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Abstract. The semidirect product if Λ Jf of Schwartz5 space £f of functions on
1R3 with the group Jf of diffeomorphisms of 1R3 provides a model for quantum
theory based on local currents. Certain unitary representations of tf are
induced by representations of SL(3,R). From the local currents in these
representations, we construct the generators of local rigid rotations, with
respect to which the Hubert space decomposes into invariant subspaces of
fixed spin carrying representations of local SU(2). The physical interpretation
of this procedure is discussed.

I. Introduction

In the local current algebra formulation of non-relativistic quantum theory,
systems of spinless particles are described by means of representations of the
infinite-dimensional Lie algebra generated by the fixed-time operators
(?(/) = fίKχ)/(χ)dx and J(g) = |J(x) g(x)dx, where ρ(x) is the mass density, J(x) is
the momentum density, and / and g are test functions vanishing at infinity. The
corresponding infinite-dimensional Lie group is a semidirect product e^Λjf,
where £f is Schwartz' space of test functions under addition, and Jf is a group of
diffeomorphisms of 1R3 under composition [1-3]. To describe non-relativistic
particles with spin, however, it was thought necessary to introduce at the outset
additional operators Σ(h) = jΣ(x) h(x)dx, where Σ(x) is the spin density [4], The
Lie group generated by the Σ-operators is the local SU(2) current group [5-9].

We have seen in earlier work that a wide variety of distinct quantum-
mechanical systems can be described by unitarily inequivalent representations of
£f Λ Jf, without introducing additional physical quantities. For instance, repre-
sentations of the diffeomorphism group describe fermions as well as bosons
without the need for anticommuting field operators [10]. The question arises,
then, whether one can obtain particle spin directly from irreducible repre-
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sentations of this group, constructing spin density operators Σ(h) from the
operators ρ(/) and J(g) within a representation. In other words, let us suppose we
had begun the study of quantum theory by investigating the irreducible unitary
representations of ̂  Λ JΓ and the correspondence in a representation of the self-
adjoint generators to physical measurements. Could we have inferred the possi-
bility of particles with spin, both integral and half-integral?

The purpose of the present paper is to suggest an affirmative answer to this
question. We shall interpret subspaces in certain representations of Sf Λ Jf as
describing particles with integer or half-integer spin. We then construct explicitly a
set of operators, the generators of "local rigid rotations," corresponding to the
measurement of local angular momentum, which leave the fixed-spin subspaces
invariant. These, together with operators corresponding to measurements of local
mass density, we call "local measurement operators." We then demonstrate how
Σ(V) can be obtained in terms of them: the local measurement operators, together
with the total momentum, form a complete set of observables in each fixed-spin
subspace, and permit the recovery in each subspace of a new representation of
£f Λ Jf together with local SU(2). Thus, the initial representation of ρ(f) and J(g)
alone is sufficient to describe spin degrees of freedom as well as position and
momentum degrees of freedom.

In Sect. II we introduce needed notation and review the use of representations
of SL(3,IR) to induce representations of the diffeomorphism group [11-13]. In
Sect. Ill we interpret the local currents in these representations, constructing the
local measurement operators by taking appropriate limits in a representation of
£f Λ Jf. With respect to local rigid rotations the Hubert space decomposes into
invariant subspaces of fixed spin, within which representations of local SU(2) are
constructed. We also remark on the generalization of these results to the case of N
particles. In Sect. IV we discuss the physical interpretation of the procedure we
have adopted.

Taken together with earlier work [14-15], this paper shows how unitarily
inequivalent representations of the same group & Λ Jf can describe many different
physical systems, including: systems of N identical particles satisfying Bose or
Fermi statistics, particles in two-dimensional space with unusual statistics [16],
systems of distinct species of particles having different masses or charges, systems
of infinitely many particles in the thermodynamic limit, systems of point dipoles,
quadrupoles, etc. [17], and now particles with integer or half-integer spin. Such
universality is possible owing to the infinitely many degrees of freedom embodied
in the group of diffeomorphisms.

