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Abstract. A new method to compute effects of tunneling in one-dimensional
multiple well is developed. A tunneling parameter built with physical quan-
tities is introduced to measure the splitting between eigenvalues due to
tunneling. These splittings are given by convergent series in term of this
tunneling parameter for a wide class of double well.

I. Introduction

This is our second article in a series about the classical limit of one dimensional
Schrodinger operators with multiple well potentials. The main subject of this
article is tunneling. We shall use some of the results proved in the first paper of this
series, referred to as [CDS1]; it concerns the harmonic approximation, the
exponential decay of eigenfunctions and asymptotic series for eigenvalues in the
classical limit.

The third paper will treat tunneling in the case of shape resonances.

To describe more precisely what we mean by tunneling let us consider the
Schrodinger operator

Hk)=—k*A+V (1)

on the interval Q of the real line R, where V is a potential function with an at most
doubly degenerate absolute minimum v, Typical graphs of V for v,=0 are
shown in Fig. 1.

In the following we state the precise assumptions on V:

Assumptions on V. Let Q be an arbitrary open interval and let V satisfy
i) VeLl (Q).

loc

ii) ¥ has an absolute minimum v, which can be at most degenerate of order 2.
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Fig. 1

We split Q in two intervals Q, and Q,
Q=0,00,, Q,=(ab), Q,=(b,c), a<b<c, 2

such that ¥ has a nondegenerate minimum v, at x, inside Q,. In case of
degeneracy the second point where V takes its minimal value is inside ©, and
called x,.

iii) ¥ admits asymptotic expansions up to order N =2 at every x;

N
V(X)=vo+ Y, v, (x—x)'+0(x—x"""), v,,>0. 3)
n=2

The definition of H(k) under the above conditions on V is given in Chap. II.
Then we introduce the operator H”(k) with the same differential symbol as H(k)
but an additional Dirichlet boundary condition at the points b defined in (2). This
boundary condition decouples the two intervals 2, and £, by what is physically
interpreted as an infinitely high and narrow wall. Particles are thereby confined to
their respective wells. By definition H(k) is not affected by tunneling from one well
to the other, because

H°(k)=H{ (@ H3(k),

and H®(k) is at the same time very close to H(k). Therefore we shall take H"(k) as a
point of reference in our discussion of tunneling. Comparing eigenvalues and
eigenfunctions of H(k) and H”(k) we shall attribute any change to tunneling.
Mathematically tunneling is introduced by a change of boundary conditions.

In this article we present results about discrete eigenvalues of H(k) in the terms
of H”(k) in the limit k \ 0. We shall prove that every spectral valued function of k,
E(k)e o(H(k)) is given by a convergent power series in the tunneling parameter (k)
(Theorems I11.1.2, I11.2.2, and I11.2.4). t(k) is defined in Definitions I1.6 and 11.8 and
proved to be exponentially small in k™! : t(k) = o(exp—constk ™ 2).

The method used in the analysis of the spectrum of H(k) in the terms of H(k) is
the following. The resolvents of H(k) and H”(k) are related by Krein’s formula [Kr,
AG, Ka, p. 188]

H+1)"'=HP+1)"'+11, 4)
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where IT is a rank one operator and incorporates the effects of tunneling. The
spectrum of H is therefore intimately related to the zeros of the Weinstein—
Aronszajn determinant w(z) associated with (H” +1)" ! and IT (see [Ka, p. 244]
and references therein), which are the poles of the resolvent of (H+1)~* (IL.15-17).
It is shown that w(z) has a particularly nice structure, so that the zero set can be
analysed by means of Lagrange’s inversion formula [D]. It turns out that the
proofs and results are sensitive to whether the spectrum valued function E®(k) of
HP(k) we start from is degenerate or nondegenerate in the limit k \ 0. This concept
is introduced in Definition 1.4 and means roughly the following: ED(k) is called
degenerate in the limit if there is a second spectral valued function EP(k) such that
(for v, =0)

lim k™ 2EP(k)= hmk 2EP(k).

k=0
Otherwise E”(k) is nondegenerate in the limit. The fact that the above limit always
exists follows from our results about the harmonic approximation [CDS 1]. In the
case of the symmetric double well every spectral valued function is degenerate and
therefore degenerate in the limit. The analysis of the zero set of w(z) is given in
Chap. III, Sects. 1 and 2 for the cases of spectral valued functions E”(k)
nondegenerate in the limit and degenerate in the limit, respectively.

