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Abstract Charged translation covariant states with finite energy are con-
structed in the Higgs phase of theZ 2 gauge theory coupled to a Z 2 matter field.

1. Introduction

The spectrum of charges in gauge theories depends on subtle properties of the
dynamics, and it is extremely difficult to get information on them within the
known approximation schemes. An easier problem is the investigation of lattice
gauge theories where the powerful methods of classical statistical mechanics can
be applied, and one may hope that certain properties of the lattice theory will
survive in the continuum limit. However, on the lattice the investigation of the
charge structure is not easy either. The emphasis has rather been on confinement
criteria, the most prominent one being the Wilson criterion [1]. This criterion
checks whether the energy of a system with two external charges increases linearly
with the distance between the charges. If this happens, it is interpreted as a sign
that it is impossible to create single charges with finite energy. Unfortunately, the
Wilson criterion cannot be used to test the existence of dynamical charges in gauge
theories with matter fields [2]. This is however the more interesting question.
Criteria which are applicable in this case have been proposed by Mack and Meyer
[3] and Bricmont and Frohlich [4]. However, the implications of their criteria for
the confinement problem are not clear.

The aim of this work is to understand the nature of charges in a gauge theory
with matter fields. Our analysis leads to confinement criteria which directly test the
existence of charges [5] and some of their most relevant properties.

In gauge theories with a discrete gauge group there exists a weak coupling
expansion. In the pure gauge theory the Wilson loop obeys a perimeter law
[6-8, 2]. One may ask whether charged states with finite energy will exist if the
gauge field is coupled to a matter field. This has been conjectured by several
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Fig. 1.1. Conjectured phase diagram of the gauge invariant Ising model

authors [9,10], however a proof is still lacking. The main problem consists in the
fact that charges in gauge theories are sources of electric flux lines an isolated
charge is therefore tied to an infinitely extended string of electric flux. It is not clear
from the beginning whether such a string can be chosen such that the charged state
has finite energy, and it is not easy to guess the dependence of the state on the form
of the string.

In continuum quantum field theory the localization properties of charged
particles have been analyzed in a general context, and it has been found that in the
absence of physical massless particles a charged particle can always be localized in
a stringlike region [11]. In this context, the expected behaviour of charges in gauge
theories is the worst possible case. The asymptotic direction of the string, however,
can never be observed. On the other hand, the derived localization properties lead
already to the usual structure in the set of particle states, hence there seem to be no
reasons against the occurrence of particles which are only stringlike localizable
the most natural candidates are charged particles in gauge theories.

In this paper we construct charged states for the Z2 gauge theory coupled to a
Z2 Higgs field in (d+1) dimensions (d^2). The Euclidean version of this model is
the so-called gauge invariant Ising model which has first been discussed by
Wegner [6]. Its phase structure is relatively well known (Fig. 1.1). In Region I one
expects that there exist no charged particles with finite energy (confinement/
screening). Region II (the Higgs phase in the terminology of 't Hooft [12]) may
contain charged particles. We shall exploit the fact that both regions contain
subregions Ic and Πc, respectively (the shaded areas in Fig. 1.1), where convergent
expansions are known. We shall study a sequence of states which describe a pair of
charges separated by an increasing distance and which are regularized such that
their energy is uniformly bounded. In Region IIC the sequence will converge to a
state ω orthogonal to the vacuum sector, whereas in Region Ic the limit state
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remains in the vacuum sector. One observes several remarkable differences be-
tween the Regions I c and Πc. In I c the vacuum component of the vectors of the
approximating sequence does not vanish in the limit, in obvious contrast to the
behaviour in Region Πc. The ratio of the expectation value of the charge operator
in the state ω to that in vacuum is — 1 in Region IIC and -I-1 in Region Ic. A third
distinctive feature is the occurrence of strong correlations of electric fluxes in
Region IIC but not in Ic. These strong correlations prevent the determination of
the asymptotic direction of the string accompanying a charged particle and are a
necessary condition for the existence of those particles according to the general
analysis in [11]. One may use these properties as criteria distinguishing the
confinement/screening phase from the phase where charges exist. The use of these
criteria for numerical studies will be discussed in a forthcoming paper [13].

The present paper is organized as follows. In Sect. 2 the algebra of the model is
introduced, and it is shown that the model cannot possess charged states which are
created by local fields. Hence any charge must be of the gauge type, i.e. it can be
determined via a version of Gauβ' law in the complement of any finite region. In
Sect. 3 we introduce the dynamics of the model by the Euclidean method [14, 15]
and express the ground state in terms of a Gibbs state of the gauge invariant Ising
model. In Sect. 4 the construction of the Gibbs state of the gauge invariant Ising
model in the Higgs phase using the expansion of Marra and Miracle-Sole [10] is
reviewed. Section 5 is devoted to the construction of charged states. Their
behaviour under lattice translations and imaginary time translations is discussed
in Sect. 6. The real time translations are studied in Sect. 7 this finally leads to the
proof that the charged states constructed in Sect. 5 are orthogonal to the vacuum
sector. The proofs rely heavily on the method of polymer expansions (see e.g. [2]).
For the convenience of the reader an outline of the method is given in Appendix 1.
In Appendix 4 we give an estimate of the convergence Region Πc. We also present
a bound on the parameter appearing in the perimeter law for the Wilson loop in
the pure gauge theory (Appendix 2) and some combinatorial and geometrical
estimates which are needed several times (Appendices 3-5).

2. Fields and Observables

The model is defined on the hypercubic lattice Έd, d^2. We shall denote the
distance between the lattice points x = (xι, ...,xd) and y = (j;\...,/*) by |x — y|,

|χ-yl= Σl^-yi ( 2 !)

For each lattice point x we have hermitean operators, σ3(x) and σx(x). They are the
discrete analogues of the Higgs field and its canonically conjugate momentum and
have the algebraic properties of Pauli matrices,

σ1(x)2 = σ 3 ( x ) 2 - l ,
(2.2)

σ1(x)σ3(x)=-σ3(x)σ1(x).

For each lattice bond b (i.e. a pair of lattice points with distance 1) we have
hermitean operators, τ3(b) and τ^b), representing the Z2 gauge field and the
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corresponding electric field, respectively, again with the algebraic relations

τ l ( b) 2 = τ3(b)2 = l ,

τ 1(b)τ 3(b)=-τ 3(b)τ 1(b).

Operators associated to different lattice points or bonds commute.
There is a unique C*-algebra g which contains as a norm dense subalgebra the

*-algebra g 0 generated by all these operators. The subalgebras $r(A) associated to
subsets Xc7Ld are C*-algebras generated by σf(x), τ^b), i,j = l,3, xeA, bcA.
Clearly, <S0= (J ^(Λ). The "local net" Λ->3r(Λ) is covariant under lattice

| Λ | < o o

translations,

. (2.4)

Here αx, xeZ d , denotes the *-automorphism of g with the properties

x), xjtflή) = τ (b + x), i = 1,3. (2.5)

The dynamics which will be introduced in Sect. 3 is gauge invariant, i.e.
invariant under the automorphisms implemented by the unitary operators

1 1 ( x ) , (2.6)

where <5*τ1(x)= \\ τx(b) denotes the divergence of τv Therefore only the gauge

invariant part 21 of g,

for all xeZ d } , (2.7)

is considered as the algebra of observables, whereas 5 is called the field algebra.
The algebra of observables 21 has a nontrivial center which is generated by the

operators g(x), xeΈd. q(x) is interpreted as the observable which measures an
external charge at the point x. In a factorial * representation π of 9ί the external
charges are multiples of the identity,

π(q(x)) = qπ(x) 1, (2.8)

and qπ:Z
d-*{±l} is called the external charge configuration in π. The main

interest is on representations π without external charges, qπ = l. In these repre-
sentations the two-sided norm closed ideal J of 21 generated by q{x)— 1 for all
xeΈd is annihilated. Hence the relevant algebra of observables is the quotient

Both 2ί and © inherit a local structure from 5? which is again translation
covariant,

(2.10)

The algebra © is generated by M1(b) = τ1(b) + J , u3(h) = δσ3(b)τ3(b) + J 2 , where b
runs over the set of lattice bonds, u^h) and u3(b) have again the algebraic

1 A representation π is called factorial if the center of the weak closure of π(3ί) consists of multiples
of the identity

2 <5σ3(b)= f| <73(x) is the exterior derivative of σ3
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properties of Pauli matrices. The local algebra 23(Λ) is generated by w^b), w3(b),
bcΛ. Let 35(ΛC) denote the C*-algebra generated by ^(b), M3(b), b^Λ, and let
93(Λ)C denote the relative commutant of 23(Λ),

%>(A)c = {Ae%,AB = BA for all £e<B(Λ)}. (2.11)

These algebras are related by the following proposition (compare [16, Theorem
2.5.10]).

Proposition 2.1.
(i)

(ii)

(iii) // %1 and π 2 are disjoint representations of 23 fz.e. no subrepresentation of
n1 is equivalent to a subrepresentation of π2), then also their restrictions to 23(ΛC)
for any finite KCLd are disjoint.

Proof, (i), (ii) For a set L of lattice bonds, let 95(L) denote the C*-algebra
generated by wx(b), M3(b), beL, and let Lc denote the complement of L in the set of
all lattice bonds in TLd. Then (i) and (ii) are special cases of the relation

Let Ae$ί(L)c and ε>0. Then there exists some £e23(M) for some finite set of
bonds M such that \\A — B\\ <ε. Let G denote the finite group generated by w:(b),
t/3(b), b e M n L , and consider the following mean on 23,

m(C) = | G Γ i X 0 C 0 - 1 , CeS.
geG

Clearly m(B)e%>(LcnM) and m(A) = A, hence

\\m(B)-A\\ = \\m(B-A)\\S\\B-A\\<ε,

and A is in the norm closure of (J 95(LcnM).
|M|<oo

This proves (i) and (ii).
(iii) Two representations πx and π2 of© are disjoint if and only if there exists a

net (Aλ) in 93 such that

(—• means convergence in the weak operator topology) [16]. Let L be a finite set of

lattice bonds, and let m denote the mean over the group generated by M1(b), w3(b),

beL. Then m(^λ)e©(L)c = 93(Lc), and since m is continuous with respect to the

weak operator topology

πM(Λλ)) -^ 1, π2(m(Aλ)) -^ -1,

hence π1 ίS(Lc) and π2 t©(Lc) are disjoint, q.e.d.

