1. Hence

πCk(0,g)^σ(g) (3.15)

for every measurable cylinder function g. From (3.15)

for any cylinder set A. Since Um is a countable intersection of cylinder sets and since
by Condition 3.1, given any ε > 0

πck(0,Um)>l-ε

provided m is sufficiently large, it follows that σ(Um) > 1 — ε for m sufficiently large.
Thus since ε is arbitrary and U^ = (J Um9 σ(uj) = 1. This concludes the proof.
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Corollary 3.2. With the same assumptions as in Theorem 3.1, σ is a tempered Gibbs
state for V, β, and z.

Proof. Let A be a bounded Borel set in Ud. By Lemma 2.2, for any cylinder set AeS,
πΛ(s, A) can be uniformly approximated on £/m, for each m, by a bounded measurable
cylinder function. It follows from Condition 3.1, Corollary 3.1, and the triangle
inequality that

lim π C k ( 0 , πΛ(s9 A)) = σ(πΛ(s, A)). (3.16)
k-*oo

But by the consistency of the specification {π^} we can write, as in the proof of
Corollary 2.2,

πCk(0,πJs9A)) = πCk(09A) (3.17)

for all k large enough so that AaCk. Combining (3.16) and (3.17) and letting
k-^oo gives σ(A) = σ(πΛ(s9A)) for any bounded measurable cylinder set A.
A standard argument in measure theory shows that σ(A) = σ(πΛ(s9A)) for any
AeS. Temperedness follows from Corollary 3.1. This completes the proof.

Remark 3.2. If σN is translation invariant for each JV, then the Gibbs state σ of
Corollary 3.2 is also translation invariant.

Section 4. Applications

In this section we give two examples in which behaviour of a potential VN with hard-
core iV-component implies similar behaviour for a related potential V without any
hard-core component. The basic tool for this is the convergence result of Sect. 3,
namely, if σN is the Gibbs state for VN = V Λ~φΉ described in Sect. 3, then

σN(f)-^σ(f) (4.1)

for feF(Ω\ where σ is a tempered Gibbs state for V.
We begin with an extension of a theorem on the decay of correlations given in [5,

p. 244].

Theorem 4.1. Let d( 9 )bea translation invariant semimetric on J.d c Ud. Let VN be a
translation invariant potential satisfying Conditions 2.1 and 2.2 and Condition 3.1 &
and b o/[5]. Then for sufficiently small values ofβ and z, there exists a unique Gibbs
state σNfor VN satisfying

\σN(f0) ~ σN(f)σN(g)\ g CNe~d^\\ f \\a\\g\\b (4.2)

for all α, b e Z d , /, geF(Ω) such that \\f\\c, \\ g \\c < oo for each c e Z d , and some constant
CN depending only on z,β and VN. The norms \\ \\c for ceZd are defined in [ 5 ] .

Remark 4.1. This slightly improves the result in [5] by removing the restriction that
the JV-body components of V for N^. 3 be of finite range and by guaranteeing
existence of the Gibbs state σN.
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Proof of Theorem 4.1. Condition 3.2 of [5] holds by Lemma 2.1 of this paper and by
Remark 3.1 of [5]. Also, by Condition 2.1 and Lemma 2.1 of this paper, the left side
of inequality (3.11) of [5] converges to zero as n -• oo, establishing the conclusion of
Theorem 3.2 of [5] for potentials considered here. It follows from this, that the
conditions given on the top of page 244 of [5] are satisfied and hence the conclusions
of Theorem 4.1 of [5] hold for potentials considered here. Existence of σN follows
from Theorem 2.2. This concludes the proof.

Remark 4.2. The above proof extends the stronger result given by (4.3) of [5] to
potentials satisfying the hypotheses of Theorem 4.1, but we will have no need of this
result in what follows.

A variant of inequality (4.2) can now be extended to a Gibbs state for a potential
V without a hard-core component. In the theorem below we let VN = V + φN; σN and
σ are the same as in (4.1).

Theorem 4.2. Let V satisfy Condition 3.1 a and b o/[5] and Conditions 2.1 and 3.1.
Giυenf, geF(Ω) such that \\f\\c, || g \\c < oo for all ceZd and ε > 0, N can be chosen
sufficiently large and β and z sufficiently small so that

1(7 lit + ε (4.3)

for all a,beZd. The quantities CN, \\ ||β, || \\b9 and d(-, ) are the same as in Theorem 4.1.

Proof. The proof follows directly from (4.1) and Theorem 4.1.

Remark 4.3. Theorem 4.2 extends Dobrushin uniqueness techniques for the decay of
correlations to potentials on the continuum without hard-core and without any
positivity restrictions. We point out that smaller values for the constants CN than
those given in [5] could be obtained through the analyses given by Kϋnsch [6] and
Follmer [3].

As a second application of the techniques of Sect. 3, we show that the grand
canonical pressure PN, corresponding to the potential VN = V + φN> converges to the
grand canonical pressure P corresponding to the potential V9 as JV->oo.

The pressure P(z9 β) for z, β and a potential V is given by

βP(z,β)= Urn j^-logZCk, (4.4)

where ZCk = ZCk(0) is the partition function defined in (1.6), and the hypercube Ck

with volume \Ck\ is given in Definition 1.6.

Theorem 4.3. Let V satisfy Conditions 2.1 and 3.1. Assume that the grand canonical
pressure PN(z9β) corresponding to VN =V + φN exists for every N. Then the grand
canonical pressure P{z, β) corresponding to V exists and

iV-»oo

Proof. As in the.proof of Lemma 3.1, let Z* = Z £ ( 0 ) and Zk = ZCk(0). We first
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show that {PN(z,β)} is a Cauchy sequence. By the triangle inequality,

\βPN(z,β)-βPM(z,β)\ί
1

βPN(z,β)-—logZN

k

\ck
1

\ck

log Zl
1

\ck

1

\ck

(4.6)

The second term on the right of (4.6) can be rewritten as

1

\ck

log: M

As in (3.10), for sufficiently large N and M, this is small uniformly in k. Now choose k
large enough and depending on M and N so that the first and third terms on the right
side of (4.6) are small. Let P{z,β) = lim PN(z,β). It remains to show that

(4.7)

This holds by the following application of the triangle inequality.

-5-j- log Zk-βP(z,β) — logZ,- —logZ?
\c} \ck

~logZ»-βPN(z,β) + \βPN(z,β)-βP(z,β)\.

By choosing N first and then k we see that (4.7) holds. This concludes the proof.

Remark 4.4. The existence of the grand canonical pressure P is already known for
superstable, lower regular potentials V (see Ruelle [11]). We include Theorem 4.3
to establish further the relationship between V and VN.

Theorem 3.1, Corollary 3.2, Theorem 4.2 and Theorem 4.3 show that some
statistical mechanical properties of continuum potentials may be studied by
investigating related potentials with hard-core components. These hard-core
approximations give rise to models which more closely resemble standard lattice gas
models. It may be expected then that some techniques successful in the study of
standard lattice models could be extended to yield results on continuum models via
this process, as was demonstrated above in the case of Dobrushin uniqueness
methods.

Acknowledgements. The author would like to thank Professors L. Gross, J. Rosinski, and A. Russek for
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