Some words about multi-instanton expansions and possible extensions of this
work are given in the concluding remarks of Chap. IV.

The main motivation for our analysis comes from our work on the Born-
Oppenheimer approximation [CDS 0]. In this case the parameter k* is the ratio of
the electronic to the nuclear mass. Another motivation was our aim to give a
rigorous and systematic version of Polyakov’s method of instantons to compute
the energy splitting of the two lowest eigenvalues for the symmetric double-well
(see [P] and references therein). A particularly nice application of results about the
classical limit is Witten’s derivation of the Morse inequalities [W7]. For that one
needs, however, a generalization of our results to many dimensions. This has been
done by Simon using geometric methods [S1].

There is a large literature on this model which has been used in many different
branches of physics. In particular Harrell [H 1] has given a rigorous version of the
WKB approach and computed all the contributions to the energy eigenvalues up
to first order in the tunneling parameter. Jona—Lasinio et al. [JMS] used
stochastic methods to prove localization of eigenfunctions and asymptotic series
for discrete eigenvalues. Zinn—Justin developed the method of instantons to get
various formulae for eigenvalues and tested many of them numerically [Z]. In
[R-R], complex instantons are used to compute the first order in the tunneling
parameter of the splitting between the two first eigenvalues of the anharmonic
oscillator. Also, a systematic analysis of double well Hamiltonians in a more
abstract setting can be found in a recent series of papers by Davies (see [Da]).

II. Objects of Interest and some of their Properties

As we have said in the Introduction we want to link eigenvalues of H(k) to the ones
of HP(k). H(k) is the positive self-adjoint operator with symbol —k*4 + V defined
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in L*), Q open interval, and Dirichlet boundary condition on 0Q. The
assumption on ¥V are made in Chap. I. By Dirichlet boundary condition on 0€2 in
the case of singular behavior of V at the boundary we mean the Friedrichs
extension of the operator with the same symbol and domain Cg(£) (see [Ka,
p. 343]).

Without loss of generality we shall take in the following

,=0, x,=0<b<x,. (1)
Thus, V will be positive.

Remark 1. To clarify what we mean by an absolute minimum v, of a L, function
we describe it below:

essinf{V(x), xe Q} =v,
V' CQ, € closed interval, x;¢£, then (2)
essinf{V(x),xe '} >v,.

We stress that if we introduce

{ liminf V(x) if +o0eQ
— x>t oo (3)
* + 00 if not,
V,=min(V,,V_), 4
then (2) implies
V,>0,. (%)

Then HP”(k) is obtained from H(k) by adding an extra Dirichlet boundary
condition at the point b mentioned in the assumption on V.

The microscopic operators h(k) and h”(k) are technically convenient. They are
defined by

h(k)=k~2D(k)H(k)D~ (k) and similarly for h°(k), (6)

where D(k) denotes the unitary dilation operator from L*() to L*(Q(k)), Q(k)
=k~ 1Q, and

(D(kyu) (x) =k *u(kx), ™

Their symbols will be denoted by — A4+ W(k, x). This procedure introduces an
artificial distinction between the two wells when the minimum is degenerate. In
this case a second microscopic operator can be defined by setting the origin of
dilation to the second position x, of the minimum. However, the so-defined
microscopic operators are unitarily equivalent. Hence we can restrict ourself to the
analysis of A(k) defined by (6).

For hP(k) one has a direct sum decomposition

h(k) =h (k)@ h3 (k). )
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Formulating the first result on these operators we have to introduce the two
following harmonic oscillator operators h{*! with symbol —4 +v, x?, i=1,2. In
case V does not take its minimal value inside ,, we formally put A’ = oo ; by this
we mean vanishing of its resolvent. Let r(k), r(k), r2(k), ", i=1,2, denote the
resolvent at the point z= —1 of h(k), h”(k), hP(k), h{?.