Proposition 2.1 (iii) shows that 33 cannot possess charged states with a charge
generated by local fields. Every charge must be of the gauge type, i.e. it can be
measured in the complement of an arbitrarily large but finite region \QΊLd. The
same remark applies to the algebra g.
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It is possible to use only the algebra 23 in an investigation of the charge
structure of the model. However, the redundant description in terms of 5 and 9ί is
much more transparent; therefore we shall work in this framework, keeping in
mind that the physical relevance of a statement has to be checked in terms of 23.

3. Dynamics and Ground State

The dynamics of the model shall be introduced by the Euclidean method. The
local Hamiltonian iϊ Λ , |Λ| < oo, is defined implicitly in terms of a local transfer
matrix TA = e~H*,

TA = eiA*eB^A*, (3.1)

with,4Λ= Σ 0Λ 3(P)+ Σ βhδσ3(b)τ,(b\
pεP(Λ) befi(Λ)

be-B(Λ) xeΛ

\B(A) set of bonds bcΛ, P(Λ) set of plaquettes (quadruples of lattice points

spanning a square with side length 1) pCΛ, <5τ3(p)= J j τ3(b), β*=— f lnthβ,
beB(Λ)

bcp

0<βg, βh<oo . TA is a gauge invariant, positive, invertible operator in 9Ϊ(Λ). It

implements a (non * —) automorphism of g

(3.2)

Since α ^ μ H α ^ μ ) , Ae${A), if A1,A2DA, A={xeZ d , dist(x, A)^2}, the
automorphisms αf converge to an automorphism α. of 5 0 as A tends to Έd. α may
be interpreted as the time translation by one unit in imaginary direction3.

Unfortunately it is not clear whether the real local time translations
αf( ) = TA~

ιt. TA also converge, and it is difficult to see whether α. determines
directly the global real time translations oct (if this is the case, α. is called the
analytic generator of αf [17]). However, it is possible to introduce the notion of a
ground state using only αf.

Definition. A ground state ω0 of g with respect to α- is an o^-invariant state with

0 ^ ωo(A%(A)) ^ ωo(A*A), Ae%0. (3.3)

[The α -invariance is actually a consequence of (3.3).] If a ground state ω 0 is given
one may introduce the global dynamics by the following method. In the GNS
representation π 0 of g in a Hubert space Jf0 with a cyclic vector ΩeJ^0, which is
characterized by

(Ω()) () % (3.4)

one can define an operator To by

Toπo(A)Ω = πoα.(,4)ί2, Ae g 0 . (3.5)

3 α£ is not a *-automorphism but fulfills (α£(^4))* =a. 1(A*). We shall use the notation (oci)
n = otin, neΈ
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To is well defined and hermitian and has a densely defined inverse,

(3.6)

From (3.3)

0 g Γ o g l . (3.7)

The real time translations are defined by

ί i (3.8)

which is possible since To has a densely defined inverse and therefore no zero
eigenvalue. For

^π^A). (3.9)

By interpolation arguments [18, Sect. IX.4]

hence z^άzπo(^)=To~ I zπo(,4)7Jz is entirely analytic and

(3 1 0 )

This method of defining real times translations has first been discussed by
Liischer [15] and Osterwalder and Seller [14] in their work on the quantum
mechanical interpretation of Euclidean lattice gauge theories. Note that the
problem of possible zero eigenvalues of the transfer matrix To [19] does not
appear in our case due to the following two facts [20]:

(i) The local transfer matrices are invertible, hence αf exists.
(ii) The automorphisms αf converge strongly on g 0 to an automorphism

of So-
It is not known under which conditions the automorphisms άt leave the

original algebra g or at least its weak closure in the representation π 0 invariant, so
it is not clear whether the dynamics is almost local, in contrast to the dynamics
defined with local Hamiltonians where locality properties are under control [16].
We shall eventually consider the (probably larger) algebras §, 21, and S, where g
is the C*-algebra generated by &tπ0(A)9 Ae g, ίeIR, 21 is the gauge invariant part of
§ and 23 = 91/J with J denoting the two-sided ideal in 21 generated by πo(J).

g has always a ground state. This may be seen as follows. To each finite KQ.TLd

there exists a state ωΛ on g with

G>ΛOΓA)=I|TA | | . (3.11)

ωA is a ground state of 5 with respect to αf in the sense of (3.3), and any ground
state with respect to αf fulfills (3.11). Since the set of states is compact in the weak-
*-topology and 5 is separable, there exists an increasing sequence (An) of finite
subsets of TLά such that (coAn(A)) converges for each Ae%. The limit state ω0,

ωo(A)= l imω A (4), (3.12)
«-* oo

satisfies (3.3) and is therefore a ground state of g with respect to α . Actually,
ωΛ 13(A) is a uniquely determined pure state, and the net (ωΛ) is convergent.
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This well known fact [14, 15] follows from the following argument. Let.

s9s
r=± 1, and let %> A denote the set configurations

(σ,τ):Λxβ(Λ)->{±l}x{±l}.

Then the partial isometries

E(σ,τ)(σ',τ') = 1 1 ̂ σ(x)σ'(x) 1 1 ^τ(b)τ(b') > (3-14)
XGΛ beB(Λ)

(σ,τ), (σ\ τr)e^A, are a basis of matrix units for S(Λ). The transfer matrix TA has
the following expansion:

T^NΛ1 Σ ΓΛ(σ,τ,σ ',τ')£ ( σ > τ ) ( σ,> τ 0, (3.15)
(σ,t),(σ',τ')

with N A = (2sinh2j8Λ) | Λ | / 2 (2sinh2/?) | β ( Λ ) l / 2 and

\beB(Λ) xeΛ

+ ββ( Σ i(
\

The expansion coefficients are strictly positive, thus from the theorem of Perron
[21] the spectral projection EA of TA associated to the eigenvalue \\TA\\ is one-
dimensional in S(Λ), and EA = lim7^|| TA\\ ~n has again an expansion with strictly
positive coefficients. Thus ωA ϊ g(A) is unique and pure, and one may find it by the
formula

ωκ{A)=YιmJZxJ^ΊhwTlATlEf, (3.16)

with Z Λ j Π = Tr^ ( A )TA

nE (

A\ where E(

A

] is any non-zero element of g(Λ) with non-
negative expansion coefficients. A convenient choice of E{

A

} is

^W^^o. ( 3 1 7 )
with eA(σ9τ) = expfeβh Σ δσ(b)τ{b) + ̂ βg Σ δ τ(P)i Equation (3.16) is the

1 Jg

beΰ(Λ) peP(Λ) J

starting point for the transition to a classical statistical mechanics in Zd+1. Let
Λn = {x = (x°, x), |x°|^n, XGA}, and let ̂ Λ denote the set of configurations

(σ,τ):ΛnxB{Λ^{±l}x{±l}9

with τ(fe) = l for all vertical bonds (i.e. bonds of the form b = {(k,x), (fe+l,x)}).
ZAn = ZAftιNA

n is the partition function of the gauge invariant Ising model in the
temporal gauge, with free 4 boundary conditions,

4 This comes from the special choice of E{£} in (3.17). Other choices lead to different boundary
conditions in the O-direction which turn out to be inconvenient for the construction of the
thermodynamic limit by Griffiths inequalities and for the transition to the unitary gauge
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where the Hamilton function is

HΛn(σ9τ)=-ίβh Σ Sσ(b)τ(b) + βg £ δτ(p)\. (3.19)
I Jg

beB(Λn) peP(Λn)

ωA(A) for Ae g(Λ) can be computed by choosing functions ,4 y l n: ̂ ^ - • C such that

0 4 * ^ = ZA-i Tr, ( A ) TJATJE™, (3.20)

where <^ i l n > i l n = Z^n

1 £ AΛn(σ,τ)e~HΛ»(σ>τ) is the expectation value of Λ> in the
(<r,τ)

gauge invariant Ising model. AΛn is not unique a possible choice is the function

V ) ' Λftίσ, τ) = (ATA) (σ<°», τ<°>, σ ^ , τ(1>)/rA(σ<°>, τ<°>, σ*1', τ ^ ) , (3.21)where (σ(k\τik))e^A is the restriction of (σ, τ) to the (x° = fc)-hyperplane. We note
the following rules for the choice of the classical functions AΛn:

(i) For m > n one may choose

AΛ"(σ, τ) = AΛ»((σ, τ){Λnx B{Λn)). (3.22)

(ii) If - n ^ f c 1 < . . . < f c , g n - l , Aw,...,A{ί)e%{A), aaά A = aiki{Aw)...aikι{Am),
a convenient choice for AΛ" is

• • • ^ ( 0 ) n ( σ Z

5 ^ 2

? c r z

 ? ? z ) • ( 3 . 2 3 )

(iii) If AεftiAj), J5eg(Λ2) and dist(A1,A2)^2, A1? A2CA, then

(A B)Λn — ΔΛnnΛn (τ 94\
V^1 ^/(O) Λ (O) X ' (O) * v J ^ v

(iv) For ^6^(A) and Ar3A with A defined after Eq. (3.2)

Afflσ, τ) = Afo%σ, τ)\ λnx B(An)). (3.25)

Equation (3.16) now becomes

ωx(A)= lim (AΛn}Λn. (3.26)
n—• o o

The convergence of ωA for A / Έd is a consequence of Griffiths inequalities for the
gauge invariant Ising model [22],

ωo(A)= lim ωA(A), Ae%. (3.27)

In the next section we shall use polymer expansions to compute ω 0 . It is
convenient to work in the unitary gauge. This amounts to the transformation of
variables , , ( .

