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Abstract. Fermionic quantization, or Clifford algebra, is combined with
pseudodifferential operators to simplify the proof of the Atiyah-Singer index
theorem for the Dirac operator on a spin manifold.

Introduction

Recently, an outline of a new proof of the Atiyah-Singer index theorem has been
proposed by Alvarez-Gaume [1], extending unpublished work of Witten. He makes
use of a path integral representation for the heat kernel of a Hamiltonian that
involves both bosonic and fermionic degrees of freedom. In effect, a certain
democracy is created between the manifold and the fermionic variables cor-
responding to the exterior algebra Λ*T*M at each point xeM. In this paper, this
idea is pursued within the context of Hamiltonian quantum mechanics, for which
the powerful calculus of pseudodifferential operators exists, permitting a rigorous
treatment of Alvarez-Gaume's ideas.

Most of the work will be to unify pseudodifferential operators with their
fermionic equivalent, the sections of a Clifford algebra bundle over the manifold.
Using a pseudodifferential calculus based on the papers of Bokobza-Haggiag [7]
and Widom [17,18], but incorporating a symbol calculus for the Clifford algebra as
well, an explicit formula for composition of principal symbols is derived (0.7). This
permits a complete calculation of the index of the Dirac operator to be performed,
modeled on a proof of WeyPs theorem on a compact Riemannian manifold M.

Recall that this theorem states that

/πV / 2

Tr e~tΔ = 1 - 1 vol(M) + 0(Γn/2+ *). (0.1)

Using the calculus of pseudodifferential operators, one shows that the symbol σ of
the heat kernel satisfies.

σ(e'tΔ) = e~^2 + small error, (0.2)
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where \ξ\2 is in fact the symbol of A.
Combining (0.2) with a formula for the trace of a pseudodifferential operator

TrP= J σ(P)dxdξ, (0.3)
Γ*M

the theorem follows, by evaluating the Gaussian integrals along each fibre.
Of course, we have not specified what we mean by the full symbol of a

pseudodifferential operator for a Riemannian manifold. We use the exponential
map of M to pull back the pseudodifferential operator near xeM to ΓXM, and
calculate its symbol on T*M using the Euclidean structure. For details of the above
proof, refer to the paper of Widom [17].

We prove the Atiyah-Singer theorem for the Dirac operators on a spin manifold.
The proof extends in an obvious fashion to spinc manifolds, so also provides a proof
of the Riemann-Roch-Hirzebruch theorem. Moreover, the spinc index theorem,
combined with Bott periodicity, suffices to prove the full Atiyah-Singer index
theorem.

The formalism of this paper may be cast in the language of supermanifolds,
which is of increasing interest to mathematicians (Leites [15] and Witten [19]).
From that point of view, this paper investigates an algebra of pseudodifferential
operators with symbols that are C°° functions on a symplectic supermanifold, rather
than on T*M. The most notable result here is the formula for the trace of a
pseudodifferential operator (Theorem 3.7), which is formally similar to the formula
(0.3). The remainder of the introduction interprets these analogies. However, the
proof itself has been written in the standard languages of differential geometry and
pseudodifferential operators, and is independent of any theories of supermanifolds.

The major ingredient of the above proof of WeyFs theorem was the symplectic
manifold T*M and quantization on it, which relates suitable classical symbols in
C°°(T*M) with operators on C°°(M). We replace T*M by a symplectic super-
manifold Jf that is associated with any Riemannian manifold M, has underlying
manifold T*M, and whose C°° functions are sections of π*(Λ*M)9 the pullback of
Λ*M = yl*T*M to T*M. In a sense, Jf is the cotangent superbundle of the
"supermanifold" M with C°°(̂ ) = Γ(Δ\ where A is a spinor bundle on M—except
that Ji is not a supermanifold (except if, say, M is a complex manifold, for which the
spinor bundle is Λ°'*M, which has a canonical graded algebra structure).
Nevertheless, it is useful to think of Jf as some sort of cotangent bundle.

To prove that ,/Γ is a symplectic supermanifold, recall that a symplectic structure
on the superspace V= V0 φ V1 is given by a symplectic structure on V0 and a
nondegenerate inner product on V±. In our case, V0 = W® W* and Vl = W*\ we
impose the canonical symplectic structure on V0 and use the Riemannian structure
of M to give an inner product to V1.

The supermanifold Jf is a fibre bundle over Γ*M, with structure group 0(rc),
where dim M = n, and principal bundle π*0(M). In view of the diagram

π*0(M)x(R0 | M P* , Ji

I i
π*0(M) < ? Γ*M (0.4)
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it is sufficient to construct a closed 2-form on π*0(M) x (R0|n which is equivariant
under the action of O(n\ on the right for π*0(M) and on the left for R0 |w, and is
degenerate only along this action. (tR°'" is the superspace with n odd coordinates.) If
ω0 is the symplectic form on T*M, and g is the usual inner product on (R°|n, which is
a closed 2-form on [R0'", then we define our closed 2-form to be

ω = p*ω0 + g. (0.5)

Hence this descends to a symplectic form on J f . This supermanifold has been used,
with M = IR", by Berezin and Marinov [6] to describe a classical spinning particle.