Then

Proposition 2. i) r(k), r° (k) “converge as k \ 0 to r? in norm when the minimum of V
is nondegenerate and strongly otherwise.
ii) If T(k™'x,) denotes the translation operator

(TG x)u) (x) =u(x— k™ 'x,),

then r2(k) and T(k™'x,)r2(k)T(— k™ 'x,) “converge as k 0" in norm to ¥ and r?,
respectively.
1ii) lim {|r(k) — rP(k)| =0.

The signification of the inverted comma on the expression “converges as k07 is
given in the beginning of the proof.

Proof. r(k) and r”(k) do not live in the same Hilbert space as ¥, when QIR ; this
makes improper the expression “converge as k\0.” To make it proper we
complete the operator in all L*(R) by an arbitrary one which norm converges to
zero as k \ 0. Further details on this procedure may be found in [CDS 1, Chap. I1I,
Sect. 1]. A similar remark works for r2(k) and r2(k).

iii) is a direct consequence of Propositions 6 and 7 of Chap. I in [CDS 1]. If
r(k) (x, y) denotes the integral kernel of r(k) one has

lr(k)—+"(k)| < v(k) (k™ b, k™ 1b) = 0(k*/?). ©®

This is based on Krein’s formula and an asymptotic estimate on the diagonal of
the kernel of r(k) at x=k ™ 'b. Because of iii) it is sufficient to show i) for (k). When
the minimum of ¥ is nondegenerate one may paraphrase the proof of Theorem 2.2,
Chap. IIT in [CDS1]. The method uses a pointwise estimate via Feynman Kac
formula on the kernel of r(k)—r{®. Otherwise when the minimum of V is
degenerate the strong convergence needs only to be verified on CF(R) because

(k) —r?| <2. (10)

Then the same method applies with slight modifications. The proof of ii) is similar
to the one of i).

Eigenvalues of H(k), HP(k), h(k), h°(k), r(k), r°(k) will be denoted generically by
E(k), E°(k), e(k), €”(k), f(k), f°(k). The ones of h{?), ¥?, i=1, 2 will be denoted by e

and f@. A crucial role will be played by the sets
L =0hP)uo(h?); (£L+1)" ' =0(r?)us(?). (11)
One important consequence of Proposition 2 is:

1 The subscript (2) on the h{®’s is there to recall that they are the second order approximation to h(k)
with respect to the expansion in k



234 J. M. Combes, P. Duclos, and R. Seiler

Proposition 3. % is exactly the limit point set of all the eigenvalues of either h(k) or
hP(k).

Eigenvalues in £ are stable in the sense of Kato [Ka, pp. 437]. In fact we use a
slight generalization of his concept.

The proof can be found in [CDS 1, Chap. III, Theorem 6.8].
We shall use Proposition 2 in the following equivalent form: The set of limits:

lim k™ 2E(k), where E(k) is a spectrum valued function of either H(k) or H”(k) is
kN0

exactly equal to 2 = a(h{?)Ua(h?). Notice that the set of limits for H(k) and H”(k)
are equal. The spectrum valued function will be abbreviated as the s.v. function.
We introduce the following terminology:

Definition 4. An element of # =o(h{?)uc(h?) is called degenerate if it belongs to
both spectra o(h{?) and o(h?), otherwise it is called nondegenerate. A spectrum
valued function E(k) of H”(k) is called degenerate in the limit if Il(ing k™2E(k) is a

degenerate element of &, otherwise E(k) is called nondegenerate in the limit.

Remark 5. i) The degeneracy of elements of £ is at most 2.

ii) The notion of degeneracy in the limit can be analogously introduced for s.v.
functions of H(k). Though the spectrum of H(k) is never degenerate, it may have
s.v. functions degenerate in the limit.