( ) ^ ( ρ )

ρ:Λ-^{±l}, u:B(Λn)->{±l}, ρ(x) = σ(0,x), u(b) = δσ(b)τ(b). Since the Hamilton
function HΛn is independent of ρ we can replace the function AΛn(ρ, u) by its mean
AΛn(u) over ρ. Then

u:B(Λn)-+{±l}

l (3.28)
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4. The Gauge Invariant Ising Model

In a neighbourhood of βg = co, βh = 0 the gauge invariant Ising model admits a
convergent expansion which has first been discussed by Marra and Miracle-Sole
[10]. We want to use this expansion for a construction of charged states for the Έ2

gauge theory. As a first step we review its use for the construction of the Gibbs
state of the gauge invariant Ising model which gives the vacuum state of the Z2

gauge theory.
Let A be a box in Zd+ \ and let

beL

for LcB(Λ) and the configuration u: B(Λ)-^{± 1}. Each function A(u) is a linear
combination of the characters χL. Given a gauge field configuration u, the
corresponding field strength configuration f=δu is uniquely determined by its
support,

supp/ = {peP(Λ),/(p)= - 1 } , (4.2)

and a configuration / : P(A)^>{± 1} is a field strength configuration if and only if
δf(c) = 1 for each elementary cube c in A. Thus a set of plaquettes PCP(A) is the
support of some field strength configuration if and only if its coboundary, i.e. the
set of cubes in A with an odd number of faces in P, is empty (P is coclosed). Let &Λ

denote the set of all coclosed P C P(A). Then, by a character expansion of eβhΣu(b\

<XL>Λ = Z21 Σ e-2^p\thβhrKP,LAM), (4.3)
Pe0>Λ

McB(Λ)

with (P,LAM) = 21' W Σ XLAM(U)
U:B(Λ)->{±1}

supp δu = P

LAM denotes the symmetric difference (L\jM)\(LnM) of L and M. Z^ is fixed
by the condition <χ0>y l = l. We have

JO, if LAM is not closed,

\χLΔM(w) for all u with supp<3w = P, if LAM is closed.

We may therefore restrict the summation in (4.3) to those M for which LAM is
closed. (P, LAM) is then — 1 if the winding number of P around LAM is odd, and
-hi if it is even. Let dN for NCB(A) denote the boundary of JV, i.e. the set of points
xeA which are endpoints of an odd number of bonds in N. We may decompose M
in a unique way into connected components, i.e. the equivalence classes of the
equivalence relation ~ in M generated by the relation

bnb'φ0. (4.5)

Some of the components of M have a nonvoid boundary, the other components
are closed. Let Conn^L) denote the set of all M<ZB(A) with dM = dL such that no
component of M is closed, and let ΌiscΛ(M) denote the set of all NcB(A)
with dN = 0 which are disconnected to M, i.e. bnbf = 0 for all beM, b'eN.
Using the fact that (P,LA(M<uN)) = (P,LAM)(P,N) for MeConn^L) and
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JVeDisc^M), one arrives at

(IL>Λ= Σ (foβh)
mσΛ(L,M), (4.6)

MeConn^CL)

with σA(L, M) = Z-χ £ (P, LAM)μ(P, N),

NeΌiscΛ(M)

For the weights σΛ(L, M) we have the following uniform estimates. [By < >° we
shall denote the expectation value in the pure gauge theory (βfc=0).]

Proposition 4.1. Let L,MCB{Λ) with dL = dM. Then

(i)

(ii) σΛ(

(iii) ^ ^ ^ g — L - s . , L',M'CB(Λ), 8L'

Proof, (i) The definition of σΛ(L,M) in (4.6) may be rewritten in the following way

Z'Λ being fixed by the condition σΛ(β,0) = l. From the first Griffiths inequality

\XLAMAN/Λ = ® •>

hence, as Discyl(M)cDiscyl(0),

σA(L, M) S σΛ(LAM, 0) = <χLAM}Λ.

(ii) From the second Griffiths inequality

\XLAMΔN/Λ = \XLAM/Λ \XN/Λ •>

hence from relation (*)

NeΌiscΛ(M)

On the other hand,

(z'Λr' Σ
NeΌiscΛ(M)

' 1 =(l + thβ)'n{M\which is bounded from below by inf Π (l+thβ^b))'1 =(l + thβh)

(iii) Since MnMf = 0, ΌiscΛ(MAMf)cΌiscΛ(M); from the Griffiths
inequalities

/ \0

\ILΆM'/Λ

Inserting these relations in (*) proves statement (iii). q.e.d.
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The thermodynamic limit

σΛ(L, M) = / Π (1 + thjBΛχ{WΓ 'XLAM) - * ( £ , M) (4.7)

| δL |/m—l\ | a L | / 2 ~ 1

exists always. Since there are at most —— —-— x(2d + l)m sets

MeConn^L) with | M | = m (Appendix A.3), the expansion

<XL>= Σ ( W M | σ ( L , M ) (4.8)
MeConn(L)

is convergent for th/?Λ<(2rf+l)" 1. [Conn(L) = {Mc5(Z d + 1 ), MeConn^(L) for A
sufficiently large}.]

For a more detailed estimate of σ(L, M) we consider σ^(L, M) as the ratio of
partition functions of certain polymer models. Following Marra and Miracle-Sole
[10] we associate to each pair [P,N)e0>

Λ x Disc^θ) a graph yPN such that the
connected components of N and the coconnected5 components of P are the
vertices of the graph, and two vertices are connected by a line if one is a
component Pί of P, the other a component Nί of N and (PvN1)= — ί. The class
of all these graphs is denoted by <&Λ, and if y = yPiv we set P y = P, Ny = N. Γy is the
set of connected components of y6, and y, / are called compatible, γ~y\ if there is
a i's<$A with Γ, Γγ,QΓr and r y n r y , = 0 .

Now we assign an activity μ(y) to each graph ye$Λ

μ(y) = (PrNy')e-2^(thβhr
vl; (4.9)

μ(y) is multiplicative,

M?)= Π M/). (4.10)
y'eΓ(y)

These activities define the following polymer model: if A is a function on ̂ 5 its
expectation value in this model is

<Λ>μ,Λ= Σ Λ{y)μiy)l Σ M7). (4.11)

For functions A which are multiplicative in the sense of (4.10) the expectation
value (4.11) can be considered as the ratio of partition functions; one has the
following formula [23]

μ,A= Σ <τU Γ -l)/Λ (4.12)

where @C

Λ is the set of connected graphs y£&Λ and where we used the convention
for multi-indices

V

Γ = γ[ v(y)Γiγ\ v:&c
A->€. (4.13)

yesuppΓ

The cΓ are purely combinatorial coefficients which are independent of μ,

αo / Λ \n + 1

^ (4.14)

5 Two plaquettes p and p' are coconnected if they are faces of the same cube

6 We shall often identify the set Γy with its characteristic function
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where JίJJΓ) is the number of possibilities to write Γ in the form Γ = Γyι -f ... +Γγn

with y^A, Vί + 0, i = l , ...,w. (For details see [2].) They vanish if Γ can be
decomposed into two parts Γx and Γ2 such that yί~y2 for all pairs (yv

72)esuppΓ1 xsuppΓ2.
The thermodynamic limit can be controlled using the fact that (β = min(j8Jί, βg))

where JF0 is /[-independent, monotonically decreasing and convex, and |y'| = |iVy,|
+ |Py/| (Appendix A.3). In Appendix A.I it is shown that this leads to the estimate

Σ |cr | |μ
r |^F1(2i8)M (4.15)

means that y'47 for some y'esuppΓ). βc and F 1 are defined in terms of F o

(A.9HA.12).
For σ(L, M) the polymer expansion yields

with

lnσ(L,M) = Σ<τ(<£ M~^V (4.16)
r

0, if Ny is connected with M

otherwise.

If M = 0 we write αL 0 = α L . The expansion (4.16) converges if βg^βc = β™ and βh

Bounds on β™ and j8^ as well as a more detailed determination of the
convergence region are given in Appendix A.4.

We shall use several times the following estimate on the contribution of large Γ
which is an immediate consequence of (4.15) (||Γ[| =ΣΓ(y)\y\):

Σ ICrWμ^e-W-^F^M. (4.17)

Inequality (4.17) implies clustering of expectation values which means that the
vacuum vector Ω of the 7L2 gauge theory is the unique (up to a phase) ground state
of Γo. Unfortunately, one cannot conclude that the vacuum representation π 0 is
irreducible [25], since the in variance of the weak closure of πo(3r) under the time
evolution is not known.

5. Construction of Charged States

The idea for the construction of a charged state is simple. One creates a charge at
some point x together with a compensating charge and transports the compensat-
ing charge to infinity. In a gauge theory the charges are connected by electric flux
lines, so one has to arrange these flux lines in such a way that the limit state has
finite energy.
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Fig. 5.1. The lines Mr and iVr in the (l-O)-plane

Let xr = (2r, 0, ...,O)eZd, reN, and let L r denote the path along the 1-axίs from
the origin to xr. Let

,)= Π
beLr

(5.1)

Fr is gauge invariant. Consider the states ωr,
7

ωr(A)=(FrΩ,AFrΩ)\\FrΩ\Γ2,

Let ρx, xeZ d denote the automorphism of 5 which is implemented by σ3(x),

(5.2)

For Ae%0

 a n d r large enough

ωM) = (kτ[(h/τo

2%(Lr)Ω)

(5.3)

(5.4)

Let AQ(u) denote the gauge invariant part of a classical function localized in the
slice — r<x°^r which corresponds to the operator ρo(A). Then

co (A) = (Aeχ y (ϊ s)~1, (5-5)

where Mr is the square in the (O-l)-plane with edges (r,0), (r,xr), (-r,xΓ) and
(-r,0) (Fig. 5.1). From the results of Sect. 4, for LCB(Zd+1\ \L\<oo

(5.6)

7 In the following we identify 5 and πo(g) by dropping the symbol π 0
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From Proposition 4.1 (iii)

σ(MΓ,0) - v

in the pure gauge theory one has a perimeter law,

(5.7)

with <x(βg)->0 for βg-*co [8]. [For an estimate of tx(βg) see Appendix A.2.] Hence
the expansion (5.6) converges uniformly in r provided thβh<(2d + \y1e~x{βg). On
the other hand, for βg>β%, βh<βζ from (4.16)

σ(LAMr,M) v r r r

= ΣCΓ«M-1)«MX (5-8)
Γ

The convergence of the right-hand side of (5.8) follows now simply from the fact
that \aMr(γ)\^l and aMJ<y)~^aMjy} ^ o r e a c ^ ^ w ^ e r e ^oo *s ̂ e 0-axis. Hence we
arrive at the following theorem.

