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Abstract. Charged translation covariant states with finite energy are con-
structed in the Higgs phase of the Z, gauge theory coupled to aZ, matter field.

1. Introduction

The spectrum of charges in gauge theories depends on subtle properties of the
dynamics, and it is extremely difficult to get information on them within the
known approximation schemes. An easier problem is the investigation of lattice
gauge theories where the powerful methods of classical statistical mechanics can
be applied, and one may hope that certain properties of the lattice theory will
survive in the continuum limit. However, on the lattice the investigation of the
charge structure is not easy either. The emphasis has rather been on confinement
criteria, the most prominent one being the Wilson criterion [1]. This criterion
checks whether the energy of a system with two external charges increases linearly
with the distance between the charges. If this happens, it is interpreted as a sign
that it is impossible to create single charges with finite energy. Unfortunately, the
Wilson criterion cannot be used to test the existence of dynamical charges in gauge
theories with matter fields [2]. This is however the more interesting question.
Criteria which are applicable in this case have been proposed by Mack and Meyer
[3] and Bricmont and Frohlich [4]. However, the implications of their criteria for
the confinement problem are not clear.

The aim of this work is to understand the nature of charges in a gauge theory
with matter fields. Our analysis leads to confinement criteria which directly test the
existence of charges [5] and some of their most relevant properties.

In gauge theories with a discrete gauge group there exists a weak coupling
expansion. In the pure gauge theory the Wilson loop obeys a perimeter law
[6-8, 2]. One may ask whether charged states with finite energy will exist if the
gauge field is coupled to a matter field. This has been conjectured by several
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Fig. 1.1. Conjectured phase diagram of the gauge invariant Ising model

authors [9, 10], however a proof is still lacking. The main problem consists in the
fact that charges in gauge theories are sources of electric flux lines; an isolated
charge is therefore tied to an infinitely extended string of electric flux. It is not clear
from the beginning whether such a string can be chosen such that the charged state
has finite energy, and it is not easy to guess the dependence of the state on the form
of the string,

In continuum quantum field theory the localization properties of charged
particles have been analyzed in a general context, and it has been found that in the
absence of physical massless particles a charged particle can always be localized in
a stringlike region [11]. In this context, the expected behaviour of charges in gauge
theories is the worst possible case. The asymptotic direction of the string, however,
can never be observed. On the other hand, the derived localization properties lead
already to the usual structure in the set of particle states, hence there seem to be no
reasons against the occurrence of particles which are only stringlike localizable;
the most natural candidates are charged particles in gauge theories.

In this paper we construct charged states for the Z, gauge theory coupled to a
Z, Higgs field in (d + 1) dimensions (d = 2). The Euclidean version of this model is
the so-called gauge invariant Ising model which has first been discussed by
Wegner [6]. Its phase structure is relatively well known (Fig. 1.1). In Region I one
expects that there exist no charged particles with finite energy (confinement/
screening). Region II (the Higgs phase in the terminology of 't Hooft [12]) may
contain charged particles. We shall exploit the fact that both regions contain
subregions I, and II , respectively (the shaded areas in Fig. 1.1), where convergent
expansions are known. We shall study a sequence of states which describe a pair of
charges separated by an increasing distance and which are regularized such that
their energy is uniformly bounded. In Region 11, the sequence will converge to a
state w orthogonal to the vacuum sector, whereas in Region I the limit state



Charged States 83

remains in the vacuum sector. One observes several remarkable differences be-
tween the Regions I, and II.. In I, the vacuum component of the vectors of the
approximating sequence does not vanish in the limit, in obvious contrast to the
behaviour in Region II_. The ratio of the expectation value of the charge operator
in the state w to that in vacuum is —1 in Region II, and +1 in Region I... A third
distinctive feature is the occurrence of strong correlations of electric fluxes in
Region II, but not in I.. These strong correlations prevent the determination of
the asymptotic direction of the string accompanying a charged particle and are a
necessary condition for the existence of those particles according to the general
analysis in [11]. One may use these properties as criteria distinguishing the
confinement/screening phase from the phase where charges exist. The use of these
criteria for numerical studies will be discussed in a forthcoming paper [13].

The present paper is organized as follows. In Sect. 2 the algebra of the model is
introduced, and it is shown that the model cannot possess charged states which are
created by local fields. Hence any charge must be of the gauge type, i.e. it can be
determined via a version of Gauf}’ law in the complement of any finite region. In
Sect. 3 we introduce the dynamics of the model by the Euclidean method [14, 15]
and express the ground state in terms of a Gibbs state of the gauge invariant Ising
model. In Sect. 4 the construction of the Gibbs state of the gauge invariant Ising
model in the Higgs phase using the expansion of Marra and Miracle-Solé [10] is
reviewed. Section 5 is devoted to the construction of charged states. Their
behaviour under lattice translations and imaginary time translations is discussed
in Sect. 6. The real time translations are studied in Sect. 7; this finally leads to the
proof that the charged states constructed in Sect. 5 are orthogonal to the vacuum
sector. The proofs rely heavily on the method of polymer expansions (see e.g. [2]).
For the convenience of the reader an outline of the method is given in Appendix 1.
In Appendix 4 we give an estimate of the convergence Region II.. We also present
a bound on the parameter appearing in the perimeter law for the Wilson loop in
the pure gauge theory (Appendix 2) and some combinatorial and geometrical
estimates which are needed several times (Appendices 3-5).

2. Fields and Observables

The model is defined on the hypercubic lattice Z¢, d=2. We shall denote the
distance between the lattice points x=(x?, ...,x%) and y=(y?, ...,)) by [x—y],

d
x—yl= Y Ix'—yl. (2.1)
i=1

For each lattice point x we have hermitean operators, o,(x) and o, (x). They are the
discrete analogues of the Higgs field and its canonically conjugate momentum and
have the algebraic properties of Pauli matrices,

O'1(X)2 = 0'3(X)2 =1,
2.2)
0,(X)o,4(x) = — 04(x)o,(x).

For each lattice bond b (ie. a pair of lattice points with distance 1) we have
hermitean operators, 7,(b) and t,(b), representing the Z, gauge field and the
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corresponding electric field, respectively, again with the algebraic relations
Tl(b)2 =T3(b)2 =1 ’
7,(b)t5(b)= —1,(b)7,(b).

Operators associated to different lattice points or bonds commute.

There is a unique C*-algebra § which contains as a norm dense subalgebra the
x-algebra §, generated by all these operators. The subalgebras F(A) associated to
subsets ACZ® are C*-algebras generated by o,(x), t j(b), i,j=1,3, xeA, bCA.
Clearly, = |J &(A). The “local net” A—F(A) is covariant under lattice

(2.3)

translations, Al
4 (&(A) = FA+x). (2.4)
Here o, xeZ%, denotes the x-automorphism of § with the properties
afoly)=0cly+x), ofrb)=1+x), i=13. (2.5)

The dynamics which will be introduced in Sect. 3 is gauge invariant, ie.
invariant under the automorphisms implemented by the unitary operators

§(x)=0,(x)6%7,(x), (2.6)
where 6*7,(x)= [] z,(b) denotes the divergence of t,. Therefore only the gauge
invariant part lei)xf R

A={A4e§, §(x)4= A4(x) for all xeZ}, 2.7

is considered as the algebra of observables, whereas § is called the field algebra.

The algebra of observables 2 has a nontrivial center which is generated by the
operators §(x), xeZ“. §(x) is interpreted as the observable which measures an
external charge at the point x. In a factorial * representation @ of 2 the external
charges are multiples of the identity,

n(§(x)=q,(x) 1, (2.8)

and g, :Z°~>{+1} is called the external charge configuration in 7. The main
interest is on representations 7 without external charges, g, =1. In these repre-
sentations the two-sided norm closed ideal J of U generated by §(x)—1 for all
xeZ? is annihilated. Hence the relevant algebra of observables is the quotient

B=U/J. (2.9)

Both A and B inherit a local structure from &, which is again translation
covariant,
W(A)=FA)NABA)={A4+J, Ac (A)}. (2.10)

The algebra B is generated by u,(b)=1,(b)+J, u;(b)=0Ja,(b)t;(b)+J 2, where b
runs over the set of lattice bonds. u,(b) and u,(b) have again the algebraic

1 A representation = is called factorial if the center of the weak closure of () consists of multiples
of the identity

2 do,(b)= ] o4(x) is the exterior derivative of o,
xeb
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properties of Pauli matrices. The local algebra B(A) is generated by u,(b), u,(b),
bCA. Let B(A) denote the C*-algebra generated by u,(b), u,(b), b¢ A, and let
B(A) denote the relative commutant of B(A),

B(A)={4eB, AB=BA for all BeB(A)}. (2.11)

These algebras are related by the following proposition (compare [16, Theorem
2.5.10]).

Proposition 2.1.
(i) B(A)F=B(A).
(i) B(A)=B(AY).
(iii) If n, and ©, are disjoint representations of B (i.e. no subrepresentation of
7, is equivalent to a subrepresentation of m,), then also their restrictions to B(A°)
for any finite ACZ* are disjoint.

Proof. (i), (ii) For a set L of lattice bonds, let B(L) denote the C*-algebra
generated by u,(b), uy(b), be L, and let L denote the complement of L in the set of
all lattice bonds in Z* Then (i) and (ii) are special cases of the relation

B(L) = B(L). (*)

Let AeB(L) and £¢>0. Then there exists some BeB(M) for some finite set of
bonds M such that |4 — BJ| <e. Let G denote the finite group generated by u,(b),
u4(b), be ML, and consider the following mean on B,

m(C)=|G|™' ) gCg™"', CeB.

geG
Clearly m(B)e B(L'nM) and m(A4)= A, hence
[m(B)— Al =|mB—A)| =|B— A4l <,

and A is in the norm closure of ] BIL*NM).
M| <o
This proves (i) and (ii).
(iii) Two representations n, and n, of B are disjoint if and only if there exists a
net (4,) in B such that

nl(Az)T 1, nz(Az)V —1

(7 means convergence in the weak operator topology) [16]. Let L be a finite set of

lattice bonds, and let m denote the mean over the group generated by u,(b), u;(b),
beL. Then m(A4,)eB(L)°=B(L"), and since m is continuous with respect to the
weak operator topology

7Z1(m(A,1)) g 1, le(m(A,x)) v 1,
hence 7, 'B(L¥) and 7, I B(L") are disjoint. q.e.d.