From now on we shall not write the explicit dependence in k in the objects to
be considered when we feel it is not necessary. According to our general strategy
we shall use Krein’s formula which relates the resolvents of the microscopic
operators h and h”

r=r’+m, (12)
where = is the rank one operator whose integral kernel is
n(x, y)=7(x)1(y);  t(x)=r(k™ b, k™ 'b)”*r(k™'b,x). (13)

We shall use in the following the W—A formula (see [Ka, p. 244]) for which we
need the W-A determinant associated with r” and «:

o(z)=w(z;r?, ) =det(1 + n(t?—z)~ 1)
=14tra(r’—z)~!
=14+((r’—2)"!1,7). (14)

Let us recall briefly some consequences of these formulae

ze a(rP) with multiplicity one, then z€o(r), 15)
ze a(r®) with multiplicity two, then ze a(r), (16)
zeo(r®), then zea(r) < w(z)=0. 17

For the case at hand the above results can be deduced by an analysis of the
following formula

(P =z ta(P—2)" !

(r—2"1=@"-2" '+ o)

(18)
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Proposition 3 shows that the eigenvalues of i and h® are related through their limit
points in #. In Chap. III we shall elaborate on this relation. This will be done by
looking at the zeros of w. For that purpose we have to analyse more precisely the
structure of w. From now on this analysis relies on the type of degeneracy in the
limit of the s.v. functions (Definition 4).

Structure of W—A Determinant in the Nondegenerate Situation. Let f°e a(+”) such
that lim f2(k)= f®e (% + 1)1, where f@ is nondegenerate. Let ¢”, P” denote the
corresponding normalized eigenvector and eigenprojection. Then
trn PP -
o(z)=1+ L +tra(rP—2z)7 1, (19)

—_—
where (r”—z)~ ! denotes the corresponding reduced resolvent of ¥°. We introduce
two new objects:

Definition 6. We shall call trrP” the tunneling parameter associated to f” and
denote it by

t=traP”=|(" ). (20)

We introduce also the function ¢ defined by

o™ (2)=1+trn(P—z) !

=1+((P—2)" '1,7). 1)
Thus w takes the form
)= 7 ! — 407, 22)

Remark 7. ¢~ is precisely the W—A determinant associated with #” and =.

Structure of the W—A Determinant in the Degenerate Situation. Let now fiD ,i=1,2,
be two eigenvalues of r” such that lim fP=fPe(Z+1)" L Let ¢P, PP, be the
corresponding normalized eigenvectors and eigenprojections. Then

trnPD trnP?

w@)=1+ 77— +f21,—_2;+tm(r/”—\z)—1, (23)

D_\- D
where (r®—2z)~! denotes, as before, the reduced resolvent of r°.

Definition 8. We shall call traP?, i=1,2 the tunneling parameters associated to f;”
and denote them by

t;=trnP?=|(pP, 7). (24)

Then we shall call t=¢, +t, the total tunneling parameter associated to the group
iD, i=1,2. Finally we introduce the function ¢ defined by

oY) =1+trr(r? —2) 1 =1+((P—2)" '1,7). 5)



236 J. M. Combes, P. Duclos, and R. Seiler
Thus o takes the form
N (26)
5 .
fi—-z f. 2D —z

Instead of using this form we prefer to do the following: in Ran P?@Ran P) we
may look for an orthonormal basis {y, 0} such that

OLlz. 27)
o) )G

t.
al= =?' and t=|(y,7)%. (28)

w(z)=

We obtain

with

Remark 9. v and 0 in general are no longer eigenvectors of h°. To set the final form
of w we introduce

D D
g=ofPrarpp= 2l 29)
t1+t2
then
o= — 2279 | o1y (30)

(z=fD)z=17)
Some Properties of the Tunneling Parameter and the Function o

Proposition 10. The tunneling parameters t, t,, t, and the function ¢~ defined in
Definitions 6 and 8 are analytic in

{kea:, |Argk| < %}

Proof. By standard arguments one can prove that r(k), r>(k), i=1,2, are analytic
families of type B (see [Ka, p. 395]) at least in the sector

{ke(E,IArgkl< %}

Then one deduces easily the analyticity for total eigenprojections and n(k).
We now give estimates on the tunneling parameters.