Theorem 5.1. For βg>β™, βh<β% there exists a state ω onft such that for all Λe^

lim cύr{A) = ω(A).
r->oo

The interpretation of ω as a charged state is supported by the following fact.

Let QA = Y[ δ*τί(x) be the charge operator associated to the region ΛcZd, and let
xeA

d*A denote the set of bonds with exactly one endpoint in Λ (the coboundary of Λ).
Then (Gauβ' law)

6 Λ = Π ^(b), (5.9)
bed*Λ

hence Qx can be measured at the boundary of Λ. Thus there are no local fields in
the interior of Λ which create a charge. Actually, for every Ae$0 with

\\AΩ\\2(Ω,QAΩ)"U ( 5 ' 1 0 )

if Λ tends to TLά with |3*A| < const x dist(d*Λ, Of for some fceN. But for the state ω
which arose from a nonlocal operation on the vacuum we have

Theorem 5.2. Let AfZd such that \d*A\ <const dist(δ*Λ,0)fe for some keN. Then

- 1 .

Proof. A classical function corresponding to the operator QA = ρo(QA) is

QHSM)= Π e-2β°δu(p) Π e~Mb\
pePA beBA
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where P A is the (coclosed) set of plaquettes in Έd+ ί

9 which are spanned by {0} x b
and {1} x b, be δ*Λ, and BA is the set of bonds {0} x b, be d*Λ. The computation of
the expectation value of QA in the vacuum can be replaced by the computation of
the expectation value of the following function on polymers,

0, NγnBA + 0

(PA, Nγ) otherwise,

hence ωo(QA) = (coshβh)~ | B A I exp ΪΣ,cΓ(bA — l)μΓ\. In the charged state ω one

obtains instead

and since (P A ,M 0 0 )= — 1 for OeΛ,

ω(βA) = - (coshj8Λ)- ^ exp jY cΓ(bΓ

A - l)aΓ

Mΰoμ
Γ\.

It remains to show that

vanishes if Λ tends to Έd in the mentioned way. But this follows from the fact that
only those Γ can contribute to the sum with y1 ?y2esuppΓ, (P y i ,M 0 0 )= — 1,
fcA(y2)Φl; their length is at least ||Γ|| =dist(0,δ*A). Hence from (4.17), for some
α > 0

In q.e.d.

Unfortunately, this result does not exclude completely the possibility that ω is
a state in the vacuum sector. Since ω o (g A )~e~ α | δ * A | for some α>0, the con-
vergence βA

ωo(6A)~x ~̂  1 i n Λe sense of matrix elements can be shown only on the
dense set δ 0Ω, so the theorem would be compatible with the existence of a vector
ΦeJ^Q, Φφ$0Ω, which induces the state ω.

A further indication that this hypothetical vector does not exist and ω is really
a state in a new sector disjoint from the vacuum sector is the observation that the
sequence F^WF^W"1 becomes orthogonal to each vector in f̂0 in the limit
r-*oo. Actually, by the following proposition, it is sufficient to check whether it
becomes orthogonal to the vacuum vector Ω.

Proposition 5.3. Assume that (Ω,FrΩ) \\FrΩ\\"1 ->0. Then (Ψ,FrΩ) \\FrΩ\\"1 -•O for

every

Proof Since the sequence FrΩ\\FrΩ\\ λ is bounded, it is sufficient to show the
convergence (Ψ,FfiΩ)||iϊ'ί.Ω||~1->0 for Ψe^0Ω. Then, denoting the part of Mr

above the x° = 0 hyperplane by JVr (Fig. 5.1), we obtain

(Ψ,FrΩ) = Σ<
i = 1
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for some neΊN, A^C, LtCB(Zd+1l |L f |<oo, i = l , ...,« and r sufficiently large. By
Griffiths inequalities

Since (χNr} = (Ω,FrΩ)9 the proposition follows, q.e.d.

Theorem 5.4. // t/ie perimeter law (5.7) fto/ds /or ί/ie pwr£ gαi/ge theory and if

{2d+l)thβhe
2cίiβd)<l then FfiWFfiW'1->0.

Proof. From Proposition 5.3 it is sufficient to show that (Ω,FrΩ)\\FrΩ\\~1-*0.
Now from (4.8), Proposition 4.1 and A.3.1 we get, for (2d+l)thj8 Λ <l 9

(Ω,FrΩ) = <χNr>S Σ
MeConn(iVr)

From (5.7)

thus

(Ω, FrΩ) \\FrΩ\\ ~1 ^

. ( l - ( 2 d + l ) 2 t h 2 ) 8 f c Γ 1 . q.e.d.

The weak convergence of F^ΩHF^ΩH"1 to 0 is a necessary condition for the
limit points ω of the sequence ωr to be disjoint from the vacuum sector. It is
interesting that one can prove this weak convergence not only in Region Πc of the
phase diagram but in a larger part of Region II. To get a feeling of whether the
weak limit points of the sequence FrΩ \\FrΩ\\ ~1 indicate the presence or absence of
charges we analyse the convergence properties in Region Ic.

If βg is sufficiently small one can map the model onto the following polymer
model. Graphs are sets of plaquettes P, the plaquettes are the vertices of the graph
and two plaquettes p9p' are joined by a line if there is a bond bQdpndp'. The
activity is

The computation of <χL) amounts to the mean over the polymers of the function

2 i L ^ p i . (5.12)

If βh is sufficiently large one defines graphs as sets M of lattice bonds with
activities

μ(M) = e-2βh^e-2β^M^ (5.13)

where two bonds b.b'eM are connected by a line if there exists a plaquette p with
b, b' C dp. The expectation value of χL corresponds to the expectation value of the
function on polymers

(-1)L-M; (5.14)
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βs

g and βs

h, respectively, denote the border of the convergence regions of these
expansions.

It will turn out that for βg < βs

g or βh > βs

h there exist eigenvectors of To which
have a single external charge. The following proposition provides a general
criterion for the existence of such eigenvectors.

Proposition 5.5. Let t0 be the norm of the restriction of To to the subspace of J^f0

with external charge configuration q, suppg = {0}. to is an eigenvalue of To if and
only if

(σ3(0)Ω,ΐ>3(0)Ω)2

»-« (σ3(0)Ω, T0

2"σ3(0)Ω) '

Proof. Let

(σ3(0)Ω,7^σ3(0)Ω)2(σ3(0)Ω,To

2nσ3(0)Ω)-1^cφ0.

Then σ3(0)Ω has a nonvanishing scalar product with an eigenvector Φo of Γo one
may choose

Actually, the corresponding eigenvalue is t0. This can be seen as follows:

to= sup lim {Aσ3{0)Ω, Tζl

sup l i m < χ L Δ ( M + n ( l j 0 ) ) Δ L n > 1 / π ,
L,McB(Zd+1) n-̂ oo

|L|,|M|<oo

where Ln is the part of the 0-axis between 0 and n. From Griffiths inequalities

l , O ) ) /

Thus

ί β = lim (χLyin= lim (σ3(0)Ω, T
H > o o n^oo

Now let (σ3(0)ί2,Γ^3(0)ί2)2(σ3(0)ί2,T0

2V3(0)ί2)-1-^0. Then ί"" / 27£ / 2σ3(0)ί2-*0.

By the same calculation as in the first part of the proof, one finds

t0

n/2TZ/2Άσ3(0)Ω->0

for all Aetyί, hence ί0 is not an eigenvalue, q.e.d.

It is an easy consequence of the polymer expansions mentioned before
Proposition 5.5 that for βg<βs

g or βh>βs

h

lim (σ3(0)Ω, T^σ3(O)ί2)2(σ3(O)ί2, To

2"σ3(0)β)~x =(=0 (5.15)
n-^-oo

(cf. the proof of Theorem 5.6).
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Bricmont and Frδhlich [4] have recently proposed to use the behaviour of
(σ3(0)Ω, T%σ3(0)Ω) for large n as a criterion distinguishing the
confinement/screening phase from the phase where charges exist. In Phase I one

e-" c o n s t (5.16)

[an immediate consequence of (5.15)]. For Phase II, they point out that one
should expect a behaviour like

(σ3(0)Ω, TSσ3(0)Ω)^n~dl2e~nconst. (5.17)

(5.17) implies that (5.15) is violated, so according to Proposition 5.5, t0 is not an
eigenvalue in this case.

We now return to the investigation of the sequence FfiWF^W'1 in
Region Ic.

Theorem 5.6. Let βg<βs

g or βh>βs

h.

(i) For all Ae^

limωr(A) = (σ3(0)Φo,Aσ3(0)Φo),
r->oo

(ii) FrΩ\\FrΩ\\ ~* -+ (<τ3(0)Φβ,Ω)σ3(0)Φo.