Proposition 2.1 (iii) shows that B cannot possess charged states with a charge
generated by local fields. Every charge must be of the gauge type, ie. it can be
measured in the complement of an arbitrarily large but finite region ACZ% The
same remark applies to the algebra J.
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It is possible to use only the algebra B in an investigation of the charge
structure of the model. However, the redundant description in terms of & and U is
much more transparent; therefore we shall work in this framework, keeping in
mind that the physical relevance of a statement has to be checked in terms of B.

3. Dynamics and Ground State

The dynamics of the model shall be introduced by the Euclidean method. The
local Hamiltonian H,, |A|< o, is defined implicitly in terms of a local transfer

matrix Ty =e” ",
T, =t nePagtn, 3.1)
with 4, = ) B,0t5(p)+ Y, Bibo,(b)ts(b),
peP(A) beB(A)
By= ) Bru )+ ) Bio(x),
beB(A) xeA

[B(A) set of bonds bCA, P(A) set of plaquettes (quadruples of lattice points
spanning a square with side length 1) pCA, d1,(p)= ][] 74(b), f*=—3Inthp,

beB(A)
bCp

0<B,, B,< oo}. T, is a gauge invariant, positive, invertible operator in W(A). It
implements a (non *—) automorphism of
aMA)=T AT, ', Ae§. (3.2)

Since aM(A)=at(A4), AeF(A), if A, A, DA, A={xeZ¢ dist(x,A)<2}, the
automorphisms o* converge to an automorphism «; of §, as A tends to Z°. o; may
be interpreted as the time translation by one unit in imaginary direction 3.

Unfortunately it is not clear whether the real local time translations
a()=T " T\ also converge, and it is difficult to see whether o, determines
directly the global real time translations o, (if this is the case, «; is called the
analytic generator of «, [17]). However, it is possible to introduce the notion of a
ground state using only o;.

Definition. A ground state w, of § with respect to o, is an «-invariant state with
0= wy(A*a(A) S wy(A*4), Ae,. (3.3)

[The o;-invariance is actually a consequence of (3.3).] If a ground state w, is given
one may introduce the global dynamics by the following method. In the GNS
representation n, of § in a Hilbert space 5, with a cyclic vector Qe 5, which is

characterized by
(Qmy(A)Q)=wo(4), AeF, (3.4)

one can define an operator T, by

T,mo(A)Q=m0(A)Q, AeF,. (3.5)

3 o is not a x-automorphism but fulfills («,(4))* =« *(A4*). We shall use the notation (&))"=, neZ

in>
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T, is well defined and hermitian and has a densely defined inverse,
Ty 'ny(A)Q=myu_(A)RQ, A€eF,. (3.6)
From (3.3)
0=T,=1. (3.7
The real time translations are defined by
amy(A)=Ty "ny(A)TY, (3.8)

which is possible since T;, has a densely defined inverse and therefore no zero
eigenvalue. For Ae§,

Tono(A) Ty ' =m0 (A). (3.9
By interpolation arguments [18, Sect. IX.4]
I Tgmo(A) Ty 7 S AN o (A)Re?,  0<Rez<I1,
hence z— 8, ny(4)=T, “n,(4)T is entirely analytic and
&mo(Ad)=moa;(4), nel. (3.10)

This method of defining real times translations has first been discussed by
Liischer [15] and Osterwalder and Seiler [14] in their work on the quantum
mechanical interpretation of Euclidean lattice gauge theories. Note that the
problem of possible zero eigenvalues of the transfer matrix T, [19] does not
appear in our case due to the following two facts [20]:

(i) The local transfer matrices are invertible, hence o exists.

(ii) The automorphisms o converge strongly on 8‘0 to an automorphism
of &,.

It is not known under which conditions the automorphisms &, leave the
original algebra § or at least its weak closure in the representation n, invariant, so
it is not clear whether the dynamics is almost local, in contrast to the dynamics
defined with local Hamiltonians where locality properties are under control [16].
We shall eventually consider the (probably larger) algebras "[s- 91, and B, where &
is the C*-algebra generated by d,7y(A4), A€ §, teRR, A is the gauge invariant part of
& and B=A/J with J denoting the two-sided ideal in A generated by 7y(J).

& has always a ground state. This may be seen as follows. To each finite ACZ*
there exists a state w, on § with

ou(TH) =T, . (3.11)

w, is a ground state of & with respect to o in the sense of (3.3), and any ground
state with respect to o fulfills (3.11). Since the set of states is compact in the weak-
«-topology and § is separable, there exists an increasing sequence (A,) of finite
subsets of Z such that (wy, (4)) converges for each A€F. The limit state w,,

wy(A)= nanOlo wy (A), (3.12)

satisfies (3.3) and is therefore a ground state of & with respect to o,. Actually,
w, I §(A) is a uniquely determined pure state, and the net (w,) is convergent.
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This well known fact [14, 15] follows from the following argument. Let.
EL(0)=0,(x)* " "93(1 + 0, (x))o, ()} 7, G.13)
Ei(b)=1,(b)* 79 (1 + t5(b))r, (b)* 7,
s,s'=*1, and let €, denote the set configurations
(6,7): AXBA)—»{+1} x {£1}.
Then the partial isometries
R H Ea(x)o © H Er(b)r(b ) (3.14)

(0,7), (0,7')€¥,, are a basis of matrix units for {S‘(A). The transfer matrix 7, has
the following expansion:

T,=N.' Y T(0,%,0,7)E, 3. (3.15)
(g,7),(a’,7")

with N, =(2sinh28,)/*I? (2sinh2p)BMI2 and
T,\(o,7,0',7')=exp {ﬁh( Y. 3(6a(b)e(b)+a'(b)T'(B)+ ). o‘(x)a"(x))

beB(A) xeh
+/3g( Y Lotp) +oTE)+ Y t(b)t'(b))}.
peP(A) beB(A)

The expansion coefficients are strictly positive, thus from the theorem of Perron
[21] the spectral projection E, of T, associated to the eigenvalue [T, | is one-
dimensional in F(A), and E, =lim T} || T, | ~" has again an expansion with strictly
positive coefficients. Thus w, [ §(A) is unique and pure, and one may find it by the

formula
wy(A)=lim (Z, )" Trg,, TAATREY, (3.16)

with Z, 2 =TIz, TF"EQ, where EY is any non-zero element of §(A) with non-
negative expansion coefflclents A convenient choice of EY is

INED I (83 N () S, (3.17)
with e,(0,7)= exp{ By Y dalb)e(b)+3B, 3 51(p)} Equation (3.16) is the
beB(A) peP(A)

starting point for the transition to a classical statistical mechanics in Z?"?!. Let
A,={x=(x%x), |x°|<n, xe A}, and let €, denote the set of configurations

(0,7): A4, xB(A,)=> {1} x{£1},

with 7(b)=1 for all vertical bonds (i.e. bonds of the form b={(k,x), (k+1,x)}).
Z, =Z, N3"is the partmon function of the gauge invariant Ising model in the
temporal gauge, with free * boundary conditions,

=) e @9, (3.18)

(0,7)

4 This comes from the special choice of E{ in (3.17). Other choices lead to different boundary
conditions in the O-direction which turn out to be inconvenient for the construction of the
thermodynamic limit by Griffiths inequalities and for the transition to the unitary gauge
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where the Hamilton function is

Hy(:0== [, T sobrb)+h, ¥ &tp). (3.19)

beB(Ay) peP(A4,)

w,(A) for A€ F(A) can be computed by choosing functions A4 : ¢ 4, € such that
Aty , = Zy 3 Trga TaA TEQ, (3.20)

where (4", =Z;1 Y A%(0,7)e” "7 is the expectation value of 4%" in the
(@7

gauge invariant Ising model. A% is not unique; a possible choice is the function

An

A(O)) AA"

(0, 0=(ATY) (0, 70,0, Y T0®, 70,00, 2),  (3.21)

where (0®,1%)e %, is the restriction of (g, 7) to the (x°=k)-hyperplane. We note
the following rules for the choice of the classical functions A4":
(i) For m>n one may choose

A%(g,1)=AM((0, 7)1 A, X B(A,)). (3.22)

(i) If —nZk, <..<k=n—1,4Y,..,4%FA), and A=0o, (4")...0, (A7),
a convenient choice for 41" is

An — AW An( ~(k k ki+1 ki+1
An(g,7) = AR (g0, 160, ki + 1), ks D)

AEQ)A,.(J(M), ) glat 1) glat 1)y (3.23)
(iii) If AeFA,), BeF(A,) and dist(A,,A,)=2, A,, A, CA, then
(4 B)g, = A{5,B(G; - (3.24)
(iv) For AeFA) and A DA with A defined after Eq. (3.2)
A0, 7)= A0, 1) A, x B(4,)). (3.25)
Equation (3.16) now becomes
w,(A)= lim <A™, . (3.26)

The convergence of w, for A /' Z* is a consequence of Griffiths inequalities for the
gauge invariant Ising model [22],

wo(A)= lim oa(4),  AeF. (3.27)

In the next section we shall use polymer expansions to compute w,. It is
convenient to work in the unitary gauge. This amounts to the transformation of
variables
(0,7)=(0,u),
0:A-{£1}, u:B(A,)—~{x1}, o(x)=0(0,x), u(b)=05a(b)r(b). Since the Hamilton
function H, is independent of ¢ we can replace the function A™(p,u) by its mean
A*"(u) over g. Then
CAMY =(Z, )7 1200 % A

u: B(An)—{+ 1}

-exp [[)’h;u(b)ﬁ-ﬁg Z(Su(p)}. (3.28)
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4. The Gauge Invariant Ising Model

In a neighbourhood of g ,= o0, B, =0 the gauge invariant Ising model admits a
convergent expansion which has first been discussed by Marra and Miracle-Solé
[10]. We want to use this expansion for a construction of charged states for the Z,
gauge theory. As a first step we review its use for the construction of the Gibbs
state of the gauge invariant Ising model which gives the vacuum state of the Z,
gauge theory.