II. Representations of the Diffeomorphism Group Induced from SL(3,IR)

The operators ρ(f) and J(g) satisfy the infinite-dimensional Lie algebra (in units
where h = l)

(1)
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where [g1?g2] =g2 * ^gi ~δι' ^82 *s tne Lie bracket of the vector fields gx and g2.
The product law for the corresponding Lie group £f Λ Jf is

(/l,Φl)(/2>Φ2H(/l+Φl/2>ΦlΦ2)> (2)

where /x and /2 are Schwartz' space functions, φx and φ2 are diffeomorphisms
of IR3, (φ/)(x) = /(φ(x)), and (φ1φ2)(x) = φ2(φ1(x)). A continuous unitary repre-
sentation of Se Λ jf will be written ^(/)f^(φ). For φe Jf, we denote by /φ(x) the
Jacobian matrix of φ at x; i.e. [/<$($]{ = dkφ

j(x).
Let φs

8:IR3->]R3 for selR be a one-parameter group of diffeomorphisms
(a flow) satisfying <3sφs

g = g°φs

8, with φs

g

=0(x) = x. Then we have exp[>J(g)]
= ̂ (φf). Since g and all of its derivatives vanish rapidly at infinity, φ|(x) rapidly
approaches x when |x| becomes large (for fixed s), and its Jacobian matrix
[̂ (x)]̂  approaches the identity matrix δj

k. We will take Jf to be the closure of
the group generated by all such one-parameter groups of diffeomorphisms, with
respect to a topology of uniform convergence in all derivatives. Thus elements of
Jf satisfy these conditions at infinity.

For fixed x, define the mapping hκ: jf->SL(3,!R) by /zx(φ) = (det/φ(x))~1/3

•/φ(x). Let the stability group (or "little group") be given by
Jf^ίφejΓ :φ(x) = x}; then the restriction /z x : JΓX->SL(3,IR) is a continuous
homomorphism. If xf (for 0<ί^ 1) is a continuous path in IR3 from infinity to x,
then /ιxt(φ) defines a continuous path (for O^ί^l) from the identity to /zx(φ) in
SL(3,IR). Such a path corresponds to an element of the universal covering group
SL(3,R). Any alternative path xj from infinity to x may be deformed continuously
into xt their images hxt(φ) and hx,t(φ) in SL(3,R) are thus seen to be homotopic.
Hence we have a well-defined map hx : JΓ->SL(3,1R). It is straightforward to verify
that

whence /ιx restricted to Jf"x defines a homomorphism from JΓX to SL(3,IR) [13].
Next consider a continuous unitary representation π of SL(3,1R) in a Hubert

space M. This induces a representation V of JΓ in the Hubert space
jf = L2(lR3,^), given by

) = π(Mφ))Ψ(φ(x))(det/φ(x))1/2 . (4)

Schwartz' space is represented in L2(IR3, Jί) by operators ^(/) satisfying

[Φ(/)*Ί(x) = exp[i/(x)]y(x), (5)

and Eqs. (4) and (5) define a continuous unitary representation of ̂  Λ Jf .
To write the self-adjoint generators in such a representation, let J0(g)

= ( 2 i ) ~ ί ( g ' P +F -g) acting on the spatial coordinate x. Following the notation of
Sijacki [18], let Σ0 and Σ± be the operators acting in Jt which represent the usual
generators of SU(2), the maximal compact subgroup of SL(3,R), with Σ3=Σ0 and
Σ±=Σί±iΣ2. Let Tμ for μ = — 2, — 1, 0, 1, 2 be the operators in Ji representing the
quadrupole generators of SL(3,1R), obeying Tΐμ = (—l)μTμ. The representation π
determines Σ0,Σ±9 and Tμ. The commutation relations among these generators
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are:

(6)

[T2,Γ_2]=-42;0,

with other commutators following from the Jacobi identity.
Define

(7)

Now the representation

) = f(x) I ,
(8)

J(g)=J0(g) /+i(curlg) Σ+i Σ G-μ®Tμ
μ=-2

gives the self-adjoint generators obtained from Eqs. (4) and (5). One can verify
from Eqs. (6)-(8) that the local current algebra of Eq. (1) is satisfied.