Proof. First we consider the case βg < βs

g.
(i) We have to investigate the sequence

We can write the expansion for expectation values, similar to that in Region Πc,
in the form

, > = Σ
PeConn(L)

where Conn(L) = {PCP(Z d + 1 ), |P |<oo, δ P t n L φ 0 for each connected com-
ponent P1 of P}, bLtP(P') = 0 if P'nP + 0 or 3 P ' n ( δ P u L ) φ 0 and bLtP(Pf) = ί
otherwise, and AMr(P) is defined in (5.12). A slight complication comes from the

fact that AMr is not bounded by 1. But negative values of nr = \dP\ — 2\dPnMr\
r

can occur only for large sets of plaquettes P with | P | ^ —\nr\ (Appendix A.5).

Hence

Mr M r g h
p

which is bounded by th/?^ for some βg<βg<βs

g, provided r is large enough. Thus

^ Σ
PeConn(L)

Σ
PsConn(L)
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(ii) We have to show that for LCB{Zd+1)? \L\ < oo

where Lk t is the part of the 0-axis between k and I. From the first part of the
proof we have

<XM r>- i / 2= Σ
PeConn(L)

y r ΓUΓ ΛΓ I LΓ AΓ _ AΓ Ί Γ
ZjCrl°L,P/±Nr^ °ΘL,ΘP/iΘNr

 /iMr-i

where θ is the reflection on the (x° = O)-hyperplane, and

( t h j 8 i ) |LΔto.,Δai»|-|Lo. r | ( t hfl ) |l. |

PeConn(L)

(xr = (0,xr)). Both expressions become equal in the limit r->oo since they differ
only by the contributions of large P and Γ(\P\, \\Γ\\ >r) which can be estimated by
(4.17). This concludes the proof in the case βg<βs

g>
If βh > βs

h, one can proceed similarly. The argument is even simpler since the
function BL(M) which was defined in (5.14) is multiplicative on components and
bounded by 1. q.e.d.

From Theorems 5.4 and 5.6 and Proposition 5.3 we infer that the behaviour
of (Ω,FrΩ)\\FrΩ\\~1 can be used as a criterion for the existence or absence of
charges [5]. The criterion proposed by Bricmont and Frδhlich [4] is very similar
as may be seen by formulating it in the following way: Let Gr = σ3(0)αrί(σ3(0)).
Then GrΩ may be interpreted as a state with two charges where the second
charge is not shifted to spacelike infinity but to infinity in positive Euclidean time
which means physically that the accompanying gauge field configuration is
minimized with respect to energy. Presumably, the sequence of states
{GrΩ, -GrΩ)\\GrΩ\\~2 converges to the charged state ω in Region IIC. In Region I c

one has from Proposition 5.5 and (5.15) GfiWGfiW'1 -> σ3(0)Φ0. Thus the

Bricmont-Frδhlich criterion consists essentially in replacing the Fr in our
criterion by Gr.

It is interesting to look at the expectation value of the charge operator in the
state induced by σ3(0)Φ0. One finds for βg<βs

g or βh>βs

h,

. 1 . (5.18)1.
(Ω,QAΩ)

Thus also this behaviour is a good test for distinguishing the two phases of the
model. A nice feature of this quantity is that it even shows a difference between
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the screening (βh > βs

h, βg large) and the confinement (βg < βs

g, βh small) regime. In
the screening case for A sufficiently small, OeΛ,

(Ω,QXΩ)

Hence locally the state induced by σ3(0)Φo looks like a charged state, but charge
measurements for large regions are completely screened by vacuum fluctuations.
In the confinement case

hence even locally σ3(0)Φo does not look like a charged state. To get an idea why
the charge has disappeared one may look at the approximating sequence ωr One
finds

^ J (5.21)^ < 0
ωo(βA)

for small r, provided OeΛ and xrφA. One may interpret this result in the
following way charge separation with a fixed amount of energy leads to "charge
fragmentation" when a critical distance has been reached.

A further feature that distinguishes the phase with charges from the
confinement/screening phase is the different behaviour of the charge (= total
electric flux) and the electric flux through nonclosed surfaces. Let A be a
hypercube in Zd. Decompose d*A into two parts Sx and S2, each consisting of

the bonds intersecting with one half of the boundary of A. Let £(S )= Y\ τjL(b),

ί = l , 2. Then QA = E(Sι)E(S2). In the charge phase one finds b e S ι

ωo(£(S1))ωo(£(S2)
- I n —— | S 3 | , (5.22)

ω ( β )

where S3 is the minimal set of bonds with d*S3 = d*S1(=d*S2). This is a signal
for the existence of large vacuum fluctuations of the electric flux through
nonclosed surfaces which makes it impossible to measure the asymptotic
direction of a string transporting the electric flux to infinity. As claimed in [11]
this is a necessary condition for the existence of states with gauge charges. In the
confinement/screening region we have instead

) _

^O(GA)

Equation (5.22) suggests that charged states, if they exist, could be further
distinguished by the asymptotic direction of the string. This is impossible, in the
general framework of quantum field theory, for particles in a massive theory [11]
and probably excluded for all states with finite energy.

These "order parameters" which test the existence of charged states and their
utility in numerical analysis will be discussed in more detail in [13].
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6. Energy and Translations

Confinement in the sense of Wilson means that it is impossible to create a
charged state with finite energy. Therefore, the sequence of vectors (FrΩ)ren in
Sect. 5 was chosen in such a way that their energy is uniformly bounded. More
precisely, we have the following result.

Proposition 6.1. For all neN there exists a constant cn>0 such that for all relN

(FrΩ,T-"FrΩ)\\FrΩ\\~2<cn.

Proof. From the definition of Fr in (5.1) we have

= (FrΩ, α _ > 3

For r<n there is nothing to show. For r ^ n w e find by a repeated application of
Schwartz' inequality

||Γo

r-"τ3(Lr)Ω||

||T0'τ3(Lr)Ω|| - | |ro 'τ3(L,)Ω||1 / 2 - - -

l | Γ 0 τ 3 ( L r ) Ω | [

3 ( 1 / 2 -

kn^r<2k+1
hence choosing keZ+ such that 2kn^r<2k+1n, and keeping in mind that
|| Toτ3(Lr)Ω|| si 1, we arrive at the estimate

||7Sτ3(LΓ)fl||

But || 7Jτ3(Lr)Ω||2 = <χMr>, and from Griffiths inequalities (χMr) ^ ( th^) 8 r , hence

" 8 " . q.e.d.

Because of this behaviour we expect that whenever the limit state ω = limωr will
exist it will have finite energy in the sense that it is possible, in the cyclic
representation induced by ω, to define a transfer matrix T which implements the
imaginary time translation α . Since we are interested in the properties of the
charged states we will from now on consider the case βg<βζ and βh>βh We
exploit the fact that the state ω ° ρ 0 is invariant under imaginary time trans-
lations. It is even a ground state of 21 as may be seen by its cluster properties
under separation in Euclidean time. Let (π, Jf,Φ0) denote the GNS triple
associated to ω °ρ0. Φ = π(σ3(0))Φo is then the gauge invariant vector inducing the
state ω. The transfer matrix T may be introduced by

Tπ(Λ)Φ0 = παι (^)Φ0, A e g 0 . (6.1)

The properties of T and its relation to the transfer matrix To in the vacuum sector
are described in the following theorem.

Theorem 6.2. (i) T is a bounded positive operator with a densely defined inverse such
that

Tπ(A)T~1=π(xi(A)

forallAe%0.
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Fig. 6.1. The lines Y, M κ , and M in the (l-O)-plane

fixes

Y

•-M

(ii) There exists a constant a>0 such that for A,Be% and neΈ+

lim UαXrCB)Frβ, TSA*jB)FrΩ)\\FrΩ\Γ2

r-+ oo

= a2n(π{A)Φ, Γπ(A)Φ)(π(B)Φ9 Γπ(B)Φ).

(iii) a is given by the formula

a = exp jΣcΓL(PΓ, Y)- Y\\\λ ~ (PΓ, MJ](PΓ, M)μΓ\,

where Y is the border of the infinite rectangle in the (0 — \)-plane with 0 ^ x ° :§ 1 and
x1 ^ 0 , Mx of the halfplane x1 ^ 0 and M of the quadrant x1 ^ 0 , x°^0 (Fig. 6.1)

Proof (i) Positivity and boundedness of T will follow from (ii) since α > 0 by a
slight generalization of Proposition 6.1 or by (iii). The inverse of T is given by

and the implementation relation follows immediately, (ii) and (iii). Since the left
hand side of (*) is uniformly bounded by \\A\\2 \\B\\2 it is sufficient to prove (*) for
A,Be$0. For this it is enough to check the relations (L,NCB(Zd+1), \L\, \N\<oo)

lim
r-»oo

= lim lim

and

<XMr>
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where M(/° is the rectangle with edges (— r, 0), (r -h n, 0), (r + n, xr), (— r, xr). Now the
first of these relations is an easy consequence of the polymer expansion in the same
way as in the proof of the existence of the charged state ω. To prove the second
relation we need the following lemma.

Lemma 6.3. Let

«ik) = e x PIΣCrKPn Y(k)) — IDi-Cl-(PΓ>MJ](PΓ,M)μΓ\,

where Y(k) is the boundary of the infinite rectangle 0^x°^fc, x ^ O i n the (0 — 1)-

plane, fceN. Then one has the product relation ^k)a(i) = a(k + i) an^ therefore a{k) = ak.

Proof of the Lemma. First we convince ourselves that the sum in the definition of
a{k) converges. Only those Γ can contribute for which PΓ contains a plaquette
p in the interior of Y{k) and a plaquette in the halfplane x ^ O , hence j\\Γ\\

p, MJ. Thus from (4.17)

Σ cΓί(Pn Y(k)) - 1 ] i d " (Pn M J ] {PΓ, M)μΓ

r
00

ύΣ^ Σ kr||μ
r = 1 Γ & dp

From translation invariance of μ and M^ in the O-direction we have

*w = e x P IΣ cΓί(Pn Y(l) + (K 0))- 1]\[1 - (PΓ, M^)] (PΓ, MΔ Y<*Vj,

and the product relation follows from (Y(l) + (ίc, 0)) Δ 7(/c) = Y(/c+°. q.e.d.