Proposition 11. One has in the nondegenerate situation

t(k)=o(exp—— 2Bk~ 2 } V(s)”zds) ,  B<t,
0
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and in the degenerate situation

t(k)=o0 (eXp —2pk™?

b
| V(s)"2ds

), i=12, p<1.

Proof. These estimates are easily obtained with the complex boost method (see

[CDS1, Chap. III, Sect. 3]). The method here is pushed further to obtain

exponential decay on Green’s functions. Here we give the proof only for t(k).
For any « with [Ima| <1 we defined the multiplication operators

U(x)=expia | W(k,t)"/?dt,
0

called a boost. Let r(«) and r°(x) be the holomorphic families defined by
o) =UprU(—o); rP(0)=Ur’U(—a).
One has the uniform estimate
M) and [rP(@)| =1 for |Imoaj<l. (31
If g(x, y) denotes the kernel of r, then the kernel of r(x) is

glo;x, y)= (exp ioci[c Wik, )Y/ 2dt) g(x, ). (32)

Then we defined t(x) by?
t(o; x)=g(k™ *b, k™ 'b) " 2g(a; x, k™ 1b). (33)
Then if @P(x) denotes U(x)p®, one has

t(k)=(¢"(@), 7(@))|? exp2 Imak ~ 2 } V(s)'/%ds. (34)

From (31) we deduce in the appendix the following uniform estimate on g(«; -, y)
lgle; -, <1 yek™'Q, |Ime]<1. (3%)

If one recalls that ¢°(«) is bounded in k (see [CDS 1, Chap. III, Sect. 4]), then the
statement for t(k) follows easily.

III. Expansions in the Tunneling Operator

In this chapter we derive convergent expansions in the tunneling parameter for the
shift between eigenvalues of H”(k) and their corresponding ones of H(k). The
analysis depends on the type of degeneracy in the limit of eigenvalues we are
considering.

1. The Nondegenerate Situation

In this section we investigate the situation of s.v. functions which are not
degenerate in the limit. Let E® and E be s.v. functions of H?(k) and H such that

: -2 — 1+ -2rD — (2)
lim k™ 2E(k)= lim k™ 2E°(K)=e®e £ . (1.1)

2 Notice that t(e)= U(o)r. The reason is that 7 is transformed like a kernel and not like a vector
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To reconstruct E starting from E” we prefer to work with the corresponding
s.v. function f, f? of the resolvents of the microscopic operators. We shall use the
following:

Lemma 1.1. Let @ =(e®+1)" 1. There exists a neighborhood ¥ of ® and k,>0
such that for any k in (0, k,), the zero sets in ¥"\f°(k) of w(z)=1+((r"—2)" ', 1)
and @(z)= f° — z— to(z) coincide.

Proof. One has obviously the identity
a(@)=(f"~2)"'e” (2d(2), (1.2)
where t and o(z) are defined in Definition 1.6. The statement follows from

lim o(k, z)=1, uniformly in z in sufficiently small neighborhoods of f @ 1.3)

To prove (1.3) one looks at
lo™1(2)— 1| =1((P—2)" 'z, )| < (P —2)" 2 [l2)2.

The reduced resolvent (*P—z)~! is uniformly bounded for k and |z— )|
sufficiently small since f® is nondegenerate by assumption. Now ||z is O(k/?).
This is a simple consequence of Propositions 6 and 7 in [CDS 1].