The representations of SL(3,R) described by Sijacki can be written as sums of
finite-dimensional representations of SU(2) with various multiplicities, where the
operators Tμ intertwine these representations. For example, if (2S + 1) denotes the
dimensionality of a "spin S" representation of SU(2), there exist SL(3,R) repre-
sentations with S-values corresponding to {0, 22, 3, 43, 52, 64, ...}, or {1, 2, 32, 42,
53, 63, ...}, or {f, (f)2, (f)3, @4, ...}, where the exponents indicate multiplicities.
There also exist multiplicity-free AS = 2 representations {0, 2, 4, ...}, {1, 3, 5, ...},
and {jf .§....}.

Since SL(3,1R) is non-compact, it has no non-trivial finite-dimensional irreduc-
ible representations. Thus if J(g) in Eq. (8) corresponds to a physical measurement
for all g, it must for at least some g describe an experiment in which the particle
spin can change. Such a situation could conveivably occur for supermultiplets of
hadrons lying on Regge trajectories, for excited states of nuclei [19], or in the pres-
ence of a strong non-uniform gravitational field (see discussion below). Alternative-
ly, to describe the usual nonrelativistic physics of particles with fixed spin, we can
construct from the ρ(f) and J(g) in the foregoing representations a class of
operators which preserve the SU(2)-in variant subspaces. We do this in the next
section. As explained below, plausible physical arguments can be given to suggest
that these are the operators corresponding to realizable physical experiments.
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III. Local Rigid Rotations and their Generators

Considering the terms in Eq. (8), we propose to interpret the first term J0(g) /,
which acts only on spatial coordinates, as the ordinary (orbital, or kinetic)
momentum density averaged with the function g. The second term (l/2)(curlg) Σ
we interpret as the spin density averaged with (l/2)(curlg). Subspaces of L2(R3, Jί]
having a given spin are invariant under these operators. However, the terms
(l/2)ΣG_μ(g)7^ connect the different spin subspaces. We think of these as
infinitesimal generators of non-uniform spatial dilations. One cannot simply set
these Tμ terms equal to zero for while J0(g) / and J(g) separately satisfy the third
commutation relation of Eq. (1), the combination JΓ

0(g) /H-(l/2)(curlg) Σ does
not.

Suppose then that we wish to measure the z-component of total angular
momentum (orbital plus spin) in a bounded region with cylindrical symmetry
about the z-axis. For specificity, we choose a sphere of radius R centered at the
origin, and proceed as follows to construct the appropriate self-adjoint operator.
Let ψs :IR3->IR3 be the one-parameter group of local rotations given by ψs(x) = xs,
where x = (xί,x2,x3), with:

x* = (coss)x1 — (sins)x2,

2 = (sins)*1 + (coss)x2

= x for

\x\ZR
(9)

The local rotation \|/s is discontinuous at |x| = Λ. Now a one-parameter unitary
group 7(ψs) acting in L2(IR3) is defined by (7(ψs)Φ)(x) = Φ(ψs(x)). The (discon-
tinuous) vector field q generating such a rotation is given by

= (-x2,x1,0), |x |gK,
(10)

= 0,

The operator J0(q), defined to be the infinitesimal generator of F(ψs), is thus self-
adjoint. Let χ^(x) = l for |x|^Λ and χ^(x) = 0 for |x|>Λ. We write formally J0(q)
-(20~1(q P + F q), and observe that J0(q) = J0((χR(x)z)xχ) = f ( x x J0(x))
•(χκ(x)z)dx, where z denotes the unit vector in the x3-direction. Thus J0(q),
expressed in units of angular momentum, plausibly corresponds to measurement
of the z-component of orbital angular momentum in the region |x| ^R. The self-
adjointness of J0(q) is an interesting property of operators corresponding to
measurements of angular momentum in bounded, cylindrically symmetric regions.
Its analogue is false if one attempts to write operators for measurements of linear
momentum in bounded regions. That is, if χ is the characteristic function of any
bounded region, JQ(χz)= j*J0(x) (χ(x)z)dx cannot be self-adjoint, since χz does not
generate a transformation group of the region. In what follows, we exploit the self-
adjointness of J0(q), where q generates a local rigid rotation, to construct
operators which preserve the SU(2)-in variant subspaces in the representation of
Eq. (8).
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Theorem. Let q be given by Eq. (10), and χR be the characteristic function of the
region |x|^K. Let qα, α = l,2,3, ..., be a sequence of C°° vector fields with
components in Schwartz* space, with lim q = q in the sense of a weak limit of