To complete the proof of part (ii) and (iii) of the theorem it is sufficient to show
that

lim —— r—-=a ( n ).

n
Let θ(

r

n) denote the reflection on the hyperplane x° = r + -. Then

In ̂ 4 = Σ CrKPn ̂  + (r, 0)) -1] (PΓ,

where the latter equation comes from the invariance of the activities under lattice
reflections and from the invariance of Y(n) + (r, 0) under θ{"\ Using the identity

(PΓ, Mr) + (PΓ, Θ^Mr) = (PΓ, M r)(l - (PΓ, ΛfJπ+ 2 Γ ))),

which holds for (PΓ, 7 (n) + (r,0))= - 1 , and neglecting all Γ with ||Γ|| ^ r - their
contribution vanishes in the limit r—>oo - the sum splits into two parts, one
containing all Γ, where PΓ intersects with the halfplane x1 ^ 0 , the other containing
all Γ, where PΓ intersects with the halfplane x1 ^2r. Both parts converge to lna(n)

in the limit r^oo, thus completing the proof of the theorem, q.e.d.
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The constant — lnα can be interpreted as the minimal energy of a gauge field
configuration accompanying an external charge. It coincides with the constant
governing the perimeter law of the Wilson loop:

Corollary. Let Rkl denote the boundary of a rectangle in a lattice plane with side
lengths I and k. Then

lim (χR >α~ | J M =constφ0.
k,l-+oo kl

Proof. Let fk z = ln«χΛ f c I>α~ | Λ f c z l). In the proof of Theorem 6.2 we established the
estimate

\fk+uι- / J ^ const e~ c o n s t m i n ( M )

with positive constants. Thus

\fk,l~ fk',l'\= * l m \\fk,l~ fk + n,l + n\~^\fk + n,l + n~ fk' + n,l' + n\
M-*OO

"• \Jk' + n,V + n~ Jk',l'\i

oo
<4CQns|-g-constmin(Λ>ϊ,fc',//) y ^-constm

m = 0

which proves the corollary, q.e.d.

It is easy to find ground states of 9ί with general configurations of external
charges. Let g : Z d - ^ { ± l } b e a function with finite support. A ground state ωq with
the external charge configuration

ωq(q(x)) = q(x), xeZd, (6.2)

is given by coq(Λ) = (Aciyq, Acl being a classical function corresponding to A
according to the rules in Sect. 3, with the expectation values

<XL\= Σ (thβh)MexpίΣcΓ(alM-l)aΓ

Mqμ
Γ), (6.3)

MεConn(L) [ Γ J

where Mq = [) ( M x + (0, x)). [Compare (5.8).]
q

xesuppg
Theorem 6.4. // |suppg| is even, there exists a unique eigenvector Φq of To in 34?O

inducing ωq, with ί Y[ σ3(x)Ω, Φq\>0. If |supp^| is odd, there exists a unique
\xesupp4 /

eigenvector Φq of T in 2tf inducing ωq with ί f | π(σ3(x))Φ0, Φq\>0.
\xesuppgΔ{0} /

Proof We already know the statement for q = 1 (Φq = Ω) and for q(x) = (— l)δ°>x(Φq

= Φo). Let |supp q\ be even. Then there exists a finite set of bonds L C B(Zd) with dh

q. Let τ 3(L)= Π τ

3 ( b )
beL

Then ocin(τ3(L))Ω= \Φq

n) has an external charge configuration described by q. Itτ3(L))Ω= \Φq

is easy to see that

\im{Φ("\AΦf)\\Φγ\\-2 = ω(A).
q \ r ω q (
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Furthermore, the sequence Φq

n)\\Φq

n)\\ ~x converges strongly. To see this we use the
formula (m>n)

f\\ \\ΦT\

Γ

{(Ω, τ3(L)Γo

2nτ3(L)Ω)1/2(Ω

cr{(PnL^J + (Pr,L_mJ-(

where for k, leΈ, k<l, Lkl is the set of bonds

£ „ = {{*} xb,{/}x^

Clearly, LklALlm = Lkm. Hence

Therefore only those Γ contribute to the sum for which (PnL_m _n) = (PnLn m)
= —1. If we write

we see that the sum can be estimated by [cf. (4.17)]

This proves that Φ^WΦ^W ~1 is a Cauchy sequence, and we may identify the limit
vector with Φq. Φq is an eigenvector of To by construction. Φq is cyclic for g, since
by the same argument as before ocin(τ3(L))Φq converges strongly to Ω. Hence from
cluster properties of ωq under separation in Euclidean time the uniqueness of Φq

(up to a phase) follows. It remains to establish the positivity of the scalar product

/ Π σ3(x)Ω> Φq\
 W e h a v e [cf. (4.16)]

\xesuppg

π σ3
xesuppg

MeConn{Kn)

where Kn is the subset of bonds of L_n n which belong to the halfspace x° ^ 0 and θ
is the reflection on the hyperplane x° = 0. Since dKn and hence also Conn(.KJ are
independent of n, it is sufficient to prove the convergence of the sum in the
exponent as n goes to infinity. Only those Γ contribute for which either there is
some yesuppΓ with Ny<£Disc(M)nDisc(0M) or (PΓ, M Δ { 0 } x L ) = - l or (PΓ,
Θ M Δ { 0 } x L ) = - l or (PΓ, K π Δ { 0 } x L ) = - l , (PΓ, L _ B f „ ) = + ! . From (4.15) the
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contribution of those Γ which fulfill one of the first three conditions is bounded by
2(|M| + |L|)F1(2/?C); for the last condition one obtains the bound

If |suppg| is odd one makes the same construction in the charged Hubert space Jf
starting from Φo and using the even set suppgΔ{0}. q.e.d.

According to the preceding theorem, there are, for each xe7Ld, vectors Φq = ΦX,
qjx) = — 1, ^χ(y) = 1 for xφy, which induce the state % x = ω°ρ0°α_x. This leads to
the following simple definition of translation operators U(x),

U(x)π(A)ΦQ = πax(A)Φx, Ae%. (6.4)

Theorem 6.5. (i) x->£/(x) is a unitary representation of the group of lattice
translations implementing the automorphisms αx,

U(x)π(A)U(-x) = ax(A).

(ίi) U(x) commutes with T.
(iii) U(x) >0 as |x|-*oo.

Proof, (ii) follows from αxαr = αfαx and TΦX = Φx.
(i) It is sufficient to show

From (ii) and Theorem 6.4 it follows that U(x)Φy = λΦγ + x with \λ\ = 1. Let Lz

for τeTLd denote a path from 0 to z with |LJ = |z|. Then

(U(x)ΦrΦx+γ)

• | |πα.n(τ 3(L y))Φ 0 | |" x | |πα i m (τ 3 (L x ))Φ 0 | | " ι l | π α J τ 3 ( L x + y ) ) Φ 0 | | ' x ,

which is nonnegative as may be seen by Griffiths inequalities or by the expansion
of its logarithm. Thus λ = l.

(iii) Let Eq denote the projection on vectors in ff with external charge
configuration q, suppg finite. Then U(x)Eq——>0 if g φ l . It is therefore sufficient
to look at matrix elements of U(x) in the gauge invariant subspace of Jf7. Let A,

0. Then for |x| large enough

(π{A)Φ, U{x)π(B)Φ)

= lim (Φ0,π(ρ0U*K(5)(73(0)(73(x)α/II(τ3(Lx)))Φ0) | |παJτ 3 (L x ))Φ 0 |Γ 1

n—> oo

= ton <A<BxχKι)ΛχL_nX"2,
n-^oo υ ' υ

where Lx was defined in the proof of (ii), Kn and L_n n in the proof of Theorem 6.4,
and where AQ and Bx are classical functions with support in the time slice — 1 ^x°
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^ 0 corresponding to ρo(v4*) and αx(j5), respectively. But for finite sets JR1?

R2CB(Zd+1) (cf. the proof of Proposition 5.3) one has

\XKi A(R2 + (0, x))AKn/q0

= hm \X ) %

It is therefore sufficient to consider the case A, B = 1, i.e. to look at the "two-point
function"

(Φ,t7(x)Φ) = (Φ0,π(σ3(0)σ3(x))ΦJ= lim <XKX<XL^,X0

1/2-
n-* oo

From (5.6)

<Z*Λ. = Σ ( W M | lim σ(K n ΔM, M) <χM|.> " 1 ,
MeConn(Kn) r^co

from Proposition 4.1, (i) and Griffiths inequalities

σ{KnAMr, M) S <XKnAMrAM> ^ <XL 0 > n ΔM r > < X M Δ { O } X L X > ~ 1 >

from Schwartz' inequality

f-> 00

= <ZLO.ΛO = (^3(Lχ))Φo, rπ(τ 3 (L x )Φ 0 ))

^ | | r π ( τ 3 ( L x ) ) Φ 0 H < χ L _ n ) n > ^ 2 ,

and from the perimeter law for the Wilson loop in the pure gauge theory

UMΔ{0}xL/ =l\AMΔ{0}xL/

hence

(Φ, l/(x)Φ)g Σ
MeConn(Kn)

e2 α (^ }] " J . q.e.d.

7. Dynamics in the Charged Sector

The transfer matrix T in the Hubert space of charged states, 34?, is positive and has
a densely defined inverse, thus the time evolution in the charged sector may be
described by

i (7.1)

Again it is an open question whether atπ($) is contained in π(3r) or at least in its
weak closure.

For a physical interpretation it is essential that the dynamics in the charged
sector can be compared with the dynamics in the vacuum sector. The most natural
way to do this is, in our opinion, to look at the time invariant algebra g which was
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defined as the smallest C*-algebra containing S = πo($) which is invariant under
the time translations &t of the vacuum sector. That άf and &t actually describe the
same dynamics (in a sense to be specified) is the content of the following theorem.