Just as for an ungraded symplectic manifold, one may define a Poisson bracket on
C°°(ΛO that gives it the structure of a super Lie algebra. We would like to associate
functions in C00^) with pseudodifferential operators on Ji, the "base space" of
Jf. Returning once more to the linear setting, we recall that linear quantization
leads to the following correspondences.

Table 1

Classical

Phase space

Symmetry group
Observables

Even

Symplectic vector space IR2"

/>:Sp(«)->End(R2")
Polynomials V*R2n

Odd

Non-degenerate inner product
space IR2n

/?:SO(2w)->End(!R2n)
Exterior polynomials Λ*U2n

Hubert space Symplectic spinors L2(IR")
Quantum Symmetry group p:Mp(n)-+U(L2(Rn))

Observables Polynomial coefficient
differential operators

Spinors A = Λ*R"
p:Spin(2π)-»l7(Λ*R")
Clifford algebra C(R2n)

Γ d d ~ \
C *!,...,x_,—,...,—

L " dxl dxj

The right column, describing the theory of spinors and Clifford algebras, is due to
Brauer and Weyl [10], and will be reviewed in the next section. The left column
achieved its final form in Kostant's theory of symplectic spinors (Kostant [14]). The
point is that in a super context, the two columns are merged into one, and it is seen
that the Clifford algebra of an inner product space plays the role of the
pseudodifferential operator algebra, while the exterior algebra plays the role of
symbol space.

This example makes it natural to define the algebra of pseudodifferential
operators on a supermanifold by combining the pseudodifferential operators
on the base manifolds with sections of a Clifford algebra bundle. In the case of
Jf, for which C°°(ΛO = C°°(Γ*M) <χ) Γ(Λ*M), we choose as our algebra of symbols
^* = S*(M) ®Γ(Λ*M) for the definition of S*(M) c C°°(T*M), which is the class of
classical symbols, see Sect. 2. Similarly, the algebra of pseudodifferential operators
is Op^* = OpS*(M)®Γ(C(M)), and we will define a symbol map σ and a
quantization map θ, which are almost inverses:
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(0.6)

The operators in Op Sf* act on the Hubert space of L2 sections of the spinor
bundle A of M, with common dense domain Γ(Λ\ the C00 sections.

For the application to the index theorem, it turns out to be suitable to give ̂ *
the filtration such that

y>™= Σ Sj(M)®Γ(ΛkM).
j+k=m

This induces a corresponding filtration on Op^m, and we will show that

and also that the following remarkable formula for the top order symbol is true with
the above filtration of ̂ *: if poq = σ(θpoΘq), for p,ge^*, then (Theorem 3.5)

p°q(x& = e-WWWWpfaξ) Λ q(x9η)\ξ=η + lower order terms. - (0.7)

Notice that the curvature operator R(d/dξ, d/dη) does not change the degree when
applied to p Λ q : the two derivatives lower the degree by two, but this is cancelled by
the curvature R having degree two. This formula may be compared to the formulas
for the top order of the composition of symbols in other classes of pseudodifferential
operators, for instance, Boutet de MonveΓs classes Sftk which degenerate along a
submanifold of T*M (Boutet de Monvel [8]). Like these cases, one obtains here
differential equations on a set of linear spaces (the fibres of T*M), which are of course
much easier to handle than the full equation.

We will apply this formula to the square of the Dirac operator, ^2, which has
top order symbol — \ξ\2. If Trs, the supertrace, is defined as Tr|F0 — Tr jFj
for a superspace V= K0® F1? then the index of Q)\Γ(Λ+) is equal to Trse^2 for
any ί > 0. This is reminiscent of Tr e~tΔ

9 which is calculated by WeyPs theorem. Our
proof of the index theorem may be thought of as a superspace version of WeyPs
theorem.

By (0.7), I ξ |2 op = (I ξ |2 - iR(ξ, d/dξ) - ^R Λ R(d/dξ, d[dξ))p, up to lower order
terms; we will show that as ί->0, the symbol of e1®2 is increasingly closely
approached by e-«iίi^*w/0θ-&*Λ^ί.W), analogously to formula (0.2) for
σ(e~tA); this operator is understood to be applied to the constant symbol 1 on T*M.
This symbol may be calculated explicitly from Mehler's formula (2.10) for the heat
kernel of the harmonic oscillator, since the exponent is essentially the harmonic
oscillator with frequency ~* equal to the curvature #(,).