α-» oo

distributions; that is, for any g with components in ̂  lim fq (x) g(x)dx = Jq(x)
α— * oo

• g(x)dx. Let {Ωn} be an orthonormal basis for the representation space Jί of
SL(3, R), where n stands for the triple of quantum numbers (5, M , K) (S, M) are the
SU(2) quantum numbers corresponding to total spin and the z-component of spin
respectively, and K indexes the distinct SU (2)-invarίant subspaces having the same
value of S. Let D £ L2(1R3, Jί) be the domain of finite linear combinations of vectors
of the form Φn(x)Ωn, where Φne^, and let D0 be the subspace of D consisting of
vectors Ψ for which lim J(qΛ)Ψ exists weakly with respect to D, where J(qα) is given

a.-* oo

by Eq. (8). That is, ΨeD0 if and only if there is a vector Λ in L2(R3, Jf) such that
for all Ψ'€D, \im(Ψ',J(qa)Ψ) = (Ψ',Λ). Then for ΨeD0, lim J(qJΨ

α-»oo α-> oo

= (J0(q) / + v Σ)lP weakly with respect to D, where v is the (constant) characteris-
tic vector field v(x) = χR(x)z.

Proof. The domain D is a common dense invariant domain for all the operators
ρ(f) and J(g). Consider the matrix element (Φ'nΩn, J(qα)ΦmΩm) as α-^ oo, and look at
each term given by Eq. (8). First, we have

Jim (Φ'nΩn, J0(qα) IΦmΩJ = Jim δ^Φ) [qα(x) -

= Jim ί^yf q.(x)-[^W- ΓΦm(x)]dx + Jim 5^if (divqβ(x))[3ζWΦm(x)]Λ. (11)

The first term of Eq. (1 1) converges to δmni
 1 Jq(χ) [Φ'n(x)FΦm(x)]dx by the weak

convergence of qα to q. But this convergence also implies the weak convergence of
the distribution divqα to the distribution divq. As distributions, ^q^x)
= (x1x2/R)δ(\x\-R) and d2q

2(x)= - (x1 x2 / 'R)δ(\x\ - R\ so divq = 0. Thus for any

Ψ,Ψ'eD, we may write lim(Ψ',J()(qϋ)ΊΨ) = (Ψ',JQ(q) IΨl where J0(q) is the
α-* oo

local orbital angular momentum operator discussed above, acting on the spatial
coordinate x.

Next, we have for the second term of Eq. (8),
lim (Φ;ί2πi(curlqα) ΣΦmΩm)= lim βίΦΪOOΦw(x)(curlqβ(x))dx] (flII,ΣQw). (12)
Λ~ * 00 OC~* OO

Of course if n = (S, M, K) and m = (Sf, M', K'\ the inner product (βΛ, ΣΩJ vanishes
unless S = S' and K = K'. Now qα-*q implies curlqα-^curlq as distributions, and
curlq-z^^2-^^1)^^^)-^2-^3)2)/^)^^!-^)]. Thus, in evaluating
Eq. (12), we have the desired term (Φ'nΩn,(χRz) ΣΦmΩm\ and a surface term which
equals

where θ is the polar angle of x with z. The surface term must vanish in order that
the result be the inner product of Φ'nΩn with a vector in L2(1R3, Jt\ It does so for all
Φ'nΩneD if and only if we restrict Φm to be a function which vanishes on the
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boundary |x|=R. Note that the finite linear combinations of ΦmΩm under this
restriction still form a dense domain in L2(R3, Jί\ which we shall see is the domain
D0 in the statement of the theorem.

Finally, we consider the third term of Eq. (8),

^ ,, T ΩJ.