Theorem 7.1. There exists a unique representation ft of § in 2tf with the properties
(i) π(A) = π(A),

(ii) πάf = ά fπ,

Proof. If a representation π with the properties (i) and (ii) exists it is of the form
(A19...,Ane%)

π(άtί(A1)..Λtn(An)) = όttίπ(A1)..Λtnπ(An),

and therefore unique. The existence of π will follow from the convergence of
"Green functions" [16, 6.3.4]

lim (FrO,&tι(A1)...&tn(AjFrΩ) \\Ffi\\'2 = (Φ,ά tπ(A ί)..Λ tπ(An)Φ), (*)

holding for all Av ...,Ane$0, tv ...,ίneIR, ΠGN. TO prove (*) we exploit the fact
that TQ+1 is a continuous function of To and, according to Weierstrass' theorem,
can be uniformly approximated by polynomials,

Using Theorem 6.1, the left hand side of (*) can be approximated uniformly in r by

Σ <(-hX(h'h)...afn+i{tn)
ni,...,nn+ι

•(FrΩ,r0>a_i(A1)TZ>a_2i(A2)...a_ni(An)TZ»^a_(n+1)i(Fr)Ω)\\FrΩ\Γ2.

From Theorem 6.2 this converges for each ε > 0 to

. α 2 ( ^ - ( f I + 1 ) ) ( Φ , r i π α _ / ( A 1 ) . . . π α _ n ί U w ) T Π w + 1 " ( π + 1 ) Φ )

(Φ, τΣnι~{n+1)Φ).

Since O ^ α 2 T ® T ^ l this converges for ε—•() to

(Φ,T-Uίπ(A1)...π(An)1*»Φ).

This proves relation (*). q.e.d.

The vacuum (identity) representation π 0 of § is irreducible since Ω is the (up to
a phase) unique vector in Jf0 inducing a ground state of the dynamical system
(§, &t) [25]. In the same way, π is irreducible since Φo is the (up to a phase) unique
vector in Jf with external charge configuration q0 which is a ground state of the
dynamical system (21, ά,). In fact, let X be in the commutant π(g)' of π(g). Then
XΦ0 has also g0 as external charge configuration and is therefore a multiple of Φ o

hence from the cyclicity of Φ o for π(§) one concludes that X is a multiple of the
identity. The corresponding subrepresentations π 0 and π of π 0 ϊ 2ί and ft 12ί in the
respective gauge invariant subspaces are also irreducible. For π 0 this follows again
from the uniqueness of Ω. The argument for π is somewhat indirect. We know that



110 K. Fredenhagen and M. Marcu

the subrepresentation πqo of π[<Ά in the subspace with external charge con-

figuration q0 is irreducible. The irreducibility of π follows then from the unitary

equivalence **V<?o (7 2)

It is now easy to see that π and π0 as well as π and π0 are mutually inequivalent
representations. One possibility is to look at the behaviour of the translation
operators. Ω induces a translation invariant state on g, but J^ cannot contain a
vector inducing a translation invariant state on g. Namely, such a vector had to be
an eigenvector of ί/(x), xeZd; the existence of such an eigenvector, however, is
excluded by the weak convergence of U(x) towards zero (Theorem 6.5.).

This argument completes the construction of charged states. The result is
formulated in the following theorem.

Theorem 7.2. For βg>β™, βh<β^ there exists an irreducible representation π of 91
which is inequivalent to the vacuum representation, π has no external charges, n{q(x)
= 1 for all xeΈd, it is translation covariant, and the time translations are
implemented by a positive Hamiltonian H,

eitHπ(Λ) e~itH = πάt{A), A e &.

Appendix A.I. Polymer Expansions

Low activity expansions for polymer systems are well known (see e.g. [2]). For the
reader's convenience we sketch the essential steps. As a byproduct, our estimates
seem to be (as far as we know) slightly better than the published ones.

Let Ψ be a finite set whose elements are called polymers together with a
relation "compatible," y~y\ such that y Ψy for all ye^c. A subset Γ oϊ$c is called
admissible if y~y' for all y, y'eΓ, y + yf. Let ^ denote the set of admissible subsets
of Ψ. One may visualize ^ as the set of polymer configurations or as a set of
graphs whose connected components are the one element subsets of ^ c. We need
further the notations Γ~Γ if γ~γ' for all yeΓ, y'eΓ\ Γr = {yeΓ\y^Γ} and
Conn(Γ) = {Γe^\yf^Γ for all y'eΓ}. We shall often identify ΓeΨ with its
characteristic function. Other functions Γ:(3C-+Έ+ will also occur; we consider
them as multi-indices of power series in variables indexed by the elements of Ψ.

A polymer model on ̂  is defined by assigning to each polymer ye Ψ an activity
μ(y)e(E. Consider the partition function

z= Σ/, μΓ

and the correlation functions

Z-1 X μr, Γe%. (A.2)

Γ'~Γ

The identity

Σ /iΓ'=Σ(i-i) |ΓV=Σ Σ (-i)"V

= Σ '(-μf" Σ ^ (A.3)
Γ"εConn(Γ) Γ ~ Γ"
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leads to the equation

ρ(Γ)= X (-μ) r 'έ?(Γ). (A.4)
Γ'eConn(Γ)

This equation of the Kirkwood-Salsburg type together with the normalization
condition ρ(0) = 1 has the unique solution (in the sense of formal power series in
the activities)

ρ(F 0 )=lim Σ (-μ)Γί + -+Γn. (A.5)
n ^ 0 0 Γ1,...,Γ»e^

Γι6Conn(Γί_1),ι= \,...,n

Equation (A.5) leads immediately to graph theoretical expressions for the
coefficients cΓ, Γ :<^c—>Z+, which appear in the power series expansion of lnZ.

For an investigation of the convergence of (A.5) we associate a length |y|eN to
each yeΨ and let ||Γ|| =XΓ(y) |y|. We assume that there is a convex, differentiable,
monotonically decreasing function Fo : (b0, oo)->IR+, froeIR, such that for each

b)\\Γ\\. (A.6)

This implies
V e-b\\n\<eFo(b)\\Γ\\^ ^ A J J

Γ'eConn(Γ)

Sometimes (A.7) can be improved by taking partially into account that only
admissible sets Γ occur,

/
Σ β-^l 'g l + iF0(fc) (A.T)

Γ'eConn(Γ) \ n I

for some neN. Inequality (A.7) implies convergence of (A.5) if there exists some
a>bn such that ... , , , „ , ΛΛ

0 ||μ|| - sup Lφ) | 1 / | y | = e'ia+Foia)). (A.8)
y

Let αc be the smallest solution of

F 0 ( α c ) = - l , (A.9)

provided it exists, and ac = b0 otherwise. Then the convergence condition can be
written in the more explicit form

\\μ\\Se~{ac+Fo{ac)). (A.10)

For the correlation function one obtains the bound

where 77

1 :(ac + F0(ac), oo)->IR+ is defined by

To derive the estimate (4.15) we use the identity (Γe^)

Σ c r // ' = lnρ(F) = lnZ(O)-lnZ(l)

(A.13)
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where Z(λ) and ρλ are partition function and correlation functions corresponding
to the activities μλ(γ) = λμ(y) for y^Γ and μλ{y) = μ(y) otherwise, ye^c. Since | | μ j
^ 11/4 \Qλ({y})\^eFή~lnMm, and from the definition of Fί and from (A.6)

Σ MI/Ί^F^-lnl lμlDH/l. (A.14)

Inequality (4.17) is obtained by comparison with the critical activity μc(γ)
_o-(ac+F0(ac))\γ\

£ |c r . | | / ' | ^(- ! i^- Σ \cr\e~lae + P<Λaύ)m{

w ) l | Γ | | f o K ) (A 15)

The functions Fo for the models discussed in this paper are given in Appendix
A.3. In the standard case with the combinatorial estimate

one obtains F0(b) = ce~b(l-ce~b)~1 and

Appendix A.2. Perimeter Law of the Wilson Loop

The fact that the Wilson loop has a perimeter law in the low temperature region of
the Έ2 gauge theory has been observed already in the classical paper of Wegner
[6] in 1971. A somewhat sketchy proof appeared in [7], and a complete proof has
been carried through by Gopfert [8]. For the convenience of the reader we review
the proof together with some new estimates.

The proof is a simple application of the polymer expansion method outlined in
Appendix A.I. Here, polymers are coconnected coclosed sets of plaquettes P
(vortices), and two polymers are compatible if they are not coconnected. Let
McB{Έd+ί) be closed. Then

( Σ e~2β9]P] ί dλρλ(P)
(P, M) = ~ 1 - 1

where ρλ denotes the correlation function corresponding to activities μλ, μλ(P)
= λe-2βg\p\ for ( p ? M ) = _ i 5 μλ(p) = e-2βg\p\ for ( P 9 M ) = 1. Using (A.ll) and the

formulas (A.27) and (A.29) we obtain

where a(βg) is given by the formula
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F{12\ F{22) being defined in Appendix A.3, and ac being the solution of
F(22)'(a)= _ i. The leading term for βg large is e~MD~1)βa. The bounds in Appendix
A. 3 imply

with c(βg)Sc(β^l β; = ±(ac + Fi22\ac)). We obtain ^ = 0.9215, c(jφ = 39.76 in
D = 3 and 0™ = 0.8953, c(jφ = 340.9 in D = 4 dimensions.

Appendix A.3. Combinatorial Estimates

In this appendix we collect some combinatorial estimates which were needed for
the convergence proofs of the expansions used in this paper. From now on we
denote D = d+l.

Proposition A.3.1. Let QdlP be a finite set with \Q\=2q, qelti. Then the number
Jί{m) of all subsets McB(ZD\ with \M\=m and dM = Q such that each connected
component of M has a nonυoid boundary is bounded by {D ̂  3)

Proof The most general set M with the properties mentioned above can be found
by decomposing Q in a set of pairs and joining each pair by a path (a corollary to

the "Kδnigsberger Brϋckenproblem"). There are (2q) l/2qq! pairings of QA

partitions of m in a sum m = m1 + ... + mq, mk ^ 1 and at most 2D(2D — l)m k ~ 2 paths
of length mk joining a given pair of points. Thus Jf(πί) is bounded by

l)mq2~q. q.e.d.