The main result of this section is contained in the following

Theorem 1.2. Let E be a s.v. function of H which is nondegenerate in the limit, and
f=(k 2E+1)"'. Let E® and fP be the corresponding objects for H". Then for
sufficiently small k one has

v o) tn
f=1"+ Y o, (14)
n=1 M1
where
m—1
0,= dz,.—_l(a(z))"lpfn' (1.5)
Moreover
b
t(k)=o(exp——2/3k"2j V(s)ds), Vp<1, (1.6)
0
and
,lcil’?) o,(k)=1 and o, (k)=0,k) VYn=2. (1.7)

Proof. Due to the results about the W—A determinant mentioned earlier in (IL.17)
and the intertwining property of the eigenvalues of r and r” shown in [CDS 1,
Chap. I1], we know that f is precisely the first zero of w(z) to the right of f?(k). By
the previous lemma we may as well look for roots of

z— fP=ta(z). 1.8)

We shall do this using Rouché’s theorem and Lagrange’s inversion formula
(see [D, pp. 2501). So we need only to find a closed path y which encloses f” such
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that
sup{|ta(z)],zey} <1. 1.9
Let d be the distance of f” to the rest of o(r”); we know by assumption that
lim d(k)>0. (1.10)
We choose for vy
y= {ze(l:,lz—fDl=‘—21}. (1.11)

The condition (1.9) is now easy to verify for sufficiently small k because of (1.3) and
the exponentially small estimate on t(k) in Proposition II.11.
Estimates on o,(k) are done using Cauchy’s formula: for any n=2

(=1 d"(2) (=1 ne"2)d(2)
I omi 'i(z—fD)"dZ_ 27 VD=

then

o | < n(n—2)! sup {lo"~ 1(2) Ia’(Z)I,zev}@"_ —0,),

because 6"~ ! is uniformly bounded on y and

(@) = 16%(2) (P — 2)™ 2, 7)| < [0 2(2)] (P — 2)" 2] ) 2= O(k).

2. The Degenerate Situation
In this section we consider s.v. functions which are degenerate in the limit. Let E,,
EP, i=1,2 be s.v. functions of H, H” (the labelling is defined below) such that
lim k™ 2E(k)= lim k" 2EP(k)=ePe 2,
k—0 k—0

i=1,2, e? being degenerate in &£ . (2.1)

As in the first section we shall work with the corresponding s.v. functions f,, f”
of the resolvents of the microscopic operators.
Our method applies in the two following cases

Case 1. Vk>0, fP(k)= f2(k).
Case 2. Fky>0, Vke(0,ky)  tk)<|fP(k)— f2k).

From now on we restrict ourself to these cases and we assume without loss of
generality that

Tko>0, Vke(O,ko),  fAK)S F2(K). 22

The labelling of the f”s as in Chap. II does correspond to the direct sum
decomposition r”=r?@r). The f;’s are labelled by their natural order.

Remark 2.1. One can easily see that

Vk>0, tk)>0, (2.3)
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which implies in Case 2 that there is no crossing between f” and f;.
The proof of the result for Case 1 is similar to the one of the nondegenerate
case, Theorem 1.2. So we give the corresponding theorem without proof.

Theorem 2.2. Let E,, i=1,2, be s.v. functions of H degenerate in the limit which
fulfill (2.1) and f,=(k~2E,+1)" . Let E?, f” be the corresponding objects for H”. If
f2(k)=f(k) for any positive k, then one has:

1) filk)=fPU)=f(k), Vk>0,
ii) for sufficiently small k

., @®
L=+ T o 24)
n=1 "t

m—1
where ¢, = T (a(2)"), = -

The estimate (1.6) and (1.7) are again valid.

To investigate Case 2, we need an analog of Lemma 1.1. For its formulation we
must introduce new notations:

Vie{l,2}, @&,=fP—z—to(z), 2.5)
Vi, )e{(1,2, 1)},  of2)= Zi_*—f“’— o(2). 2.6)

We recall that g is defined in (I1.29).

Lemma 2.3. There exist a neighbourhood ¥~ of f® and k>0 such that for any k in
(0,ko) and i=1,2, the zero sets in V' \{f?, [} of w and &; coincide.