Finally, it is shown in Theorem 3.7 that the supertrace can be calculated by
integrating the symbol over the supermanifold — explicitly, the part of the symbol in
S*(M) (g) Γ(Λ2nM) (where M has dimension 2n) is projected out, and this is integrated
over the cotangent space M. (A more invariant formulation may be derived from the
fact that an oriented symplectic supermanifold has a canonical volume form, since
SOSp(F)^-»SL(K) for any superspace V.) This easily leads to the formula, for the
index of 2 in terms of the A-genus of M.

In fact, the theorem will be proved for the Dirac operator associated to a vector
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bundle E on M. Nevertheless, the above calculation remains essentially unchanged,
except for the appearance of the Chern character of E.

This proof may be considered to be an improved version of those of Patodi [16]
and Atiyah, Bott and Patodi [3] in two senses : the use of Clifford algebras and their
symbols eliminates the combinatorics of the earlier proofs, and shows that the
cancellations which occur are not all that remarkable; also, this proof leads to the
explicit formula for the A-genus, while the earlier proofs had to appeal to various
topological characterizations of the A-genus.

In concluding this introduction, I would like to thank for many conversations
and much stimulation, L. Alvarez-Gaume, A. Jaffe, who suggested that I look at this
problem, T. Parker, and R. Bott.

1. Clifford Algebras and Spinors

The facts about Clifford algebras and the spinor representation that we use are
scattered widely through the literature (Atiyah and Bott [2], Bourbaki [9],
Che valley [11]). The following summary of the theory is fairly standard, and most of
the proofs are omitted.

If V is an inner product space, over [R or C, then the Clifford algebra of F, denoted
C(F), is the algebra generated by V with the relations,

w v = 2(v, w). (1.1)

Thus C(V) is the quotient of the tensor algebra of V by the ideal / generated by
(v®υ — |ι;|2|ί;eF}. Since / is invariant under the action of the orthogonal group
O(V\ there is an action of 0(V] on C(V) as an algebra extending its action
on Fc=C(F). Composing the injection of the exterior algebra Λ*V into the
tensor algebra of V with projection onto C(F) gives an isomorphism of the
O(V) modules Θ: Λ*F->C(F). This induces a filtration of C(F), in which
Cm(V)= £ #[ΛJF], which satisfies

j = m

C\V)'C\V)cιCj+k(V). (1.2)

We think of Θ as a quantization map that assigns to a symbol in A* V its operator in
C(F). If we define the symbol map to be σ = θ~ 1, then

lbl-1V. (1.3)

In fact, this follows from the full formula for σ(a-b),

σ(a - b) = σ(a) exp (d, d)σ(b\ (1.4)

In this formula, d:A*V-> V®Λ*V is the adjoint of contraction on the left,
F* ®Λ*V-+Λ*V\d\Λ*V-+Λ*V® V is the adjoint of right contraction; (,) is the
inner product on F; exterior multiplication is understood. This formula is easily
checked in an orthonormal basis of F.

The Clifford algebra is a Z2-algebra; under the Z2-grading Cf(F) =
£ 0[/lmF], i = 0,l, we have

m = imod2

)• Cj(V)<=Cί+J(V). (1.5)
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The action of O(V) on C(V) leads to an injection of o(V) into the Lie algebra
der(C(F)) of derivations of C(V). Let {et\l^i^n} be an ortho normal basis

of V. If (aij)Gθ(V\ so that aij=-aji, then it maps to ad I \ £ aaeiej I in
\ i<j J

der(C(K)) (this is easily proved by verifying it on VaC(V)). If this Lie
algebra is exponentiated inside C(V\ a covering group Gc=C(F) of
SO(K) is obtained, with covering map given by Ad:G-»Aut(C(F)). Since

eπeιe2 = _ j &Q it foπows if dim F^ 2 that G is a double covering of SO(F), so is
simply connected and isomorphic with Spin (V).

We now give a brief discussion of the construction of the spinor repre-
sentation of C(V\ assuming V is an even dimensional complex vector space.
(If V is real, then the injection K->K®C induces an injection C(V)->

Let P,<2 be a maximal transverse pair of isotropic subspaces of V, that is,
PnQ = 0, (P,P) = (ρ,ρ) = 0, and P and Q have dimension n = |dimK For
instance, let P (respectively Q) have the basis e2j_ί + ίe2j (respectively
e2j-ι ~ ie2j)' The inner product on V places P and Q in duality.

Let A = Λ*P G C(V) (by the inclusion P c V). We let V act on A by

peP,aεΔ,

qeQ.

This action extends to an isomorphism of C(V) with End(zl). The space A is
called the space of spinors, and if A is given the Z2-grading Δ+ = Λevp,A~ = Λodp,
then it is a graded module for C(V):

C0(V)Ά±c:A±, C1(V)Ά±c:A±. (1.7)

Let ω = fle1.. .e2neC0(V), so that ω2 = 1 and σ(ω) is (up to a factor of f) the
volume form of V. The operator ω, acting on J, equals Id | A + - Id \Δ ~ it is better
known as y5 to physicists. Let Trs a be the trace of αeC(F) on A±, and let
Trs a = Ύr+ a — Tr _ a (the s stands for super).