Again qα-»q implies Gμ(qα)->Gμ(q) as distributions, and from Eq. (7) we find that

G0(q) = 0,

()=-1Π2x1x2-iίR2-x32 Rδx-R (M)

Thus Eq. (13) consists only of surface terms, which cannot however cancel the
surface term from Eq. (12). Again, the surface terms vanish when Φm vanishes on
the boundary|x| = R. Thus we see that this condition characterizes the domain D0,
and that on this domain,

limJ(qβ)«P = (J0(q) / + v Σ)ίP. Q.E.D.
α-> oo

It is interesting to observe why, when the limit qα-»q is taken in the above
theorem, the terms (l/2)(curlqα) Σ can give a representation of SU(2), and not
merely of SO (3). Consider diffeomorphism group elements φ^α corresponding to
flows under qα for fixed s. As qα-»q, the elements φ^α approximate point wise, for
|x| ή=R, a local rigid rotation φ = q>s Let x, define a path from infinity to x for any
fixed x inside the region of nontrivial φ. Then the path in SL(3,R) given by
ί->/ιXt(φJ?α) defines the element of SL(3,R) associated with the point x which would
be used in Eq. (4) to obtain ^(φ^α). But when the limit α->oo is taken, t-+hxt(φ*")
becomes a discontinuous path in SL(3,IR). Thus the choice of approximating
sequence φ^α can affect the decision as to which element of SL(3,R) will be

associated with a point x inside the sphere. That is, lira /L(φ?a) depends on the
a->oo

choice of sequence qa. For a particular local rigid rotation generated by the
discontinuous vector field q, there will be two distinct equivalence classes of
approximating sequences of diffeomorphisms φα, corresponding to the two classes
of paths in SL(3,R) from the identity to (det/φ(x))~1/3/φ(x) in SO(3). If one of
these classes is exemplified by φ^α, then the other is exemplified by φ^ 2π, where
qα-»q and φ* = <P*+2π' Thus in some representations of SL(3,R), the limit qα-»q
determines a double-valued representation of the local rigid rotation group SO (3),
depending on which approximating sequence is used; this is just an ordinary
representation of SU(2).

The self-adjoint operators J(q) = J0(q) / + v Σ of the preceding theorem
preserve the SU(2)-invariant subspaces in L2(IR3,^), and generate unitary
representations of groups of local rigid rotations which likewise preserve these
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subspaces. The operators ρ(f) also leave such subspaces invariant. Letting χ be the
characteristic function of a bounded region, fΛe £f> and lim fΛ = χ as distributions,

OL~* OO

we obtain operators ρ(χ) corresponding to measurements of mass in the region. We
call the operators J(q) and ρ(χ) "local measurement operators."

To summarize, one begins with a representation of the current algebra of
Eq. (1) induced by a representation of SL(3,IR). One then constructs operators
corresponding to measurements of angular momentum in a region invariant under
rotations. Each such operator can be approximated by operators in the original
current algebra on a dense domain of particle states in which the particle is
localized away from the region's boundary. The algebra of these operators then
leaves invariant the subspaces of the Hubert space corresponding to repre-
sentations of SU(2). Likewise, measurements of mass in a bounded region preserve
these subspaces. In a theory where such local measurement operators are taken to
correspond to a complete set of observables, the particle spin cannot be changed
by any realizable experiment.

Next, we observe that within each SU(2)-in variant subspace of the original
representation, we have a new representation of the algebra of Eq. (1), augmented
by spin density operators [1, 4], and a corresponding representation of the local
current group associated with this algebra [3]. We rewrite Eq. (1), with J0

replacing J, and specify the following additional commutators :

[ρC/),Z(h)]=0,

[Σ(h1),Σ(h2)] = iΣ(h 1xh 2), (15)

Of course J0(g) is to be interpreted as the kinetic (orbital) momentum density,
averaged with the vector field g, and Σ(h) as the averaged spin density. The group
obtained by exponentiating these commutators can be written (£f®2Γ}/\3C\
where SΓ is the group of C°°, SU (2)- valued functions on 1R3 which tend rapidly
toward the identity at infinity and the group operation is pointwise multiplication,
and where (x) denotes the direct product and Λ a semidirect product. For
Ti9 Γ2e^r, the group law for (!?®ff^ Λ jf becomes

Letting &(S} be the usual irreducible (2S+ l)-dimensional representation of SU(2),
and Ψ(x) a (2Sf+l)-component spinor, we obtain the one-particle spin S repre-
sentation U(f)W(T)V(φ)

(17)

[F(φ)<F](x) = <F(Φ(X)) l/det/Φ(x) .