In the lattice ΈD, two /-cells are connected if their boundaries contain a common
(i— l)-cell. Let Jί^rt) denote the number of closed connected sets C{ of z-cells with
|CJ = n which contain a given i-cell, and let

00

fβ)= Σ A(n)e-b" (A.20)
n=0

denote the associated generating function.

Proposition A.3.2. Let M be a closed set of i-cells, and let ^ ( M ) denote the set of
closed connected sets of i-cells which are connected with M. Then

Proof There are at most 2ί(D — i)\M\ /-cells which are connected with M but not
contained in M. Thus there are at most (2ΐ(D —ΐ)+ 1)|M| possible starting points
for a closed connected set of /-cells. The statement follows from the fact that each

contains at least two of them, q.e.d.
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Proposition A.3.3. Let Pbe a coclosed set of (/ + ί)-cells, and let ̂ f(P) denote the set
of closed connected sets of i-cells with an odd winding number with respect to P.
Then j _μ i

Proof Let c denote the /-cell which is spanned by the points 0 and xij\j= 1,...,/,
xk} = ĵfcj ^ e t ^ i ( n ' c ) denote the set of closed connected sets Ci of /-cells containing c
with \Q = n, and let VfaP) denote the set of C^i^P) with \Q = n. Each
C e^.(rc,c) is the boundary dCi+1 of a certain set of (/+l)-cells Ci+ί, and from
Proposition A.5.2, Ci+1 can be chosen such that

Consider the semidirect product G of the group of lattice translations and the
group of permutations of coordinates. If nh J ι + l and ph ...ji + 1

 a r e t n e numbers
of (/+l)-cells in Ci+1 and P, respectively, which are parallel to the (j\, . ..,j / + 1)-
plane, then, for each permutation π there are at most

2 J nπ(ji)... π{jt + 1)Pjι, ...Ji+ί

3\ < • < jι + l

possibilities to shift the transformed set πCi+1 such that it intersects with P.
Summing over all permutations leads to at most (i+l)l(D — i—1)1 | C ί + 1 | \P\
transformations in G which map Cv into ^(n,P) . Since each C^^^n.P) can be
reached by |C |/!(D — /)! transformations we obtain

» l ) l ^ Z » | P | | y < (

The statement follows then from (A.20). q.e.d.

Jί^n) can be estimated by an application of the solution of the "Kδnigsberger
Brϋckenproblem." There the /-cells and their faces are considered as islands, and
each /-cell is connected with its faces by bridges. The most general set C can be
found by choosing a path which meets every bridge once. This leads to the bound

where we used the fact that the first step is arbitrary and that a different choice of
the last 2/+ 3 steps can lead at most to one other closed set since the smallest
closed set of /-cells has 2(/ + l) elements.

For the generating function one gets

fib) £ φ.e- b)2ii+1}(1 - cfe~ 2b)~' (A.22)

with c;. = 2 [ ( 2 / - l ) ( 2 D - 2 / + l ) Γ ( ί + 2 ) and cf = [ (2 i- l ) (2D-2f+l) ] i .
If />1 it is more effective to estimate first the number Λ^(0)(n) of elementary

closed sets of /-cells containing a given one, where we call a closed set of /-cells
elementary if it cannot be written as a disjoint union of nonvoid closed sets of
/-cells. Let oo

fi(0\b)= Σ ^°\n)e-bn (A.23)
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denote the associated generating function. Note that Proposition A.3.3. holds also
for elementary sets if one replaces ft by //0).

Proposition A.3.4.

Proof. Each closed connected set of /-cells Cf containing the z-cell c can be
decomposed into elementary ones

such that ceE0 and Ef is connected with E{J2ί for some ΐ but does not intersect
with Ei}21J=U...,n. Then

00 -J

V _ _ y e-{a + i(D-i)f

where we used the fact that //0 ) is monotonically decreasing. A repeated
application of this estimate leads to

y ^-(α + iφ-ί)//0^))!^!^ y e~a\EQ\ ^

dBC E03C

which proves the statement, q.e.d.

J^f°\n) can be estimated similarly to Ruelle's estimate on the number of
elementary closed sets of (D— l)-cells (Peierls contours) [22] (compare also [24]).
This leads to the bounds

(A.24)

and

fi°\b) S c^(cfe-b)2{i+1}(1 - cf)2e~ 2 b ) ~ \ (A.25)

with

ί O ) ( " + 2 ) ίO) . (A.26)

After these general considerations we have the means to estimate the
generating function for the Marra-Miracle-Sole expansion of the gauge invariant
Ising model which was reviewed in Sect. 4. It is natural to associate to each ye^c a
pair of lengths \γ\ = (\Ny\, \Pγ\). We shall equip R 2 with the usual scalar product xy
= x 1y 1+x 2 >y 2 . From Proposition A.3.3 and A.3.4 we have for NCB(ZD\ dN = 0

PCP(ZD)
(P,N)=-ί

Pcoconnected

= a + 2(D-2)fD°l2(a),
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and for PCP{lP\ d*P = 0,

( , )
connected

If D = 3 one may use F(12) = F(21) instead of (A.27). Defining

jrfi D(b) = (D -1)^(6), F ( 2 2 )(b) = (2(D - 2) + i)/D_ 2(b), (A.29)

we arrive at the estimate (b = (bvb2)e]R2,y' = (Nγ,,Pγ)e<g)

Σ e-b^^F0(b)\Y\, (A.30)

with

F0(α + F(a)) = F(a) + F{a), αe {xeR2, det(l + F(x)) ^ 0},
(A.31)

F(av a2) = (f<12>(α2), J * 2 1 ^ ) ) , F(α1? α2) = (F^Ka.l F^2\a2)).

The region ^ 0 = {fo = α + i 7(α),det(l+F(α))^0} in which the left hand side of
(A.30) is bounded is somewhat smaller than the one given in [10] we could not
reproduce this stronger result.

The function FQ occuring in Sect. 4 (denoted here by F(

o

4)) is related to the
function Fo in (A. 30) by

Appendix A.4. Convergence Region of the Marra-Miracle-Sole Expansion

The estimates in Appendix A. 3 relied on the estimate of the number Jfγ of paths in
Ί? starting from a given bond

ln^i/length->2D- 1, (A.32)

and on the number Jί^l2 of elementary coclosed sets of plaquettes starting from a
given one

lnJ^ 0 )

2 /length-^5, (A.33)

if the length tends to infinity. Therefore the convergence region which we shall
establish cannot exceed the region t h ^ < ( 2 D - l ) " 1 and έΓ2 /*9<l/5. We shall
come fairly close to this borderline so a further improvement of the bound on the
convergence region should rely on an improvement of these basic estimates.

According to Appendix A.I, the polymer expansion of Marra and Miracle-
Sole will converge if

e-2βή = (e-b\e-b>), (A.34)
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D=3 D=4

-.158

th(βh)

2/3 .727
th(β g)

.120

2/3 .714

Fig. A.la and b. The bounds on the convergence region, as estimated in Appendix A.4

where (bl9b2)e3l = {a + F0(a)9ae8l0}, Fo and ^ 0 being defined in Appendix A.3.
Using Eqs. (A.27)-(A.31) it follows that

1 = {b = a + H(a)}, H(a) = F(a) + 2F(a). (A.35)

H is monotonically decreasing and H' is monotonically increasing with respect to
the partial ordering

x^y <=> x1^y1 and x2^

Hence $ = {beWβ,b^bc for some bceBc} with

Bc = {ae + H(ac),aceAc},

Λc being the set of maximal solutions of

det(l+ίΓ(α)) = 0.

(A.36)

(A.37)

(A.38)

The convergence region determined by this method is shown in Fig. A.la (D = 3)
and Fig. A.lb (D = 4). In particular it contains the convergence regions of the pure
gauge theory and of the Ising model.

Appendix A.5

Proposition A.5.1. Let Mr be a square with side length 2r contained in a lattice
plane. For each set of plaquettes P

\P\ ^ \ {\Mr\ - \dPAMr\} = ~ {2\dPnMr\ - \dP\].

Proof. Let Pr be the minimal set of plaquettes with dPr = Mr (i.e. \Pr\ =4r 2 ), and P'
the projection of P on the plane containing the square. Then
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\dP' AMr\^\dPAMr\. Since a plane surface with boundary of length / has at most

an area of Ώ , \PΆPr\^dP A M ^ . Now,
W 16

\P'\ = \P'\ + \PΆPr\-\PΆPr\^\Pr\-\PΆPr\=4r2 -\P APr\

16 " \ 4 ) ~ 2y

Proposition A.5.2. Let C{ be a finite closed set of i-cells in ΈD. Then there exists a
set of (i+l)-cells Ci+V such that dCi+1 = Cf and

Proof We shall only consider the case ί=ί. In this case the above bound is
optimal, as may be seen by chosing Cλ as the path of length 2D connecting
successively the points 0, ev e1+e2, ...,eί + ... + eD, e2 + ... 4-eD, e3 + ... + eD,...,0
(ei denotes the ith unit vector) the minimal area of which is D(D—l)/2. The proof
for ί > 1 is completely analogous, but it is obvious that the bound obtained is not
optimal.

It is sufficient to consider connected sets C1. For D = 1 the inequality is trivially
satisfied. Let D ^ 2 and assume that the statement of the proposition is true for
D— 1. We may chose a hyperplane and a set of vertical plaquettes C2 such that

where C\ is the projection of C1 onto the distinguished hyperplane. Let x |CJ
denote the number of horizontal bonds in Cv 0^x = l Then \C\\ ^ x | C x | and for a
suitable level of the hyperplane

By the induction hypothesis, there exists a set of plaquettes C"2 in the hyperplane
with dC"2 = C\ and

Then C2 = C2AC2 has the properties required in the proposition, q.e.d.
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