Let A be a box in Z** !, and let

x(w)= ] ub) 4.1)
beL
for LC B(A) and the configuration u : B(A4)—{+1}. Each function A(u) is a linear
combination of the characters y;. Given a gauge field configuration u, the
corresponding field strength configuration f=du is uniquely determined by its
support,

supp f'={pe P(4), f(p)= —1}, 4.2)

and a configuration f: P(A)—{=+1} is a field strength configuration if and only if
0f(c)=1 for each elementary cube ¢ in A. Thus a set of plaquettes P C P(A) is the
support of some field strength configuration if and only if its coboundary, i.e. the
set of cubes in 4 with an odd number of faces in P, is empty (P is coclosed). Let 2,
denote the set of all coclosed P C P(A). Then, by a character expansion of efnZ«®)

uda=Zz" Y e Plthp)M(P, LAM), (4.3)
B
with (P, LAM)=21"Ml % ¥ (W)
u:B(A)—{£ 1}
suppou=P

LAM denotes the symmetric difference (LOM)\(LNM) of L and M. Z , is fixed
by the condition <{y,»>,=1. We have

0, if LAM is not closed,

. 4.4
Xram) for all u with suppdu=P, if LAM is closed. “4)

(P,LAM)= {

We may therefore restrict the summation in (4.3) to those M for which LAM is
closed. (P, LAM) is then —1 if the winding number of P around LAM is odd, and
+1ifitis even. Let 0N for N C B(A) denote the boundary of N, i.e. the set of points
xe A which are endpoints of an odd number of bonds in N. We may decompose M
in a unique way into connected components, i.e. the equivalence classes of the
equivalence relation ~ in M generated by the relation

(e
brb +0. 4.5)

Some of the components of M have a nonvoid boundary, the other components
are closed. Let Conn 4(L) denote the set of all M CB(A4) with 0M = 0L such that no
component of M is closed, and let Disc,(M) denote the set of all NCB(A)
with ON =0 which are disconnected to M, ie. bnb'=@ for all be M, b'eN.
Using the fact that (P, LA(MMUN))=(P,LAM)(P,N) for MeConn,(L) and
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NeDisc (M), one arrives at

Qua= Y (thp)Me (L, M), (4.6)
MeConn 4(L)
with o (L, M)=2Z;* Y  (P,LAM)u(P,N),
Nebiso )

(P, N)=(P, N)e~ *s*I(th V.

For the weights g ,(L, M) we have the following uniform estimates. [By { >$ we
shall denote the expectation value in the pure gauge theory (f,=0).]
Proposition 4.1. Let L, M C B(A) with OL=0M. Then

(i) oL, M)={xpam? >

(ii) T AL M)Z(1+thB) "M ar s

n(M)=|{be B(4),bx~M}|=(4d+3)IM|,
LAL,MAM' 1

iy CaALALMAM) 1
O'A(L,M ) <XLAM>A

L,M'CB(A), OL=0M,M'nM=§.

Proof. (i) The definition of ¢ ,(L, M) in (4.6) may be rewritten in the following way
aALM)=Z) Y (BN anant (%)

NeDisc 4 (M)

Z', being fixed by the condition o ,(@,8)=1. From the first Griffiths inequality

Oleaman 220,
hence, as Disc (M) Disc ,(0),
oL, M)S0 (LAM,0)=YrAm)4-
(i) From the second Griffiths inequality

<XLAMAN>91§<XLAM>91 <XN>?1’
hence from relation (x)
oL, M)z <XLAM>91(ZL1)—1 Z (th:Bh)INI<XN>?1 .
NeDisc 4 (M)
On the other hand,
@zt Y (M s= < I (1+thﬁhu(b))‘1> ,
NeDisc 4 (M) b=M A

which is bounded from below by inf [] (1+thp,u(b))” ' =(1+thp,)”"*.
u b=M
(iii) Since MnM’'=§, Disc,(MAM')CDisc,(M); from the Griffiths
inequalities

<XLAMAN>(/)1
<XL’AM’>?1

Inserting these relations in () proves statement (iii). q.e.d.

0
0=iaramaman)a=
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The thermodynamic limit

o (L, M)= < [T (1+thB,xe)” 1XLAM>Aea(L, M) 4.7)
bxM
: OL| (m—1\lPH/z=1
exists always. Since there are at most %(%—) x(2d+1)" sets
MeConn (L) with [M]|=m (Appendix A.3), the expansion
Guy= Y, (hpYMa(L, M) (4.8)
MeConn (L)

is convergent for thf, <(2d+1)" . [Conn(L)={M CB(Z***), Me Conn ,(L) for A
sufficiently large}.]

For a more detailed estimate of o(L, M) we consider g ,(L, M) as the ratio of
partition functions of certain polymer models. Following Marra and Miracle-Solé
[10] we associate to each pair (P, N)e 2, x Disc,(0) a graph y,y such that the
connected components of N and the coconnected® components of P are the
vertices of the graph, and two vertices are connected by a line if one is a
component P, of P, the other a component N, of N and (P,,N,)= — 1. The class
of all these graphs is denoted by 4, and if y =7,y we set P,=P, N, =N. I is the
set of connected components of y¢, and y, 7’ are called compatible, y ~y/, if there is
ay'ed,withI, [,CI, and [,nI,=0.

Now we assign an activity u(y) to each graph ye% ,

()= (P, N;)e~ 2sIP\(th g, )N ; (4.9)
u(y) is multiplicative,
uy= T wue). (4.10)
v'el(y)

These activities define the following polymer model: if 4 is a function on ¢, its
expectation value in this model is

(A, 4= Y AQ)uly) / Y u). (4.11)
€% a ye%a
For functions A which are multiplicative in the sense of (4.10) the expectation
value (4.11) can be considered as the ratio of partition functions; one has the
following formula [23]
In<4, ,= Y cA"=Du", (4.12)

r:%4-7+

where ¥, is the set of connected graphs ye %, and where we used the convention

for multi-indices
vVi= I v, v:%,-C. 4.13)

yesuppll
The ¢, are purely combinatorial coefficients which are independent of p,
© (_ 1)n+ 1

r= Z

n=1

D), (4.14)

5 Two plaquettes p and p’ are coconnected if they are faces of the same cube
6 We shall often identify the set I, with its characteristic function
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where A (I') is the number of possibilities to write I" in the form I'=1, +...+ I
with y,€9,, y;#0, i=1,...,n. (For details see [2].) They vanish 1f T can be
decomposed into two parts I, and I, such that y ~y, for all pairs (y,,
7;)esuppl; X supply.

The thermodynamic limit can be controlled using the fact that (8 =min(g}, B,))

Y [OISFo2B) I,
g
where F is A-independent, monotonically decreasing and convex, and [y'|=|N, |

+P, | (Appendix A.3). In Appendix A.1 it is shown that this leads to the estimate
(Bzp)
Y lefd W I=F2B) 1yl (4.15)

I'+y

(I +y means that y'+y for some y’esuppl’). f° and F, are defined in terms of F,,
(A9)~(A.12).
For o(L, M) the polymer expansion yields

Ino(L, M)= Y cla} ,,— )" (4.16)
T
with
()= {0 if N, is connected with M
.l (P,,LAM) otherwise.

If M =@ we write a; , =a;. The expansion (4.16) converges if f,2p°=f; and B,
Linthpe=gy.
Bounds on B and B as well as a more detailed determination of the
convergence region are given in Appendix A.4.
We shall use several times the following estimate on the contribution of large I’
which is an immediate consequence of (4.15) (| T'l|=).I'(y)|y)):

Y. leplluf|se 27 PmF 269 Iyl (4.17)

I'+y

IIriizn
Inequality (4.17) implies clustering of expectation values which means that the
vacuum vector £ of the Z, gauge theory is the unique (up to a phase) ground state
of T,. Unfortunately, one cannot conclude that the vacuum representation 7, is

irreducible [25], since the invariance of the weak closure of 7,() under the time
evolution is not known.

5. Construction of Charged States

The idea for the construction of a charged state is simple. One creates a charge at
some point x together with a compensating charge and transports the compensat-
ing charge to infinity. In a gauge theory the charges are connected by electric flux
lines, so one has to arrange these flux lines in such a way that the limit state has
finite energy.
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Fig. 5.1. The lines M, and N, in the (1—0)-plane

Let x,=(2r, 0, ...,0)eZ% reN, and let L, denote the path along the 1-axis from
the origin to x,. Let

13(Lr)= H 73(b),

beL,

(5.1)
F,=0,(0)0,(x,)o;,(t5(L,)).
F, is gauge invariant. Consider the states ,,’
o (A)=(F,Q AF,Q)|F,2|7*, Ae§. (52)

Let ¢,, xeZ* denote the automorphism of & which is implemented by o,(x),
0 (A)=04(x)404(x), AeF. (5.3)
For Ae§, and r large enough

(L) T ATt
A= LT L))

(54

Let A%u) denote the gauge invariant part of a classical function localized in the
slice —r<x°<r which corresponds to the operator g,(4). Then

0 (A) =A% ,> >~ "> (5.5)

where M, is the square in the (0—1)-plane with edges (r,0), (r,x,), (—7,x,) and
(—r,0) (Fig. 5.1). From the results of Sect. 4, for LCB(Z**?), |L|< o0

A
e, <Am,> = ) (thﬁh)’Ml MLA_Q.

5.6
MeConn(L) G(Mﬁ ﬂ) ( )

7 In the following we identify & and () by dropping the symbol =,
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From Proposition 4.1 (iii)

o(LAM,, M) _
W §(<XMAL>O) L
in the pure gauge theory one has a perimeter law,

Qapy’ e P lLAM (5.7)

with «(f,)—0 for f,— oo [8]. [For an estimate of a(f3,) see Appendix A.2.] Hence
the expansion (5.6) converges uniformly in r provided thf, <(2d+1)"'e”*#2. On
the other hand, for f,> B}, B, <p, from (4.16)

o(LAM,, M)
a(M,,0)

r

In

r r
= Z cr(apam,, m— A, M
T

=Y cplap = Day u” . (5.8)
r

The convergence of the right-hand side of (5.8) follows now simply from the fact
that |ay, (y)|=1 and a,, (y)—ay_(7) for each y, where M is the 0-axis. Hence we
arrive at the following theorem.