Proof. One has obviously
o(Z)=(fP-2)"lo” H2)(2) i=1,2. 2.7
The rest of the proof is similar to that of Lemma 1.1.
We are ready for the following

Theorem 2.4. Let E,, i=1,2, be s.v. functions of H degenerate in the limit which
fulfill (2.1), and f;=(k~2E,+1)"*. Let EP, fP, be the corresponding objects for H".
In addition assume that

Jky>0, Vke(0,ky), tk<fP—fP, 2.8)

where t=t, +t, is the total tunneling parameter. Then for sufficiently small k one
has

fi=fP+ X %ai,,,, i=1,2, (2.9)
n:l .
where

m—1

d . )
Oion= d-zﬁ(ai(Z)) L=pp, i=12. (2.10)
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Moreover

b
| V(s)t/2ds

Xy

t(k)=o0 (exp —2Bk™?

) vR<1 (2.11)

and
0., =02 =)’ nzt. (2.12)

Proof. By the same remark as the one in the beginning of the proof of Theorem 1.2
we know that f; is precisely the first zero of w to the right of f°,i=1,2. By Lemma
2.3 we may as well seek this zero as a root of

z—fP=tofz), i=1 or 2. 2.13)

To recover f; we shall use again Rouché’s theorem and Lagrange’s inversion
formula (see [D, pp. 250]).> We must find a closed path y, which encloses f;> such

that
z— fiD
O'i(Z)

t<inf{

, z€ yi}. (2.14)

But it is sufficient to fulfill
_ D _ D
inf{(z f1 )(z fz ) ’ zey,}
zZ—d
‘7+('Vi) ’
where o (y,)=sup{|o(z)|, z€y,}. Because of the assumption (2.8) it is sufficient to
show that there exist ;s such that

limo*(y)=1, (2.16)
k-0

t< (2.15)

and

inf{(z—ff)_(z—ff)

DEL) el =P, @17)

There is no difficulty to find suitable y;’s. We show an example in the appendix.
The estimates on t,(k) are shown in Proposition IL.11, whilst those on g, , are
done using Cauchy’s formula:

PN ol D Gy
[aret) ol =[P Lo e r e
(n—1)!

< [yl sup{lo”(2)l, ze v} (f7 — f2)™" due to (2.17)

27t’
=0,((f2—fD)7".
because the length |y,| of v, is O((f2— /7)) [see Appendix (A.2)].

3 In fact we use an obvious generalization of what Dieudonné writes in his book : we simply take a
connected domain instead of a disk
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Remark 2.5. To unify the presentation of Theorem 2 we have chosen to expand the
shifts f,— f;” in power of the total tunneling parameter. Nevertheless one should
not believe that the leading term of f,— £ is ¢ because as

al, 1 = aiza(f;l)) .
This gives
fi=fP=to(f2)+.... (2.18)

IV. Concluding Remarks

1. A More Precise Estimate on the Tunneling Parameter: A Conjecture
In the case of symmetric double-wells we can say more on the tunneling
parameters. If we choose b=3(x, +x,), then we have t,(k)=t,(k)=%t(k). If e,

i=1,2, denote two s.v. functions of h(k) such that hm el(k)— hm ez(k) then using
results of Theorem II1.2.2 we obtain

ey e,(k)
k—~0 t(k)

From the behaviour of |e,(k)—e,(k)| proved in [H1] and announced in [S2] we
deduce that

=1. (1.1)

lim k2 Logt(k)= — j V(s)*/2ds.

k=0 *
This allows us to make the following conjecture.
Conjecture. The tunneling parameters defined in Definitions 11.6 and 11.8 satisfy:

b
| V(s)"/2ds|,

Xi

lim k2 Logt (k)= — 2 i=1,2,
k=0

where the nondegenerate case is described by i=1.

2. Multi-Instanton Expansion

In the case of symmetric double-wells we want to mention that the expansion
(IIL.2.4) of |f,— f,| has at least formally the structure of a multi-instanton
expansion. This last expression is borrowed from Zinn-Justin [Z]. We can read in
[Z] that the leading term of |e, — e, | is the “one instanton contribution.” Therefore
because of (1.1) we can say that the tunneling parameter (k) corresponds to the one
instanton contribution. Still following [Z] we see that t(k)" corresponds to the
n-instanton contribution. Obviously an expansion of the same type is valid for
le, —e,l.