Theorem 1.8.

i) 2"(Trα) equals the projection of σ(a)eΛ*V onto Λ°V^ C.
ii) 2w(Trsα) equals the projection ofσ(a)eΛ*Vonto Λ2nV, identified with C by the

map

Proof, a) If / = {/!<...< /m} cz { 1, ..., 2n}, then let el = elί Im. As / varies over
all subsets of {!,..., 2n}, the vectors ejeC(K) form a basis of C(F). If |/| is odd,
then eI Δ± c: ^4 τ so Tre7 = 0. If |/| is even and / =/= 0, then for some ze/,

Thus only multiples of eφ = 1 contribute to Tr.
b) This follows from a), since Trsα = Tr aω. G
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2. A Symbol Calculus on Spin Manifolds

In order to calculate the index of the Dirac operator, we will develop a calculus for
pseud odifferential operators on the spin bundle which is intimately related to the
geometry of the manifold. This calculus is modeled on those of Bokobza-Haggiag
[7] and Widom [ 1 7, 1 8] the form in which it is presented here is a synthesis of these
two accounts, modified by the presence of the Clifford algebra.

The idea is as follows: zeroth order differential operators on the spin bundle A
are given by sections of End(zl). By the results of the last section, this bundle is
canonically isomorphic with Λ*M, so we can filter these operators by their degree as
a section of /t*M, that is, the degree of their symbols. We would then like to extend
this filtration to all of the pseudodifferential operators on A assigning an operator
the sum of its degree as a spinor endomorphism and its degree as a pseudo-
differential operator in the usual sense.

To do this in some canonical way (since as stated, the assignment of degree is
coordinate dependent), we recall the definition of the full symbol on a Riemannian
manifold. For simplicity, we assume that M is compact, although the calculus
may be extended easily to arbitrary manifolds. The exponential map is written
exp:TM-+M x M, so that (xeM,veTxM)\-^(x,expxv).

Let αeC°°(M x M) satisfy the assumptions:
i) exp"1 is a diffeomorphism in a neighbourhood of supp α;
ii) α = 1 in a neighbourhood of the diagonal in M x M.

The function α(x, •) will be used to localize function on M to a neighborhood of x for
which normal coordinates exist.

For any complex vector bundle E with connection, over M, parallel translation
from x to y along the geodesic between x and y is written as τE(x,y\ at least for
(Xy)esuppα. We let α£(x,y) = <*(x,y)τE(x9y).

We will use the standard symbol classes : If E and F' are two complex vector
bundles over M, and π is the projection Γ*M -> M, then

ai ^ CΛ£\ + \ξ\r~m for all α,]8 ^0,

where Cα/J>0}.

Here, (x, ξ) are the usual coordinates on Γ*M. In the applications, we will have
E = F, although this restriction may be dispensed with.

To incorporate the spin bundle, we notice that

S*(J®E)sS*(E) ® F(End(zJ))^S*(F) ® Γ(Λ*M).
C°°(M) C*>(M)

Using this realization of the symbols of pseudodifferential operators on A ®E, we
make the fundamental choice of filtration:

® Γ(ΛkM).
j + k = m C°°(M)

The justification for this choice will become clearer later.
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It is now possible to define a quantization, which associates a pseudo-
differential operator to each symbol, in an almost canonical way (that is, up
to the choice of α). In fact, if ueΓ(A (x)£), then ux = Qx.p*(aΔ(S)E(x,y)u(y)) is
in C™(TXM) ®ΔX ®EX for each xεM, while if pe^m(E\ then p\ e^f(T*M) <g)
Λ*T*M ®End(Ex\ and we can use the Fourier transform to produce a pairing
between the two objects:

(θp)u(x) = (2πΓn$TMxΊ*Me-i<v'ξyP(x> ξ)ux(v)dvdξ. (2.1)

Clearly, the quantized operator θp is bounded on Γ(J®£); the set of such
operators, supplemented by the regularizing operators, is denoted by
Op^w(£). As usual, we define ^~co= n ^m, so that Op &>-*(£) is the set of all

meZ

regularizing operators. These are included so that Op^*(E) will be closed under
composition.

The symbol map defines a symbol σPe^m for each PeOp^m (this will be
proved later), and is defined as follows : (σP)(x, ξ) is the endomorphism of Δx ® EX9 or
member of /l*Γ*M®End(£:c), such that if ueΔx®Ex, then

(σP)(x, ξ)u = Py(4<«*;ly-t>*AQE(y9 χ)u) \x. (2.2)

To provide some justification for these definitions, and before dealing with the
technical difficulties that they give rise to, it is of interest to investigate their behavior
on differential operators, which are of course better behaved. One of our goals is a
formula for the top order symbol of the composition of two operators, and solving
this problem for differential operators is already non-trivial. In fact, the formula will
be relatively easy to extend to all pseudodifferential operators once it is known in
this special case.