Theorem 5.1. For f,> B, B, <P} there exists a state » on § such that for all AeF
lim w,(4)=w(A).

The interpretation of w as a charged state is supported by the following fact.

Let Q, = |] 6*r,(x) be the charge operator associated to the region A CZ*, and let
xeA
0* A denote the set of bonds with exactly one endpoint in A (the coboundary of A).

Then (GauB}’ law)
0= [] 7,), (59)

bed*A

hence Q, can be measured at the boundary of A. Thus there are no local fields in
the interior of A which create a charge. Actually, for every A€ &, with AQ+0
(4Q,0,A49) .

14Q1%(2,0,2)

if A tends to Z* with |0*A| <const x dist(0*A, 0)* for some keIN. But for the state @
which arose from a nonlocal operation on the vacuum we have

Theorem 5.2. Let A /' Z° such that |0*A] < const dist(0*A, 0 for some keN. Then
Jor B,> By, Bp<By

(5.10)

Jim 2@a) _

A @o(Qy)

Proof. A classical function corresponding to the operator Q, =9,(Q,) is

Q%)= [] e 2@ ] e Fru®,

pePy beBy

-1.
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where P, is the (coclosed) set of plaquettes in Z***, which are spanned by {0} xb
and {1} x b, be 0*A, and B, is the set of bonds {0} x b, be 6*A. The computation of
the expectation value of Q, in the vacuum can be replaced by the computation of
the expectation value of the following function on polymers,

QA(V) =(cosh ﬁh)— IBAIbA(V) s

_ 0, N,NB,=+0
balr)= {(P A N,) otherwise,

hence @,(Q,)=(coshp,)” ®slexp {Z cp(bh — Du” } In the charged state w one
r

obtains instead

QA(y) = (PA7 Mw)QA(y) b
and since (P,, M )= —1 for 0cA,

o(Q,)= —(coshf,)~Plexp {Z er(by— 1>a§4wuf}.
r
It remains to show that

2 er(l=b)(t—ay Ju’

r
vanishes if A tends to Z? in the mentioned way. But this follows from the fact that
only those I' can contribute to the sum with y,,y,esuppl; (P,, M, )=—1,
b,(y,)=1; their length is at least ||I'|| =dist(0, 6*A). Hence from (4.17), for some

>0
‘ln { - w(QA)}
a)O(QA)

Unfortunately, this result does not exclude completely the possibility that w is
a state in the vacuum sector. Since w,(Q,)~e *"Al for some «>0, the con-
vergence Q,@,(Q,)” ' —1in the sense of matrix elements can be shown only on the
dense set .2, so the theorem would be compatible with the existence of a vector
Pe H,, D¢ §,S2, which induces the state w.

A further indication that this hypothetical vector does not exist and w is really
a state in a new sector disjoint from the vacuum sector is the observation that the
sequence F,Q|F,Q| ™' becomes orthogonal to each vector in # in the limit

r—o0. Actually, by the following proposition, it is sufficient to check whether it
becomes orthogonal to the vacuum vector €.

Proposition 5.3. Assume that (Q,F,Q)| F,Q|~*—0. Then (¥,F,Q) |F,Q||*—0 for
every Ye i,

Zconst|0*A] e #HUETN - ged,

Proof. Since the sequence F,Q|F,Q| ™' is bounded, it is sufficient to show the
convergence (¥, F,Q)||F,Q| '—0 for YeF,Q. Then, denoting the part of M,
above the x°=0 hyperplane by N, (Fig. 5.1), we obtain

(P, F,Q)= Z At A,
i=1
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for some neN, 4,eC, L,CB(Z**'), L, <oo, i=1,...,n and r sufficiently large. By
Griffiths inequalities

<XL,-XN,> = <XN,> <XL1-> = <XN,> (th Bh)_ I,
Since {yy,»> =(, F,Q), the proposition follows. g.e.d.

Theorem 5.4. If the perimeter law (5.7) holds for the pure gauge theory and if
(2d+ 1) thB,e**#9 < 1, then F,Q||F, Q! — 0.

Proof. From Proposition 5.3 it is sufficient to show that (Q, F,Q)|F,Q| -0
Now from (4.8), Proposition 4.1 and A.3.1 we get, for (2d+1)thf, <1,

@ FQ=0w s Y (thp)™

MeConn(N,)

i[(2d+1 )thp,1*"=[(2d+1)thB,1*" (1 —(2d+ 1)*th*B,) !

From (5.7)
IF, Q1 =y, > "> Ze™ b,
thus
(2. F,Q)|F,Q " S[(2d+1)th BP0
(1=Qd+172th*B)"" . qed.

The weak convergence of F,Q|F.Q| "' to 0 is a necessary condition for the
limit points @ of the sequence w, to be disjoint from the vacuum sector. It is
interesting that one can prove this weak convergence not only in Region II, of the
phase diagram but in a larger part of Region II. To get a feeling of whether the
weak limit points of the sequence F,Q| F,Q| ~! indicate the presence or absence of
charges we analyse the convergence properties in Region I_.

If B, is sufficiently small one can map the model onto the following polymer
model. Graphs are sets of plaquettes P, the plaquettes are the vertices of the graph
and two plaquettes p, p’ are joined by a line if there is a bond bCdpndp’. The
activity is

p(P)=(thB,)*! (th B,)1°"". (5.11)
The computation of (x,» amounts to the mean over the polymers of the function
(th B4, (P)=(th B -API7 1Pl = (th B, )IM ~ 21EnoPT (5.12)

If B, is sufficiently large one defines graphs as sets M of lattice bonds with
activities
(M) =~ 2PnMig=2b51"M] (5.13)

where two bonds b, b'e M are connected by a line if there exists a plaquette p with
b, b’ COp. The expectation value of y, corresponds to the expectation value of the
function on polymers

By (M)=(—1)"""; (5.14)
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B, and f;, respectively, denote the border of the convergence regions of these
expansions.

It will turn out that for 8, <p; or B,>f; there exist eigenvectors of T, which
have a single external charge. The following proposition provides a general
criterion for the existence of such eigenvectors.

Proposition 5.5. Let t, be the norm of the restriction of T, to the subspace of #,
with external charge configuration q, suppqg=1{0}. t, is an eigenvalue of Ty if and
only if
Q, T} Q)2
im (03(0)2, To23'3(0) ) +0.
n—wo (04(0)2, Ty "0,(0)R2)

Proof. Let
(0,002, Tya,(0)2)%(a,(0)2, T#"0,(0)Q2) ™' —c+0.

Then ¢,(0)Q has a nonvanishing scalar product with an eigenvector @, of T ; one
may choose

@, = lim To,(0)Q] Tio,(0)Q| ~*.

Actually, the corresponding eigenvalue is t,. This can be seen as follows:

to= sup lim (40,(0)Q, TyBo,(0)2)""

A,BeY n—>

— ] 1/"
— sup lim <XLA(M+n(1,0))ALn> >
L,MCB(Zd+1) n— o
|L], M| <

where L, is the part of the 0-axis between 0 and n. From Griffiths inequalities

<XLA(M+n(1, 0))ALH> = <XLn> <XLA(M+n(1, 0))> !

=y (thﬁh)_(lLH MD,

Thus

to=lim (y; >'"= lim (5,(0)2, T§o,(0)Q)""

=(D,, T,P,).
Now let (0;(0)2, T35,(0)2)*(5,(0)Q, T2"55(0)2)~*—0. Then t,">T3*5,(0)2 — 0.
By the same calculation as in the first part of the proof, one finds
to"*Ty? A0, (002 — 0

for all Ae, hence ¢, is not an eigenvalue. q.e.d.

It is an easy consequence of the polymer expansions mentioned before
Proposition 5.5 that for g, <f; or B,>p;

lim (75(0)2, T3 (0)2)%(a3(0)2, T3"0,(0)2)"* +0 (5.15)

(cf. the proof of Theorem 5.6).
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Bricmont and Frohlich [4] have recently proposed to use the behaviour of
(050002, TJ5,(0)2) for large n as a criterion distinguishing the
confinement/screening phase from the phase where charges exist. In Phase I one
expects (0,002, Tio,(0)Q) ~ &~ "eo"" (5.16)
[an immediate consequence of (5.15)]. For Phase II, they point out that one
should expect a behaviour like

(04002, Ty ,(0)Q) ~n~2e~meonst, (5.17)

(5.17) implies that (5.15) is violated, so according to Proposition 5.5, t, is not an
eigenvalue in this case.

We now return to the investigation of the sequence F.Q|F,Q| ' in
Region I.

Theorem 5.6. Let f§,<f; or B,>f.
(i) For all Ae ¥

lim o,(4)=(05(0)®,, Ac,(0)d,),
(i) F,QIF,2)" = (05(0)8,, Q)00 .