The corresponding representation of the algebra (15) is

(18)

) = Eg(x) P + P g(x)l ̂ (x) ,
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where the Pauli spin matrices σ satisfy \_σp σk] = 2iεjMσ^ The relationship between
Σ(h) and W(T) may be described as follows: let Th(x) = exp[f ίh(x) σ] then The^
and W(Th) = exp [iΣ(h)]. We observe that if R(ή, θ)y denotes the vector obtained by
rotating the vector y about the unit vector n by the angle θ, then we have
expL^h,)] exp[fΓ(h2)] exp[- iΣfrJ] = Qχp[iΣ(R(hly -IhJ^)] [20].

Finally, we remark that the representation of Eq. (18) can be obtained in a
straightforward manner from the local measurement operators ρ(χ) and J(q)
constructed earlier, together with the total momentum operator P = Jj(x)dx. The
operators ρ(f) are first recovered: approximating / by finite linear combinations
of characteristic functions χj9 one takes a limit of linear combinations of Q(x3).

Next, J0(g) can be written \ £ [£(0k) f̂e + -Pfc£?(0k)]> where Pk is the kth component
k=l

of P. As before, suppose that qα is a sequence of C°° vector fields tending toward q
the local orbital angular momentum operator J0(q) can now be constructed on an
appropriate domain as a limit of operators J0(qα). Now v Σ = J(q) —J0(q). Finally
I"(h) is obtained by approximating h with linear combinations of characteristic
vector fields v^, and taking a limit of linear combinations of v?. Σ.

Representations of £f Λ jf induced by representations of SL(3,1R) have also
been given which describe N particles for N>ί [13]. Consider for example an
JV-tuple of distinct representations (π1?...,%) of SL(3,IR). In the induced repre-
sentation, the operators ^(/) and ^(φ) act on the tensor product Hubert space
Jf = L2(R3,^1)®...®L2(R3,^*r

N), where Jί. is the representation space of πr

The representation is given by linearly extending the operators

ψ] (χ15..., x*) = d) jwψfa), (i9)
J 7=1

(X) y J (XP - - , XN) = ® π .(/ίx/φ))^(φ(x.)) i/det/φ(x.), (20)
j = l J j=l

generalizing Eqs. (4) and (5). The local currents may be written

)= Σ /(*;H>j=ί

= Σ i [g(x;) FJ + ̂  g(X;)] / + Σ έ(curlg(x,) π/Σ) (21)
j = l & 7=1

+ Σi Σ G^ίgXx .π/T,),
7=1 μ=-2

where each term has its obvious interpretation as an operator in the tensor
product space J^.

Now one can construct the local measurement operators as in the one-particle
case above. Invariant subspaces for local measurement operators are tensor

N

products of SU(2)-invariant subspaces - i.e. if= (X) WJ9 where ι̂ . = L2(IR3, Λ/})
7=1

CL2(1R3, J(j), and Λ^ is a subspace of Ji^ invariant for an irreducible repre-
sentation of SU(2). If the representations of SU(2) for some subset of the spaces Λ^.
are unitarily equivalent, then W decomposes further into a direct sum of
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subspaces satisfying various exchange symmetry conditions. Thus, though the
particles are initially regarded as distinct because the representations πy are
distinct, the absence of local measurement operators connecting the different
SU(2)-invariant subspaces in L2(JR3,^) means that vectors in TjT now describe
some particles which cannot be distinguished, and which may satisfy for example
Bose or Fermi statistics. We believe that in JV-particle representations a proof can
be given that local measurement operators form a complete set of observables, but
the elementary argument given above does not generalize to the case of more than
one particle.

IV. Discussion

To sum up, we start with a continuous unitary representation of ̂  Λ JΓ, from
which we obtain the current algebra of self-adjoint operators which generate one-
parameter unitary subgroups. We consider the operators obtained when the test
functions indexing the local currents approach (in the case of ρ) characteristic
functions, or (in the case of J) vector fields generating local rigid rotations. These
choices for test functions correspond to measurements of particle number in a
region, or of angular momentum in a rotation-invariant region. The resulting
"local measurement operators" are defined on dense domains of wave functions
vanishing at the regions' boundaries. Such wave functions describe the physical
states on which the measurements can be performed.