Let 0>m(E) be the subset of £fm(E) consisting of all symbols that are polynomials
in ξ. It is a straightforward consequence of Fourier theory that Op^*(E), the image
under θ of ̂ *(E), is exactly the set of all differential operators of the bundle A (x)E,
and that σ is a left and right inverse of θ. Since this is independent of α, the calculus is
canonical for differential operators.

Example 2.3

a) If XeΓ(TM) is a vector field on M, then Vx, covariant differentiation on A ® E, is
a differential operator. In a synchronous frame around x, that is, parallel along the
geodesic rays outwards from x in normal coordinates, the connection of A (χ)E
vanishes at the point x. This shows that

b) If M has curvature ReΓ(Λ2M ®Λ2M) c S2(E) ® Γ(Λ2M\ and E has curva-
ture FeΓ(End(£) ®A2M) c S°(E) ® Γ(A2M\ then

σ(V^oVy)- -(X_jί)(y_ιξ) +JK(X,Y) +WχY-jξ +iWn (2.3)

where the first two terms are second order, the next is first order, and the last is
zeroth order. Indeed, in normal coordinates at x,
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' y i 2 - ^l(δi + Γί)γj(dj + ^j)lχ - XlΎ\didj + Γ^.)^ + X*(

In this formula, Γf denotes the connection of zl (χ)£. We now make use of the
formula, valid if £ is a bundle with connection Γ and curvature F and we are in a
synchronous frame around x: Γjtjίy) = Ftj{x) + O(\y — x\). The proof may be found
in Atiyah, Bott and Patodi [3], Proposition 3.7. Furthermore, the curvature of A is
half of the Riemannian curvature.

c) The Dirac operator Q)± on Γ(Δ± (χ)E) is the composition of V:Γ(A ± (x)E) ->
Γ(T*M<8>Δ±®E) with Clifford multiplication, which maps T*M®Δ± to zlτ.
With the spin or hermitian inner product on A±, we have that the adjoint of ̂ ±

is — Q)+, so that the index of 2 + is dim ker 2 + — dim ker & ~. This is the integer that
is to be computed by the Atiyah-Singer index theorem.

In Atiyah, Bott and Patodi [3], it is observed that

index ̂  + =Ύτse
ts2

9 (2.4)

where ί>0 is arbitrary. Indeed, if V^aΓ(Δ±^E) is the eigenspace of Q)2

corresponding to the eigenvalue λ ̂  0, then @+: V^ -> V~λ is an isomorphism of
vector spaces if λ i= 0, so

Trse
a£»2 = dim V+ - dim V~ = index ̂  + .

In normal coordinates at xeM, ® = ]£eiV/, where et is the action of dxte
Γ(T*M) on Δ. Thus,

^2I — Y e e V-V.
"" \X Ll I Γ I* J

i ijkl ij

The second term is multiplication by s/4eOp^0(£), by the Bianchi identity, where
5 is the scalar curvature, so

= - I ξ I2 + IF + lower order. (2.5)

We will now derive a formula for composing symbols in 0>*(E). Iΐpe&k(E) and
then define their composition to be

p°q = σ(Θp°θq). (2.6)

It is not even obvious that poqe^k+l(E); this follows from the following theorem.

Theorem 2.7. There exist differential operators an, n ̂  0, on the bundle (over
Γ*M) π*(yl*M(8)End(£))®π*(yl*M®End(E)), such that if an(p,q) denotes the
exterior product on π*(Λ*M (x)End(£)) applied to an(p®q\ so that

ii) p 0 g = ^ an(p,4) (this is a finite sum);
Λ = 0

iii) α0(p,9)(x,ί) = e-i«(β/aw^)p(x>ί) Λ q(x,η)\ξ=η.
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Remark. If we had assigned to a /h order polynomial symbol in AkM the degree
y + c/c, with c^O, then i) and ii) remain true for ^ r g c ^ l . If ^c<l, then
a0(p,q) =p Λ q, just as in the usual calculus. However, we need the definition of
degree given by c = 1 the extra terms in α0(p, q) lead to the characteristic classes
appearing in the formula for the index of Q).

Proof. Symbols of the type /zeΓ(End(£)), ω£Γ(Λ*M) and pure polynomial in ξ,
together generate £P*(E\ so it suffices to prove the theorem when the two symbols
are from one of these classes. If neither of the symbols depends on ξ, then the result
follows from (1.4) which expresses Clifford multiplication in terms of exterior
multiplication.

To handle polynomial symbols, we shall make use of the algebra of formal
symbols (^*(£)[[c]],°), where ce[Rπ. In normal coordinates around xeM, let
c ξ = Σciζί> and let exP(c'£) denote the formal exponential of c-ξ in this algebra.