Proof. First we consider the case f§, <f;.
(i) We have to investigate the sequence

<XLAM,> <XM,.> -
We can write the expansion for expectation values, similar to that in Region II,

in the form N
Quamy= 2, (thp)FAM-22Pl(th g )Pl

PeConn(L)

-exp {Z cr(by pAY — l)ur},
T

where Conn(L)={PCP(Z*""), |P|<o0, 0P,nL#@ for each connected com-
ponent P, of P}, by p(P)=0 if P’nP+@ or OP'N(0PUL)*0 and b, »(P)=1
otherwise, and A, (P) is defined in (5.12). A slight complication comes from the
fact that 4,, is not bounded by 1. But negative values of n,=|0P|—2[0PnM,|

can occur only for large sets of plaquettes P with |P|= %lnrl (Appendix A.5).
Hence
[ Ay, ull = sup |4, (PP IS th B, (th B,) 2",

which is bounded by th §] for some 8, <, <f3;, provided r is large enough. Thus

<XLAMY> <XM,>— 1 Z (thﬂh)lLAam— 2|(LAGP)AM,| (thﬁg)[Pl

PeConn(L)

xp {3 bf, = )l )

Z (thﬁh)]LAﬁPl—Zj(LAaP)nMwl(thﬁg)jPl

"7 peConn(L)

*CXp {; Cr(bg, P 1)A11;4w/1r}-
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(i) We have to show that for LCB(Z*"?!), |L| < o0
lim oty a,» aag,> ™ 2= Hm a2 g, 2 <ta, 0™

where L, ; is the part of the O-axis between k and I. From the first part of the
proof we have

o)ty 2= X (th)EAN-AFIm2I (¢h g )IF)

PeConn(L)

eXp {;— Z Cr[bi, PAII;’r + bgL,GPA(I;N, - AJFM,]/‘F} )
r
where 0 is the reflection on the (x° =0)-hyperplane, and

<XLAL0,,><XL0,r><XL_r,r>— !
= Z (th’Bh)lLALo, »AOP|—|Lo, »| (thﬁg)ll’l

PeConn(L)
. 1 r r r r
CXp {2 ) crlby, pAL, , + bor,opAsLs
T

4T yT r r r
AL_,,r AL_m+x,+AL0,r+xY+A9L0,,+xr]# },

(x,=(0,x,)). Both expressions become equal in the limit r— oo since they differ
only by the contributions of large P and I'(|P|, | I'|| 2 r) which can be estimated by
(4.17). This concludes the proof in the case , <f;.

If B, > B;, one can proceed similarly. The argument is even simpler since the
function B;(M) which was defined in (5.14) is multiplicative on components and
bounded by 1. q.e.d.

From Theorems 5.4 and 5.6 and Proposition 5.3 we infer that the behaviour
of (Q,F,Q)|F,Q2| "' can be used as a criterion for the existence or absence of
charges [5]. The criterion proposed by Bricmont and Frohlich [4] is very similar
as may be seen by formulating it in the following way: Let G,=0a,(0)x,,(c,(0)).
Then G, may be interpreted as a state with two charges where the second
charge is not shifted to spacelike infinity but to infinity in positive Euclidean time
which means physically that the accompanying gauge field configuration is
minimized with respect to energy. Presumably, the sequence of states
(G,2,-G,2)|G,2| > converges to the charged state w in Region II . In Region I,
one has from Proposition 5.5 and (5.15) G,Q|G Q[ * ?63(0)@0. Thus the

Bricmont-Frohlich criterion consists essentially in replacing the F, in our
criterion by G,.
It is interesting to look at the expectation value of the charge operator in the
state induced by 74(0)®,. One finds for B, <p; or B,>f;,
0)d,, 0)®

lim 30%:217:002) _ (5.18)

Arzd (2,0,9)
Thus also this behaviour is a good test for distinguishing the two phases of the
model. A nice feature of this quantity is that it even shows a difference between
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the screening (8, > B}, B, large) and the confinement (8, <f;, B, small) regime. In
the screening case for A sufficiently small, 0€ A,

(05(0)Dy, 0,0,(0)P,)
(2,0,9
Hence locally the state induced by o,(0)®, looks like a charged state, but charge

measurements for large regions are completely screened by vacuum fluctuations.
In the confinement case

<0. (5.19)

(0'3(0)@0’ QA0'3(0)¢0) ~
@ QAQ) ~1, (5.20)

hence even locally ,(0)®, does not look like a charged state. To get an idea why
the charge has disappeared one may look at the approximating sequence w,. One
finds

oA _g (5.21)

®o(Qa)

for small r, provided 0cA and x,¢ A. One may interpret this result in the
following way ; charge separation with a fixed amount of energy leads to “charge
fragmentation” when a critical distance has been reached.

A further feature that distinguishes the phase with charges from the
confinement/screening phase is the different behaviour of the charge (= total
electric flux) and the electric flux through nonclosed surfaces. Let A be a
hypercube in Z‘. Decompose 0*A into two parts S, and S,, each consisting of
the bonds intersecting with one half of the boundary of A. Let E(S,)= [] 7,(b),
i=1,2. Then Q, =E(S,)E(S,). In the charge phase one finds bes,

o(ES )oolES,) _
®o(Q4)

—1In IS, |, (5.22)

where S, is the minimal set of bonds with 0*S, =0*S,(=0*S,). This is a signal
for the existence of large vacuum fluctuations of the electric flux through
nonclosed surfaces which makes it impossible to measure the asymptotic
direction of a string transporting the electric flux to infinity. As claimed in [11]
this is a necessary condition for the existence of states with gauge charges. In the
confinement/screening region we have instead

o (E(S,))wo(E(S,))
®o(Q4)

Equation (5.22) suggests that charged states, if they exist, could be further
distinguished by the asymptotic direction of the string. This is impossible, in the
general framework of quantum field theory, for particles in a massive theory [11]
and probably excluded for all states with finite energy.

These “order parameters” which test the existence of charged states and their
utility in numerical analysis will be discussed in more detail in [13].

—In

~10%S,]. (5.23)
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6. Energy and Translations

Confinement in the sense of Wilson means that it is impossible to create a
charged state with finite energy. Therefore, the sequence of vectors (F,Q),  in
Sect. 5 was chosen in such a way that their energy is uniformly bounded. More
precisely, we have the following result.

Proposition 6.1. For all nelN there exists a constant c¢,>0 such that for all reN
(F.Q T, "F.Q)|F.Q| *<c,.
Proof. From the definition of F, in (5.1) we have
(F.Q T, "F,Q)||F,Q| >
=(F,Q 0_,(0;(0)05(x,) 5 "15(L,)Q) | F,.Q| ~*
Sl los NI 1T "o, (L2 | Tors(L)ef

For r<n there is nothing to show. For r=n we find by a repeated application of
Schwartz’ inequality

1T " L)RI _ I Ts LRI 1T 2" ry(L)e) >

1Tyl = IT@)e)? =% Tn)e* ™

hence choosing keZ, such that 2n<r<2*"!n, and keeping in mind that
| T574(L,)Q[ =1, we arrive at the estimate

1T 5 @)RA v 1 v
o) = orsb)@l v

But || T37,(L,)21* =y, >, and from Griffiths inequalities {y,, > = (th,)*", hence
(F.Q, T, "F,Q | F,Q| > < a_,(0;0)[*(thp,)"*". qed.

Because of this behaviour we expect that whenever the limit state w =limw, will
exist it will have finite energy in the sense that it is possible, in the cyclic
representation induced by w, to define a transfer matrix T which implements the
imaginary time translation o, Since we are interested in the properties of the
charged states we will from now on consider the case f,<f; and B,>pB;. We
exploit the fact that the state w-g, is invariant under imaginary time trans-
lations. It is even a ground state of A as may be seen by its cluster properties
under separation in Euclidean time. Let (m, #,®,) denote the GNS triple
associated to w °@,. ® =m(c,(0))®, is then the gauge invariant vector inducing the
state w. The transfer matrix T may be introduced by

Tn(A)P,=no(A)P,, AeF,. (6.1)
The properties of T and its relation to the transfer matrix T, in the vacuum sector

are described in the following theorem.

Theorem 6.2. (i) T is a bounded positive operator with a densely defined inverse such
that

Tr(A)T™ ! =na,(A)
for all Ac,.
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%0

=

Ry gy

Fig. 6.1. The lines ¥, M_, and M in the (1 —0)-plane

(i) There exists a constant a>0 such that for A,BEF and neZ .,
,ILI?O (Ao, (B)F,Q, Ty Ao, (B)F,Q)|F,Q| >
=a*"(n(A)®, T"n(A)®)(n(B)®, T"n(B)®). (%)
(iii) a is given by the formula
a=exp {; er[(Pr, Y)— 1151~ (Pr, M )1(Pr, M),ur},
where Y is the border of the infinite rectangle in the (0— 1)-plane with 0<x° <1 and
x!' 20, M, of the halfplane x' 0 and M of the quadrant x* 20, x°<0 (Fig. 6.1)
((P,, V=[], Y)””).
b
Proof. (i) Positivity and boundedness of T will follow from (ii) since a>0 by a
slight generalization of Proposition 6.1 or by (iii). The inverse of T is given by
T 'n(A)®y=nou_(A)D,, AeF,,

and the implementation relation follows immediately. (ii) and (iii). Since the left
hand side of () is uniformly bounded by || 42| B|? it is sufficient to prove () for
A, Be§,. For this it is enough to check the relations (L, NCB(Z**1), |L|, [N|< o0)

o ALAW X AME) o a2 Avam,>
lim —————+=1 1 >
reo ) roo gy e U2

and

lim <XM(¢>> —g
ro o <XMr>

b
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where M (r’” is the rectangle with edges (—r,0), (r+n,0), (r +n,x,), (—r,x,). Now the
first of these relations is an easy consequence of the polymer expansion in the same
way as in the proof of the existence of the charged state w. To prove the second
relation we need the following lemma.

Lemma 6.3. Let
Ay =€Xp {; er[(Pp, Y®)— 114 [1— (P, M )1(Py, M)ur},

where Y® is the boundary of the infinite rectangle 0 <x° <k, x* 20 in the (0—1)-
plane, keN. Then one has the product relation a,a,,= a, and therefore a,, = d".

Proof of the Lemma. First we convince ourselves that the sum in the definition of
ay, converges. Only those I' can contribute for which P contains a plaquette
p in the interior of Y% and a plaquette in the halfplane x' <0, hence 3||I|
=dist(p, M ). Thus from (4.17)

'; er[(Pr, Y®) — 114 [1 — (Pp, M) (Pp, M)u!

S Y2k Y el In|S8KF, (2B FI—1) 1.
T ||£le5

From translation invariance of 4 and M, in the O-direction we have

Ay =CXp {; crl(Pps YO+ (k,0))— 1]%[1 —(Pr, M )1(Pr, M A Y(k))ﬂr} s

and the product relation follows from (Y® +(k,0) A Y® =Y**D  ged.