When the original representation of Sf Λ jf is induced by a representation π of
SL(3,R), or more generally by representations π19...,% of SL(3,R), the Hubert
space decomposes into a direct sum of subspaces invariant for the local measure-
ment operators. Such subspaces are (tensor products oί) SU(2)-invariant sub-
spaces, and may be interpreted as describing particles with spin. In each such
subspace, a representation of the local current group (£?®&')ΛJF and its
generators can be constructed in terms of the local measurement operators. Thus,
the description of particles with spin in which the local SU(2) current group is
adjoined "by hand" to the group £f Λ Jf, the latter being generated by the mass
and the (orbital) momentum densities, is obtained from a unified description in
which the group ^Λjf is generated by the mass and the total momentum
densities. We also remark that if this procedure is followed for representations of
9* Λ Jf without spin, one obtains local measurement operators for which there are
no nontrivial proper invariant subspaces of the Hubert space. The original (spin
zero) representation of ^ΛJf* can in this case be reconstructed from local
measurement operators.

Let us discuss further the interpretation that only the above-mentioned classes
of test functions give operators corresponding to physical measurements. To
interpret a measurement of ρ(/), where /e«5^ imagine an apparatus with the
capability of giving a "yes or no" answer to the question of whether a particle is
located in any particular region of very small volume. This allows measurement of
the expectation value of ρ(χ), where χ is the characteristic function of such a region.
Now one can approximate the expectation value of ρ(f) by averaging the results of
small-volume measurements with appropriate weights. Equivalently, one can
imagine a particle detection apparatus where /(x) describes the efficiency of the
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detector in a small region about x. Thus, in the representations discussed in this
paper, the ρ(χ) can always be recovered from the ρ(/), and vice versa.

The situation for the operators J(g) is not so simple. One would like to think of
measuring the linear momentum in small regions and taking an average, but we
have noted that there are no self-adjoint operators corresponding to measure-
ments of linear momentum in bounded regions. There do exist self-adjoint
operators for measurements of angular momentum in bounded regions with
rotation symmetry about the direction of the measured angular momentum
component. The local rigid rotation generators J(q) = J0(q) / + v Σ are bona fide
self-adjoint operators corresponding to measurements of total (orbital plus spin)
angular momentum in such regions. The orbital momentum density operators
J0(g) can be defined in the one-particle case in terms of mass densities and the total
momentum. This permits the orbital angular momentum J0(q) to be obtained
separately, and now the spin density Σ(h) for hke^ can be expressed as an average
over small- volume measurements.

Thus, in the representation of the Lie algebra of operators ρ(/), J0(g), and Γ(h),
which we finally obtain on each SU(2)-invariant subspace, each test function can
be considered as a weighting function averaging measurements made in small
regions. But measurements such as these do not change the particle spin. How

2

then are we to understand the terms \ £ G_μ(g)Tμ in the expression for J(g),
μ=-2

which cannot be expressed as averages of local mass and angular momentum
measurements? These terms are non-vanishing when g is the generator of
diffeomorphisms which "dilate" space non-uniformly in some region. Let φf

g be the
one-parameter group generated by such a dilation. In the representation F(φf)
= exp [it J0(g)] which acts only on spatial coordinates, we have

). (22)

Here V(φf ) can be thought of not as implementing an actual spatial deformation,
but simply as repositioning the particles in (undeformed) space. These two notions
can be treated as indistinguishable for non-relativistic point particles having no
spin degrees of freedom. The interpretation of F(φf) as a repositioning parallels the
interpretation of J0(g) as a weighted average of the momentum operators P.

However, if the particles have internal structure or spin, then repositioning
them in space is not the same thing as actually dilating space, since the latter
would affect the internal structure while the former would not. In the repre-
sentation ^(φf) = exρ[/ίJ(g)], we may think of J(g) as the generator of an actual
spatial dilation, which thus connects the different spin subspaces. One might, for
example, think of dilations of space such as would occur in the presence of a strong
gravitational field, and conjecture that the ability to produce and manipulate such
a field in the laboratory could produce superpositions of states describing a point
particle with different spins [21, 22]. In the absence of such fields, however, J(g)
must be interpreted as a physical measurement operator only as g approaches a
local rigid rotation generator. Its domain of definition in this limit must be states
in which particles are not present at boundaries where the dilation is non-
vanishing as the limit is taken. This is the procedure that we have adopted in the
present paper.
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