Lemma 2.8. There is an element rεΓ(Λ2M (x)End(E)) [[c]] of order at least 3 in c,
such that near x,

ξ) = (i +r)e?'ξ.

Proof. Let XeΓ(TM) be defined by X = ̂ Cidt. In normal coordinates around y,

= σ((l + commutators of X _ι <9 and X _ι Γ)

exp(-iX-jd))y

by the Campbell-Hausdorff formula, since Γ\y = 0. An mth commutator of X _j d
and X _j Γ vanishes at y for m ̂  2, and has symbol in Γ(A2M (x) End(E)) for m ̂  3;
this uses the fact that Λ2M is a Lie algebra (isomorphic to o(ή)) under the Clifford
bracket. Π

To prove the theorem for po(ω ®/z), where p is a polynomial in ξ, ωeΓ(AkM)
and /ιeΓ(End(£)), it suffices (by expanding in c) to prove that σ(ec'v°(θω ® h)) —
ω ®h ®eσ(c*V)ε0>*(E) [[c]] is the sum of terms in 0>k+n(E) [[c]] of order ^ n + 1 in
c. Since covariant differentiation of a section of C(M) gives the same answer as
differentiating its symbol in Γ(Λ*M\ and this preserves the degree of a differential
form, the result follows.

In the following calculation, let ̂  denote equality modulo an element (or sum of
such elements) in ^%E)[[c]] of order ^> n + 1 in C. In this notation, Lemma 2.8
states that

If c, rfe RM, then by the Campbell-Hausdorff formula,

ec'ξoe

d'ξ ^ σ(eic'voeid v)

Expanding this formula in c and d proves the theorem if p and q are both pure
polynomials in ξ, which is the last case which has to be considered. D
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We will apply this formula in the case where p= — \ ξ \2 + ±F is the symbol of Q)2

(neglecting lower terms). In this case, neglecting lower order terms,

x>ί). (2.9)

If we ignore the second term for the moment, the remaining terms are related to the
harmonic oscillator. This is where the formula for the index of Q) will come from: in
the next section, we show how the symbol of the heat kernel for Q)2 is given by the
heat kernel for the harmonic oscillator (with frequency"1 equal to the curvature).
For now, we note the following formula, known as Mehler's formula (see Glimm,
Jaffe [12]): if fcα(χ, y) is the kernel of e-^χ2~a2(d2ldχ2)\ the harmonic oscillator with
frequency" 1 a in one dimension, then

ka(x,y) =(2παsinhα)-iexpί -- — r-r— (cosh a(x2 + y2) - 2xy) J. (2.10)

In particular, if A is an antisymmetric matrix on [R2", then the kernel of
e~H satisfies

where the eigenvalues of A are { + ΐα j 1 <Ξ; ̂  n}. This is the A-genus of the matrix A,
which appears in the formula for the index of Q).

3. Extension to Pseudodifferential Operators

In this section, the formalism of the previous section is extended to pseudo-
differential operators. Unlike for differential operators and polynomial symbols, the
quantization map θ and the symbol map σ are not inverses of each other in the spaces
of pseudodifferential operators and their symbols. Widom [17] has developed a
simple technique for avoiding this difficulty, which replaces θ and σ by families of
maps θt and σt, where t > 0. As t approaches zero, the symbol calculus becomes more
accurate.

If pE^m(E) is a symbol, then for t > 0, the dilated symbol pt is defined as follows:

if P = Σ Pj®ωj> where Pj£Sm~j(E) and ωj6Γ(Λ /M), then
7 = 0

j . (3.1)
7 = 0

For example, if p is the symbol of a differential operator, then the part of p that is of
degree n is multiplied by tn.

The technical result which is used to deal with pseudodifferential operators is as
follows (Hormander [13], Widom [18]).

Theorem 3.2. Let U be open in M; then for gECco(M)from a bounded set, with
ε > 0 on (7, and UEΓ0(E\ U) from a bounded set, and pES*(E),
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In this formula, hx(v) = g(expxv) — g(x) — (v,dxgy:) the symbol ~ signifies that the
formula is asymptotic in t, so that if we take the terms on the right with |α| < fc, then the
error will be O(tk/2) in Sm~k(E) as ί-»0. D

In fact, this is Theorem 3.3 of Hδrmander [13], modified by the parameter t > 0.
Hormander's proofs easily adapt to prove the above theorem.

It follows from Theorem 3.2 that σ indeed maps Op y>m(E) to ̂ m(E\ and that for
all N ̂  0,

σ(θpt)t^=p + 0(tN) my~N(E). (3.3)

Using the family of dilations of symbols, it is possible to define a family of
compositions on ^*(E): if t > 0, then

ίP*tq\ = θptoθqt. (3.4)

We can obtain an asymptotic expansion for p o tq, generalizing the results of Widom
[1]. Recall the differential operators an of Theorem 2.7.