To complete the proof of part (ii) and (iii) of the theorem it is sufficient to show

that
li <XM<;1>> 2
im =al,.
r= 0 <XMV>

Let 6 denote the reflection on the hyperplane x°=r+ g Then

0 92 S 0 F(PL YO () — 1Py Mt
<XM,> r

= Y [(Pr, Y +(r,00) = LT3 [(Pr, M,) + (Pp, 0" M) Iu",
r

where the latter equation comes from the invariance of the activities under lattice
reflections and from the invariance of Y™ +(r,0) under 6. Using the identity

(PT’ Mr)+(P[‘9 ef‘n)Mr)=(Pr, Mr)(I_(Pr,M£"+27)))’

which holds for (P, Y® +(r,0))= — 1, and neglecting all I' with |I'| =r — their
contribution vanishes in the limit r— oo — the sum splits into two parts, one
containing all I, where P, intersects with the halfplane x* <0, the other containing
all I, where P, intersects with the halfplane x* = 2r. Both parts converge to Ina,
in the limit #— oo, thus completing the proof of the theorem. q.e.d.
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The constant —Ina can be interpreted as the minimal energy of a gauge field
configuration accompanying an external charge. It coincides with the constant
governing the perimeter law of the Wilson loop:

Corollary. Let R, denote the boundary of a rectangle in a lattice plane with side
lengths | and k. Then

lim (g, ya™ ™ =const+0.
k,1->

Proof. Let f, ,=In({xg, >a~ ™. In the proof of Theorem 6.2 we established the
estimate

lf;‘+ Ll _fk,ll éCOI‘lSt e—constmin(k,l)

with positive constants. Thus

If;c,l—fk’,l’lér}gg o= fewmen Hwmien= Jism v n

+ lfl‘c'-l-n,l’i—n_ﬁc’,l’l}

0
<4COnSte_°°“5‘mi"(’¢sl,k’,l’) z o~ constm

bl
m=0

which proves the corollary. q.e.d.

It is easy to find ground states of U with general configurations of external
charges. Let q : Z%— { + 1} be a function with finite support. A ground state w, with
the external charge configuration

w(Gx)=q(x), xeZ’, (6.2)

is given by o(4)=<{4,), A, being a classical function corresponding to A
according to the rules in Sect. 3, with the expectation values

= Y (thp)™exp {; crlag, y— Dagg p1° } (6.3)

MeConn(L)

where M,= () (M, +(0,x)). [Compare (5.8).]
XEsSuppq
Theorem 6.4. If |supp g is even, there exists a unique eigenvector @, of T, in
inducing @,, with ( H a,4(x)€, (.Dq)>0. If |supp q| is odd, there exists a unique
Xesuppgq
eigenvector @, of T in A inducing w, with ( [T moy(x)D,, diq)>0.
xesuppgA{0}

Proof. We already know the statement for g=1 (&, =) and for g(x)=(— 1)"0,"(45‘1
=@,). Let |supp g| be even. Then there exists a finite set of bonds L C B(Z%) with 0L

=suppg. Let t5(L)= [] 74(b).

beL
Then o,,(t5(L))2= :@"" has an external charge configuration described by g. It
is easy to see that

lim (9, AL || 9| ~2 =0, (A4).

n— oo
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Furthermore, the sequence ®"[| | ~* converges strongly. To see this we use the

formula (m>n)

(d)(n) (rn))
ln{nqﬁf;)u |!¢f;’”|!}

{ (2, 13D T3 "15(L)RQ) }
(2, 71,(L) T3 15(LD) 2 (Q, 15D T e, (L))

=5;Cr{(PnL_n,m)+(PnL-m,n)—(Pr,L-n,n)—(PpL_m,m)}ur,
where for k, leZ, k<, L,, is the set of bonds
Ly,={{k} xb,{I} xb,be L}U{{(j,x),(+1,x)}, k< j<l,xedL}.
Clearly, L, ,AL,,=L,,. Hence
(P, L, )+ (P Ly )= (Pp L, )= (P, L_,, )
=[Pr, L, -)—11(PrL_, ) [1-(Pr. L, ,)].

Therefore only those I' contribute to the sum for which (P, L_,, _,)=(P, L, ,)
= —1. If we write

m—1

(PI"Ln,m)z H (Pr, Lk,k+ 1)’
k=n

we see that the sum can be estimated by [cf. (4.17)]

o0

m—1
YooY e WIS Y AL, g | Fy (2B e 20 F 00

k=n I't Ly c+1 k=n
Tl zn+k
—nconst

<conste

This proves that @ ®|~* is a Cauchy sequence, and we may identify the limit
vector with @ . @, 1s an eigenvector of T;, by construction. @, is cyclic for §, since
by the same argument as before o, (t5(L))®, converges strongly to £. Hence from
cluster properties of w, under separation in Euclidean time the uniqueness of @,
(up to a phase) follows. It remains to establish the positivity of the scalar product
( [T o0, qsq). We have [cf. (4.16)]

XEsuppq

(H 75(x)2, 45‘"))”@‘”’”_1 > e, 0

Xesuppq

= z (thﬁh)lMl EXP{%ZCF[GQ”,M + a(I;K,,,GM - ai_ on 1]:“F} >
MeConn(K,,)
where K, is the subset of bonds of L_, , which belong to the halfspace x° =0 and 6
is the reﬂectlon on the hyperplane x —0 Since 0K, and hence also Conn(K,) are
independent of n, it is sufficient to prove the convergence of the sum in the
exponent as n goes to infinity. Only those I' contribute for which either there is
some yesuppl  with N, ¢Disc(M)nDisc(0M) or (P, MA{0} xL)=—1 or (Pp,
OMA{0} xL)= —1 or (P, K,A{0} xL)=~1, (P, L_, )= +1. From (4.15) the
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contribution of those I which fulfill one of the first three conditions is bounded by
2(IM|+|L)F(24°); for the last condition one obtains the bound

YooY eI SQRILI+IOLYF (269 (2P —1)7 L,
RN

If |suppg| is odd one makes the same construction in the charged Hilbert space 5#
starting from @, and using the even set suppgA{0}. q.e.d.

According to the preceding theorem, there are, for each xe Z¢, vectors @, =D,
q(x)=—1, q(y)=1 for x=y, which induce the state w, =w-ga__. Thisleads to
the following simple definition of translation operators U(x),

Ux)n(A)D, =m0 (A)P,, AeF. (6.4)

Theorem 6.5. (i) x—U(x) is a unitary representation of the group of lattice
translations implementing the automorphisms o,

U)n(A)U(—x)=0a,(A4).
(i) U(x) commutes with T.
(ii1) U(x)——0 as |x]|— o0.

Proof. (ii) follows from a0, =00, and T, =P,
(i) It is sufficient to show

Ux)®, =D, .

From (ii) and Theorem 6.4 it follows that U(x)®,=1® , with |{|=1. Let L,
for ze Z* denote a path from 0 to z with |L,|=|z|. Then

Ux)2,, P, . )
= lim lm (7o, (t5(L, +x)mor, (T3 (L)) Py, oy, (t5(Ly 4 ) Py)

n=o0 M=o im in

ot (23 (L)@l ™ 7o, (T3 (L) Pl ™ lImoty, (t3(Ly 4 NPoll

which is nonnegative as may be seen by Griffiths inequalities or by the expansion
of its logarithm. Thus A=1.

(iii) Let E, denote the projection on vectors in # with external charge
configuration g, suppq finite. Then U(X)E,—;— 0 if g=% 1. It is therefore sufficient
to look at matrix elements of U(x) in the gauge invariant subspace of #. Let A4,
BeUNF,. Then for |x| large enough

(n(4)®, U(x)n(B)®)
=(Dy, 1(0;(0) A% (Ba,(0))D,)
= lim (@, 7(0g(A*)o(B)o3(0)5(x)at;, (13 (L)) Po) |70t (75(Ly )P [~

n—r
>~ 1/2
ey ’

= lim CAByjk, 2 {Xe-

n,n
n—aoo

where L, was defined in the proof of (i), K, and L _, , in the proof of Theorem 6.4,
and where A? and B, are classical functions with support in the time slice —1 <x°
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=0 corresponding to @4(4*) and o (B), respectively. But for finite sets R,,
R, CB(Z**") (cf. the proof of Proposition 5.3) one has
QAR AR +(0, 08K g

= ,-llrg <XR1A(R2+(0,X))AKnAMr> <XM,>_ '
< Him (e, mne,> o> ™ ) ™ ) T S () I Gr

It is therefore sufficient to consider the case A, B=1, i.e. to look at the “two-point
function”

(@, UX)P) =(Py, 1(03(0)03(x))P,) = im (e, D, hr_, a0

n— oo

From (5.6)
g = 2 ()M lim o(K,AM,, M)ty >~ "

MeConn(K,) r—= o

from Proposition 4.1, (i) and Griffiths inequalities

o(K,AM,, M) < <XK,,AMrAM> = <XL0, nAMr> <XMA(0}>< le> -,

from Schwartz’ inequality
lim (xpy e, g

=L, g0 = W13 (L) P, T'(15(Ly) Do)
STty LPoll =<xs_,, Var >

and from the perimeter law for the Wilson loop in the pure gauge theory

<XMA{0}><L>_ 1 §(<XMA{0)XL>O)_ 1 éea(ﬂg)(lMHIxI)’

hence

(@, UX)P)S Y [(thp,)e ] M gxEa

MeConn(K,,)

<[(@2d+1)(thp,)e* P9I [1 —(2d +1)%(thB,)?e**F]~ 1. ged.

7. Dynamics in the Charged Sector

The transfer matrix T in the Hilbert space of charged states, 5, is positive and has
a densely defined inverse, thus the time evolution in the charged sector may be
described by

G(A)=T "n(A)T", Ae§. (7.1)

Again it is an open question whether &,7(%) is contained in n(F) or at least in its
weak closure.

For a physical interpretation it is essential that the dynamics in the charged
sector can be compared with the dynamics in the vacuum sector. The most natural
way to do this is, in our opinion, to look at the time invariant algebra & which was
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defined as the smallest C*-algebra containing & =7,(&) which is invariant under
the time translations &, of the vacuum sector. That &, and &, actually describe the
same dynamics (in a sense to be specified) is the content of the following theorem.

Theorem 7.1. There exists a unique representation & of & in A with the properties
(i) HA)=n(4), AeF
(ii) fa, =, teR.