3. Possible Extensions

To simplify the matter we have chosen to show our method to compute tunneling
effects in the frame of the harmonic approximation. In fact there are no extra
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difficulties to consider flatter minima of the potential V. Also the method can be
applied easily to operators H(k) with more general types of boundary conditions
on 0Q2 than Dirichlet’s one.

Among the extensions on which our method does not apply directly we
mention tunneling between more than two wells and tunneling in n dimensions.
The former has been considered in [H2] and [JMS] in some special cases. They
give only the leading asymptotics to the shift induced by tunneling. Some results
about the latter are announced in [S2].

Appendix
1. Bound on Boosted Green’s Functions

Theorem A.1.1. Let Q be an open interval of R and Ve L}, (Q), V nonnegative. Let

loc

H be the positive self-adjoint operator with symbol — A+ V obtained by Friedrichs
extension. Let U(x) be the multiplication operator by expia | V(s)*/*ds for x, in Q

and |Ima|<1. Let g(o;x,y) be the Green’s function of I-f(oc)=U(oc)H Ue)™ ! at
z=—1, then
V(x,y)eQ? ligle; -, »)|  and glo;x, )| SCH* =1, (A.1.1)

where Co=3(1Q|"2+4)Y2—1|Q|™ ! and |Q| denotes the measure of Q.

Proof. H(x) is the self-adjoint holomorphic family of type B (see [Ka, p. 393])
associated to the quadratic form

o) [u] = 1Vull >+ 1+ o) | V2ull? + ol (iVu, V2u) + (VY 24, iVu)],

with the form domain of H. This was shown in [CDS1, Lemma 3.5 of Chap. III].
Now if R(x) denotes the resolvent (H(x)+ 1)1, one has because H(x) is m-sectorial

with vertex zero:
IR <1, V|Ima<l1. (A.1.2)

As U(e) is unitary for real « it is sufficient to make the proof for acilR. Let C be an
arbitrary positive constant. Then by the Sobolev inequality one has

l(g(@;x, ), wl* =|(R@)@)(x)]* =(C+ 2] )[Rl > + C ™ [(R(@)iy || .
Now we choose C=C, such that C+|Q|"*=C""'. Thus
(g(e; x, ), w)* < Co(1 + Ret(e) [R(o)ir]
= Col((H(o) + D)R()ii, R()is)|
< Col(@, R(@)i)| = Co || R flu]®.

So |lg(e; x, -)II* < C,. That C,, is bounded by one uniformly in || is obvious.

2. Suitable Contours y; for the Proof of Theorem 2.4, Chap. 111

The choice of y;’s which fulfill (II1.2.17) is obviously not unique. To explain our
choice let us introduce some convenient notations:

Z=z—g, T(Z)=Z-B*Z"', B=wu0,4, A=|f7—fl, (A21)
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with which (I11.2.17) becomes
inf{|T(Z)—B|, Zey,—g}=4.

Because of the two critical points of T(Z), namely Z = +iB, one can only expect
that

inf{|T(2)~Bl, Zey,— g} S4.

The transformation Z— T(Z) is so simple that we give the y;’s by the following
pictures with some further comments afterwards:

(¥1)
Z Plane

(31) and (¥3)

T Plane

Fig. 2. The drawing is made for aZ=1/3, a2=2/3

F,, F,, G, N, §, are, respectively, the points corresponding to fID, fZD, g, g+iB,
g—iB in the z plane whilst their image under Z—T(Z): F, F),, G', N, §’ are the
points corresponding to 0, 0, co, 2iB, —2iB in the T plane. (C{) and (C5) are,
respectively, the circles with center G and radius

ri=(xaf+a)d, ry=(fo3+ay)d.
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The domains enclosed by y, and y, are the smallest ones of that shape whose
images contain the ball centered at zero with radius 4. We have chosen that shape
because circles centered at the origin in the Z plane are transformed into simple
ellipses. We have checked (I11.2.17). To verify (I11.2.16) one must notice that r¥ and
r3 go to zero with k; therefore this follows from the uniform convergence of ¢ on a
small neighbourhood of f® already shown in Lemma IIL1.1.
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