Theorem 3.5. If pe^k(E) and qe&l(E), then an(p,q)ε^k+l~n(El and we have the
asymptotic expansion as £->0.

00

potq~ % tnan(p,q).
n = 0

Proof. Let hytξ(v) = < exp~ 1 o exp^p - exp~ 1 y - d exp~ 1 \yυ, ξy, where x, yεM,
ξeT*M and veTyM (this is the second order remainder of <exp~1y, ̂ > around y).
Suppose thatpeSfc-%E) ® Γ(ArM) and qeSl~s(E)0Γ(AsM). We will apply Theorem
3.2 to obtain an asymptotic expansion of (p <>tq)t(χ9 ξ/t):

,!?, x))U o) Lw

Applying Theorem 3.2 once more, we obtain

r+s Σ — ί^Γ^iKx, ξ) oδί(α^ £(x, exp.w)

p^p^t;, x)) |, = 0) | w = 0 u.

Since ft^^O) = 0, it follows that dffie^^W* = O(r(|β| + l/?l)/2), so that this formula
has the correct homogeneity properties in powers of t. (In the above formula,
p(x,ξ)° means composition of symbols as sections of π*End(zl ®£).)

The formula we have obtained above shows that p otq is given by an asymptotic
sum of differential operators applied to p 0 q; thus, these differential operators may
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be calculated by letting p and q range over the polynomial symbols. But for these
symbols, we found the answer in Theorem 2.7. This shows that an(p,q}E^k + l~n(E),
which is otherwise not entirely easy to see and identifies limpotq as a0(p,q). Π

Using this theorem, we shall argue below that the symbol of e*2®2, the heat kernel
of the square of the Dirac operator, satisfies

(3.6)
ί-»0

This is well-defined as an element of ^~^(E\ since R and F are nilpotent. In fact,
since R(ξ, d/dξ) commutes with the other terms in the exponent, it may be shifted to
the right, and is seen not to come into the formula (since e*R(ξ'd/dξ)l = 1.) The proof
of the index theorem for the Dirac operator is formally completed by the following
formula for Ύrs(θp).

Theorem 3.7. // PeOp^~^(E\ then let TrsP = TrP|Γ(/J + @£) -TrP|Γ(^-Θ£). If
m < 0, then Trs extends by continuity to a linear form on Op <fm(E\ and for all t > 0,

TrsP = (2πΓ" J Ύrs(σP)t(x,ξ)dxdξ.
T*M

(Here, Trs σP is computed at each point ofT*M, and the integration is with respect to
the symplectic measure on T*M.)

Proof. Once the formula is proved for PeOρ^~co(E), it will be seen to hold for
n

PeOpym(£), m<0, as well, since for such operators, σPe £ Sm~j(E)®Γ(ΛjM),
j = o

and only the term in Sm ~ n(E) <g> Γ(Λ*M) gives a contribution to TrsσP (Theorem 1 .8).
Since Sm~"(M) is continuously embedded in L1(T*M), the result follows.

The proof of the formula is standard, and uses mollification. Let
satisfy

i) p(x) = 1, \x\ g i and p(χ) ^ 0;
ii) p(χ) only depends on |x|;

If xeM and ε>0 is small enough, then let δx ε(y) = ε~np(s~ίexp~1y). For
ueAx®Ex,P(δXfε(y)cίAQE(y9x)u)\xeAx®Ex, so that PδXfe<*AQE(y,x)\xe
End(Ax®Ex). It is clear that

where the integration is with respect to the Riemannian volume form on M. If ε is
small enough that δXtε(y)<x,(y9x) = δx ε(y) for all x, then we can write this in terms of
p, the Fourier transform of p, as

-" J τrsP(eί<^1y^β(εξ)oL^E(y,x)
Γ*M

π)-" J p(εξ)ΊφP)(x,ξ)dξdX.
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This proves the formula for ί = 1. However, as t varies, the integral is unchanged:
although the symbol is dilated by a factor of ί, giving a factor of t ~n after the integral
is performed, this is cancelled by the factor of tn that symbols in Sm~t

n(E)®Γ(ΛnM)
are multiplied by in the definition of pί? for pe^m(E). Π

Corollary 3.8. // pe <fm(E\ m <0, then

Ύrsθpt = (2πΓn f Tτap(x,ξ)dxdξ + 0(t«>). D
Γ*M

Here, O(ί°°) denote O(tN) for all N ̂  0. The proof follows immediately from (3.3). In
the introduction, this formula was interpreted in terms of integration over a
symplectic supermanifold it goes back to Berezin [5] if M is Euclidean.