Proof. If a representation # with the properties (i) and (ii) exists it is of the form

Ay on A,
s ¥ (G, (A,)..-G, (4,) =6, T(A,).. &, T(A4,),

and therefore unique. The existence of 7 will follow from the convergence of
“Green functions” [16, 6.3.4]

lim (F,2,8,,(4,)..4, (4)F,Q) | F,Q|~>=(®,d,1(4,)...5, n(4,)P), (*)

¥ o0

holding for all 4,,...,4,€ &0, t;,....t,€R, nelN. To prove () we exploit the fact
that T *! is a continuous function of T, and, according to Weierstrass’ theorem,
can be uniformly approximated by polynomials,

HT:;'“— Za‘:)(oTz;U <e.

n

Using Theorem 6.1, the left hand side of () can be approximated uniformly in r by
Y aP(=t)adt, —1,)...aP (t,)

(F,Q, Tg'a_ (A, TgP0_,(4,)...

—-m

(AT oy 0((F)Q) [ F, Q172

From Theorem 6.2 this converges for each ¢>0 to
Y ai(—ry)..d? (z,)
2@ TP Ty (A,)... ;o
(@, TE 0 D),

Since 0<a*T®T 1 this converges for e—0 to

(D, T "'1(A,)..."(4,)T"D).

»(An)T"”* 1—(nt+ l)q))

—nt

This proves relation (). q.e.d.

The vacuum (identity) representation 7, of & is irreducible since Q is the (up to
a phase) unique vector in #, inducing a ground state of the dynamical system
(&, 6 d,) [25]. In the same way, 7 is irreducible since @, is the (up to a phase) unique
vector in # with external charge conflguratlon do Wthh is a ground state of the
dynamical system (QI ,). In fact, let X be in the commutant n(i‘}) of n(‘&) Then
X @, has also g, as external charge configuration and is therefore a multiple of @;
hence from the cyclicity of @, for #(&) one concludes that X is ~a multiple of the
identity. The corresponding subrepresentatlons 7, and 7 of 7 o Pl and 7! U in the
respective gauge invariant subspaces are also irreducible. For 7, this follows again
from the uniqueness of Q. The argument for 7 is somewhat indirect. We know that
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the subrepresentation 7, of 7l A in the subspace with external charge con-
figuration g, is irreducible. The irreducibility of 7 follows then from the unitary
equivalence F#, 20, (12)
It is now easy to see that 7 and 7, as well as 7 and 7, are mutually inequivalent
representations. One possibility is to look at the behaviour of the translation
operators. © induces a translation invariant state on &, but # cannot contain a
vector inducing a translation invariant state on . Namely, such a vector had to be
an eigenvector of U(x), xeZ‘; the existence of such an eigenvector, however, is
excluded by the weak convergence of U(x) towards zero (Theorem 6.5.).

This argument completes the construction of charged states. The result is
formulated in the following theorem.

Theorem 7.2. For f,> 3}, B, <Py, there exists an irreducible representation 7t of A
which is inequivalent to the vacuum representation. Tt has no external charges, 7(§(x)
=1 for all xeZ® it is translation covariant, and the time translations are
implemented by a positive Hamiltonian H,

efii(A)e " =xa(A), Ae.

Appendix A.1. Polymer Expansions

Low activity expansions for polymer systems are well known (see e.g. [2]). For the
reader’s convenience we sketch the essential steps. As a byproduct, our estimates
seem to be (as far as we know) slightly better than the published ones.

Let ¥° be a finite set whose elements are called polymers together with a
relation “compatible,” y ~9’, such that y+y for all ye %“. A subset I" of ¥° is called
admissible if y~9y' for all y, y’el’, y£7'. Let 4 denote the set of admissible subsets
of %°. One may visualize ¥ as the set of polymer configurations or as a set of
graphs whose connected components are the one element subsets of ¥°. We need
further the notations I'~I" if y~9' for all yerl', yel", I.={yel'|y+I"} and
Conn(I)={I"e¥%|y+I for all y'eI"}. We shall often identify I'e%‘ with its
characteristic function. Other functions I' : ¥°—Z_ will also occur; we consider
them as multi-indices of power series in variables indexed by the elements of %°.

A polymer model on ¢ is defined by assigning to each polymer ye %¢ an activity
u(y)e €. Consider the partition function

z=yu", f=TTuem", (A1)
Ireg y
and the correlation functions
onN=z"*% ', Te%. (A2)
I'e®g
r'~r

The identity
RN VTAED)
r'~r I’ r

" rcr

= ¥ =w"x o (A3)

I'"eConn(I') r~r-
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leads to the equation
o)=Y (=Wl (A4)
I'"eConn(I)
This equation of the Kirkwood-Salsburg type together with the normalization
condition g(@)=1 has the unique solution (in the sense of formal power series in
the activities)

olly)= lim > (=)t (AS)

n— Iy,..,I,e%
I''eConn(I'; - 1),i=1,...,n
Equation (A.5) leads immediately to graph theoretical expressions for the
coefficients ¢, I : 9°—>Z ., which appear in the power series expansion of InZ.
For an investigation of the convergence of (A.5) we associate a length |y|eN to
each ye%“and let || =) I'(y)|yl. We assume that there is a convex, differentiable,
monotonically decreasing function F:(b,, c0)—IR_, byelR, such that for each

I'e9, b>b -
0 Y e IS Fob) |1 (A-6)
y+T
This implies
eIl < pFo®ITII (A7)
I'"eConn(I)

Sometimes (A.7) can be improved by taking partially into account that only
admissible sets I occur,

, 1 nlirl]
e bM< (1+ ZFO(b)) (A7)

I'"eConn(I')
for some nelN. Inequality (A.7) implies convergence of (A.5) if there exists some

a>b, such that B
° Il = sup [ = ¢~ oo, (A.8)
;

Let a, be the smallest solution of
Fola)=—1, (A.9)

provided it exists, and a,=b, otherwise. Then the convergence condition can be
written in the more explicit form

l|p]| < g~ fact Folae) (A.10)
For the correlation function one obtains the bound
,Q([’)'éeFl(—lnlluH)HfH’ (A.11)
where F, :(a,+ Fy(a,), ©0)—~IR is defined by
F (a+Fy(a)=Fya). (A.12)

To derive the estimate (4.15) we use the identity (I'€ %)
Y eppt =Ing(IN=InZ(0)—InZ(1)

I":9c>7
= [d2 Y upein)). (A13)
0 ye¥ge

y+ I
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where Z(A) and g, are partition function and correlation functions corresponding
to the activities u,(y)=Au(y) for y+I" and p,(y) = p(y) otherwise, ye %, Since ||y, ||
<|ull, lo,({yh S ef b7 “and from the definition of F, and from (A.6)

Y lerl W 1= Fy(=Influ) (1. (A.14)

r+r

Inequality (4.17) is obtained by comparison with the critical activity pu.(y)
= ¢~ (@ct Folac) vl

< (Y o Fotan 11
2 Icpllurl§(M Y Jep| e @t Folad Il

r'+r ||NC” r'+r
rjtzn
II#H)” A
g(—w 1Tl Fofa). (A15)

The functions F,, for the models discussed in this paper are given in Appendix
A.3. In the standard case with the combinatorial estimate

e, y+Liyl=n}| S |T|c",
one obtains F(b)=ce ’(1—ce ?) ™! and
Il =c™ 43— )/5)e™1PVIT D =¢71.02059 ..,
Fo(a)=1(}/5-1)=0.6180.....

Appendix A.2. Perimeter Law of the Wilson Loop

The fact that the Wilson loophasa perimeter law in the low temperature region of
the Z, gauge theory has been observed already in the classical paper of Wegner
[6] in 1971. A somewhat sketchy proof appeared in [ 7], and a complete proof has
been carried through by Gopfert [8]. For the convenience of the reader we review
the proof together with some new estimates.

The proof is a simple application of the polymer expansion method outlined in
Appendix A.1. Here, polymers are coconnected coclosed sets of plaquettes P
(vortices), and two polymers are compatible if they are not coconnected. Let
M CB(Z°* 1) be closed. Then

(XM>°=exp{— Yy e 2helFl } dl@l(P)}, (A.16)
(P,M)=—1 -1

where ¢, denotes the correlation function corresponding to activities p;, p,(P)
=Je” 2Pl for (P,M)= —1, p,(P)=e" 2! for (P, M)=1. Using (A.11) and the
formulas (A.27) and (A.29) we obtain

0z 0, (A17)
where a(B,) is given by the formula

uB)=F'?a), B,=3(a+F*?(a), aza, (A.18)

c
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FU2 F22 being defined in Appendix A.3, and a, being the solution of
F22'(g)= — 1. The leading term for B, large is e~ *(®~ Vs, The bounds in Appendix
A.3 imply

a(B)=e P oc(B) (A.19)

with c(B))=c(B}), By =1(a,+ F*¥(a)). We obtain By =0.9215, c(f;)=39.76 in
D=3 and f; =0.8953, c(By)=340.9 in D=4 dimensions.

Appendix A.3. Combinatorial Estimates

In this appendix we collect some combinatorial estimates which were needed for
the convergence proofs of the expansions used in this paper. From now on we
denote D=d+ 1.

Proposition A.3.1. Let Q CZP be a finite set with |Q|=2q, geN. Then the number
N (m) of all subsets M C B(ZP), with [M|=m and 0M = Q such that each connected
component of M has a nonvoid boundary is bounded by (D = 3)

g(m—1\1""1
N(m) S Z|—— 2D—1)".
m=4("] e~
Proof. The most general set M with the properties mentioned above can be found
by decomposing Q in a set of pairs and joining each pair by a path (a corollary to

. . -1
the “Ko6nigsberger Briickenproblem”). There are (2¢q)!/2%g! pairings of Q, (m 1)
q—
partitions of m in a sum m=m, +...+m,, m, 21 and at most 2D(2D —1)™~? paths
of length m, joining a given pair of points. Thus .#"(m) is bounded by

e )
Amseo-1r = S0" o)

S(m—1)1"'2D-1)"g27%. qed.