Combining Theorem 3.7 with (3.6) and (2.11), we have (with dim M = 2n),

Ind 21 Γ(Δ + <x) E) = lim Trs e
l

= (2πΓ2n f Tr ̂ (dεt^^V'dx (39)

Using Theorem 1.8 and the definition of ω = ine1.. .e2n, it follows that

V,Λ( R/2
lnd@\Γ(Δ + ®E) = (2πiΓ" f TrFeF/4 del——

M V sinR/

= (2πιT"22n j ch( - 2π/F/4)A( - 2πiΛ/4). (3.10)
M

Here, we have substituted the definitions of the Chern character,
ch A = tre~A/2πi, and the A-genus, λ(A) = det((A/2πΐ)/sm(A/2τa)). Since the in-
tegration over M only gives a non-zero contribution for polynomials in F and R of
degree n, that is, volume forms, we may cancel the factors of (2πί)~n22n, to obtain

Ind^ \Γ(Δ + ®E) = (- 1)Λ J ch(F)A(R). (3.11)
M

This is the index theorem for the Dirac operator; the sign is different from that of
Atiyah and Singer [4] because of different conventions for Clifford algebras.
Specifically, they have a minus sign in the relations that define the Clifford algebra:
x x= — \x\2.

It only remains to justify the replacement of σ(et2®\-ι by its top order
approximation in (3.6). By standard elliptic theory, ̂ 2 has a resolvent for \λ\ > \,

(£). (3.12)

For ίe(0,1], we let α(t) = t2σ(^2)t-1)andrλ(t) = t~2(σRλt-2\^. The following facts
are easy to show:
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trλ(t)

iv)

where Γ is a suitable contour in C, for instance, \lmλ\ = Rzλ+ 1, oriented
counterclockwise.

Clearly, all that remains to be done is to bound rλ(t)n + 1 — rλ(0)n + 1. Indeed,

rλ(t) - r,(0) = r,(0)°,[U + a(f))o(rλ(t) + (α(0) -

+ O(fN) in y-N(E)

= rA(0)ot[0(ί) in ^~1(£)] = 0(ί) in ^~\E). (3.13)

Thus,

^'2"'1^). (3.14)

It follows from this that

σ(e<2^^e-W^(^

+ 0(ί)in^-αo(E). (3.15)

This estimate proves (3.6), and completes the proof of the index theorem.

References

1. Alvarez-Gaume, L.: Supersymmetry and the Atiyah-Singer index theorem. Commun. Math. Phys.
90, 161-173(1983)

2. Atiyah, M. F., Bott, R. : A Lefschetz fixed point formula for elliptic complexes. II. Ann. Math. 88, 45 1 -
491 (1968)

3. Atiyah, M. F., Bott, R., Patodi, V. K.: On the heat equation and the index theorem. Inv. Math. 19,
279-330 (J 973)

4. Atiyah, M. F., Singer, I. M.: The index of elliptic operators, III. Ann. Math. 87, 546-604 (1968)
5. Berezin, F. A.; The method of second quantization, New York: Academic Press 1966
6. Berezin, F. A., Marinov, M.S.: Particle spin dynamics as the Grassman variant of classical

mechanics. Ann. Phys. 104, 336-362 (1977)
7. Bokobza-Haggiag, J.: Opέrateurs pseudo-differentiel sur une variete differen liable. Ann. Inst. Four.

(Grenoble) 19, 125-177, (1969)
8. Boutet de Mouveί, L.: Hypoeϋiptic operators with double characteristics and related pseudo-

differential operators. Commun. Pure Appl. Math. 27, 585-639 (1976)
9. Bourbaki, N.: Elements de Mathematique, Algebre, ch. 9., Formes sesquilineaires et formes

quadratiques. Paris: Herman 1959
10. Brauer, R., Weyl, H.: Spinors in n dimensions. Am. J. Math. 57, 425 (1935)



178 E. Getzler

11. Che valley, C: The algebraic theory of spinors. New York: Columbia University, 1954
12. Glimm, J., Jaffe, A.: Quantum physics. New York: Springer 1981
13. Hδrmander, L.: Pseudodifferential operators. Commun. Pure Appl. Math. 17, 501-517 (1965)
14. Kostant, B.: Symplectic spinors. Symp. Math, 16, 139-152 (1973)
15. Leites, D. A.: Introduction to the theory of supermanifolds. Usp. Mat. Nauk. 35, 3-57 (1980) (Russ.

Math. Surv. 35, 1-64 (1980))
16. Patodί, V. K.: An analytic proof of the Riemann-Roch-Hirzebruch theorem for Kaehler manifolds.

J. Diff. Geom. 5, 251-283 (1971)
17. Widom, K.: Families of pseudodifferential operators. In: Topics in Functional analysis. Gohberg, L,

and Kac, M. (eds.) New York: Academic Press 1978
18. Widom, H.: A complete symbolic calculus for pseudodifferential operators. Bull. Soc. Math. 104,19-

63 (1980)
19. Witten, E.: Supersymmetry and Morse theory. J. Diff. Geom. 17, 661 (1982)

Communicated by A. Jaffe

Received May 9, 1983