In the lattice ZP, two i-cells are connected if their boundaries contain a common
(i—1)-cell. Let .#(n) denote the number of closed connected sets C; of i-cells with
|C,|=n which contain a given i-cell, and let

0

fib)= . Nme™"" (A.20)

n=0
denote the associated generating function.

Proposition A.3.2. Let M be a closed set of i-cells, and let € (M) denote the set of
closed connected sets of i-cells which are connected with M. Then

e“b'C‘"_S_(i(D——i)—i—%)fi(b)lMl.
C,e%.(M)
Proof. There are at most 2i(D —i)|M| i-cells which are connected with M but not
contained in M. Thus there are at most (2i(D —i)+ 1)|M| possible starting points
for a closed connected set of i-cells. The statement follows from the fact that each
C,e% (M) contains at least two of them. q.e.d.
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Proposition A.3.3. Let P be a coclosed set of (i+ 1)-cells, and let € (P) denote the set
of closed connected sets of i-cells with an odd winding number with respect to P.

Then i+1
etlGl [/ ®)I|P].

Cie%iP) ~ 8i(D—i+1)
Proof. Let ¢ denote the i-cell which is spanned by the points 0 and x, j=1, ..., i,
x) =9, let €(n, ¢) denote the set of closed connected sets C; of i-cells containing ¢
with |C=n, and let %,n, P) denote the set of C,e%(P) with |C,=n. Each
C,e%,(n,c) is the boundary 0C,, , of a certain set of (i+1)-cells C,, ;, and from
Proposition A.5.2, C;, , can be chosen such that

D—i

S
lC’+1|_8i(D—i+1)

ICI>.
Consider the semidirect product G of the group of lattice translations and the
group of permutations of coordinates. If n; . andp; .  are the numbers
of (i+1)-cells in C,,, and P, respectively, which are parallel to the (j,, ..., j;,)-
plane, then, for each permutation = there are at most

2 Mmoo P i
J1<..<ji+1
possibilities to shift the transformed set nC;,, such that it intersects with P.
Summing over all permutations leads to at most (i+1)!/(D—i—1)!|C,,,||P]
transformations in G which map C; into % (n, P). Since each Cie % (n, P) can be
reached by |C}|i!(D —i)! transformations we obtain
D—i

i+ DUD —i= Dt g P60, 0| 2 (D= )6, P).

The statement follows then from (A.20). q.e.d.

N (n) can be estimated by an application of the solution of the “Konigsberger
Briickenproblem.” There the i-cells and their faces are considered as islands, and
each i-cell is connected with its faces by bridges. The most general set C, can be
found by choosing a path which meets every bridge once. This leads to the bound

N(m)S2[(2i—1)(2D —2i+ )]G+ 2, (A21)

where we used the fact that the first step is arbitrary and that a different choice of
the last 2i+3 steps can lead at most to one other closed set since the smallest
closed set of i-cells has 2(i+1) elements.

For the generating function one gets

filb)Scilee” )X V(1—ctem )7 (A.22)

with ¢;=2[(2i—1)2D—2i+1)]"%*? and ¢;=[(2i— 1)2D—2i+1)]".

If i>1 it is more effective to estimate first the number ./ ”(n) of elementary
closed sets of i-cells containing a given one, where we call a closed set of i-cells
elementary if it cannot be written as a disjoint union of nonvoid closed sets of
i-cells. Let w

Ob)= Y, N On)e™t" (A.23)

n=0
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denote the associated generating function. Note that Proposition A.3.3. holds also
for elementary sets if one replaces f; by f(?.

Proposition A.3.4.
fla+iD @)= )

Proof. Each closed connected set of i-cells C; containing the i-cell ¢ can be
decomposed into elementary ones

C,=E,uEPu...UEu.. .UEPU...UEM,

such that ceE and E{ is connected with E{, for some /' but does not intersect
with E{2,, j=1,...n. Then

0
Y Y e @HD=DO@AED] .. (B
kn=0 kn- EW, . Efn

<P IO@UED |+ By 0]

where we used the fact that f{® is monotonically decreasing. A repeated
application of this estimate leads to

z e—(a+i(D—i)f{°)(a))|Cn|§ Z e~a|Eo|,

C,ac Eg3c
which proves the statement. q.e.d.
N {9(n) can be estimated similarly to Ruelle’s estimate on the number of

elementary closed sets of (D — 1)-cells (Peierls contours) [22] (compare also [24]).
This leads to the bounds

N Om)S202D —2i+1) 02 (A.24)

and
SO S (Ve 2D — (M) 7, (A.25)

with
' =22D—2i+1)"  O=2D-2i+1. (A.26)

After these general considerations we have the means to estimate the
generating function for the Marra-Miracle-Solé expansion of the gauge invariant
Ising model which was reviewed in Sect. 4. It is natural to associate to each ye %‘ a
pair of lengths |y|=(IN,|,|P.]). We shall equip R* with the usual scalar product xy
=Xy, +x,y,. From Proposition A.3.3 and A.3.4 we have for N CB(Z"), 0N =0

> e S FUAp)N],

PC P(ZP)
Pesconnected
. (A.27)
FU2)p) = )"
()= 24D~ 2 24D —2) />-

b=a+2(D-2)f\,(a),



116 K. Fredenhagen and M. Marcu

and for PC P(ZP), 6*P =4,
e PINN< FEOp) P,

it
(A.28)
Fe)= A0
If D=3 one may use F'!? =F(! instead of (A.27). Defining
FOO(b)=(D-f,(b), FP(b)=2D—-2)+3)fp-,0b), (A.29)
we arrive at the estimate (b=(b,,b,)eR?y'=(N,, P, )e¥)
Z@ e MZF,b)y, (A.30)
ey
with
Fola+F(a)=F(a)+F(a), ae{xeR? det(1+F(x))=0}, (A3D

Fla,,a,)=(F%(a,), F*Ya,)), Fla,,a,)=(F*a,), F??(a,)).

The region Z,={b=a+ F(a),det(1+F'(a))=0} in which the left hand side of
(A.30) is bounded is somewhat smaller than the one given in [10]; we could not
reproduce this stronger result.

The function F, occuring in Sect. 4 (denoted here by Fy") is related to the
function F, in (A.30) by

F(b)= max F(b,b);.
i=1,2

Appendix A.4. Convergence Region of the Marra-Miracle-Solé Expansion

The estimates in Appendix A.3 relied on the estimate of the number ./, of paths in
ZP starting from a given bond

In. A /length—2D—1, (A.32)

and on the number 4}, of elementary coclosed sets of plaquettes starting from a
given one

InA{?,/length—35, (A.33)

if the length tends to infinity. Therefore the convergence region which we shall
establish cannot exceed the region thf,<(2D—1)"! and e” *!9<1/5. We shall
come fairly close to this borderline; so a further improvement of the bound on the
convergence region should rely on an improvement of these basic estimates.

According to Appendix A.1, the polymer expansion of Marra and Miracle-
Solé will converge if

(thB,,e”*Ps)=(e P, e7t2), (A.34)
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0=3 D=4
1/5 177
e S s e N T
th(g,) th(p,)
0 0
2/3 727 1 2/3 714 1
th(gy) th(gy)

Fig. A.1a and b. The bounds on the convergence region, as estimated in Appendix A.4

where (by,b))e Z={a+ F(a),ac &}, F, and %, being defined in Appendix A.3.
Using Egs. (A.27)-(A.31) it follows that

R={b=a+H(a)}, H(a)=F(a)+2F(a). (A.35)

H is monotonically decreasing and H' is monotonically increasing with respect to
the partial ordering

x2y < x, 2y, and x,2y,. (A.36)
Hence #={beR?,b=b, for some b€ B,} with
B,={a.,+H(a,),acA.}, (A.37)

A, being the set of maximal solutions of
det(1+H'(a))=0. (A.38)

The convergence region determined by this method is shown in Fig. A.1a (D=3)
and Fig. A.1b (D=4). In particular it contains the convergence regions of the pure
gauge theory and of the Ising model.

Appendix A.5

Proposition A.5.1. Let M, be a square with side length 2r contained in a lattice
plane. For each set of plaquettes P

r r
IPI2 S {IM,|—10PAM, I} = 5 {210POM,|—|0P]}.

Proof. Let P, be the minimal set of plaquettes with 0P, =M, (i.e. |P,|=4r?), and P’
the projection of P on the plane containing the square. Then |P'|<|P| and

.120
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[OP"AM | <|0PAM,]. Since a plane surface with boundary of length / has at most

I\? 0P AM |?
an area of (4_1) ,|IPPAP =< |_PT6]YIJL Now,

|P'|=|P|+|P'AP|—|P'AP,|2|P,|—|P'AP,|=4r*—|P'AP)|

_oPaM,? P AM,)

>4y >2r(2 > (8r—j0PAM)). qed.
>4y T; __r(r 1 )_2(87' [OPAM,]). qed

Proposition A.5.2. Let C, be a finite closed set of i-cells in Z”. Then there exists a
set of (i+1)-cells C,, |, such that 0C;,  =C, and

D—i

CooylS e
Ry

IC,|*.
Proof. We shall only consider the case i=1. In this case the above bound is
optimal, as may be seen by chosing C, as the path of length 2D connecting
successively the points 0, e, e, +e,,....,e; +...+ep, e, +...+ep e;+ ... +ep, ..., 0
(e; denotes the i™ unit vector) the minimal area of which is D(D —1)/2. The proof
for i>1 is completely analogous, but it is obvious that the bound obtained is not
optimal.

It is sufficient to consider connected sets C,. For D=1 the inequality is trivially
satisfied. Let D=2 and assume that the statement of the proposition is true for
D—1. We may chose a hyperplane and a set of vertical plaquettes C), such that

0C,=C,ACY,

where C is the projection of C, onto the distinguished hyperplane. Let x|C,|
denote the number of horizontal bonds in C,,0=x=1. Then |C}|=x|C,| and for a
suitable level of the hyperplane

Iyl =3x(1=x)IC, .

By the induction hypothesis, there exists a set of plaquettes C’ in the hyperplane
with 0C% =C and
D-2
ChISIC, P < ——x2.
CHSIC g

Then C,=C,AC} has the properties required in the proposition. q.e.d.
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