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Abstract. Solutions / : IR->IR of Feigenbaum's functional equation f(f(x))
= oc~1f((xx), where αφO is a fixed real number, account for many of the
fascinating properties of the behaviour of successive iterates of (one parameter
families of) nonlinear maps. In connection with the phenomenon of in-
termittency, interesting families of exact solutions have recently been found (for
α>0). These solutions can all be derived from continuous bijective solutions
which are topologically equivalent to translations. In this paper, the general
exact continuous bijective solution is found for any α + 0, positive or negative.
In particular, it is shown that, for any αφO, there are solutions which are
/^equivalent to translations. And it is shown that bijective solutions equivalent
to translations exist only when 0 < α < 1. These results considerably enlarge the
stock of available exact solutions of Feigenbaum's equation.

1. Introduction

It is a remarkable fact that, for a wide class of real valued functions g of a real
variable, the recursion relations xn+1=Kg(xn) exhibit a rich qualitative [1] and
quantitative [2] behaviour which is essentially independent of the recursion
function g. Feigenbaum [3] and others [4-7] have provided an explanation of the
scaling and universal properties of the transition to chaos via period doubling
transformations in terms of a functional equation

/o(/oMHα~7o(«) (F)

for a real valued function / 0 of a real variable, where α < 0 is a fixed real number.
Solutions of (F) are evidently fixed points, in an appropriate function space, of the
transformation T defined by

(Γ/)(x) = α/(/(α-1x)), (T)

and the universal properties are [3-7] derived from the behaviour of T near a fixed
point in certain eigendirections in function space.
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In the original applications [3-7] of Feigenbaum's equation, the solutions / of
(F) of interest were not one-one, but rather, typically, were even functions, and the
values of α concerned were negative. However, Hirsch et al., [8] have recently
given a formulation of the phenomenon of intermittency in the presence of noise.
While the boundary conditions concerned are rather different from Feigenbaum's,
their treatment was again based on the behaviour of T near fixed points, but now
with a > 0 (in fact with α = 2). Equation (F) is simpler in this situation.
Remarkably, Hirsch et al. [8] found closed form exact solutions of (F) which fitted
the boundary conditions, and these used solutions to find the relevant eigenfunc-
tions and eigenvalues.

Hu and Rudnik [9], in the same context of intermittency, gave further exact
solutions of (F), but now with arbitrary positive α. Their family of solutions
includes those of [8]. For 0 < α < l , the solutions are real analytic and bijective.
For l < α < o o , the solutions are again real analytic, but local in nature (being
undefined at certain points of IR) and unbounded. All of the solutions of [8,9] can
be derived from continuous, bijective solutions of (F) which are equivalent to
translations. In fact, for α = §, Feigenbaum's equation admits the very simple
solutions f(x) = x + α, where a is a real constant, and the solutions of [8,9] are all
obtained from these simple solutions. The same simple solutions will play a key
role below.

The purpose of this paper is to give the general continuous exact bijective
solutions of Feigenbaum's equation for any α φ 0, positive or negative. This family
of solutions includes those of [8,9]. A fortioti, the family must contain all real
analytic solutions. However, no criteria are given for characterising the entire
subfamily of real analytic solutions.

The main tool which will be used below is a criterion for two increasing
bijections g, g' from IR onto IR to be conjugate, (the conjugator being an increasing
bijection). This criterion has long been known (recent references are [10, 11]). It
will be shown that bijective solutions of (F) equivalent to translations exist only
when 0 < α < 1 hence the local nature of the solutions of [8, 9] for 1 < α < oo is
inevitable. Furthermore it will be shown that, for any a + 0, there are solutions of
(F) which are /^equivalent to translations.

2. Exact Solutions of [8,9]

Hirsch et al. [8] gave an exact solution of (F) (the subscript on f0 is dropped
henceforth) for α = 2,

(1)

in the form

f(x) = x(l-ax)'1, (2)

where a is any real constant. Hu and Rudnik [9] gave a solution of (F) for α = 2y

(for any real y Φ 0)

(3)
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in the form

f(x) = (x~1/y-ay
y = x(l-ax1/yyy. (4)

Here the power function xy is defined, for positive, negative or zero x, by

xy = sgn(x)|xp\ (x + 0ify<0), (5)

where the sign function sgn(x) is + 1 , 0 or — 1 for x>0, x = 0 or x<0. Direct
substitution shows that (4), where defined, gives an exact- solution of (3). And, for
the case y=l, one gets the solution (2) of (1).

I now rederive the solutions (4) of Hu and Rudnik [9] (by a method equivalent
to theirs), and set up some notation to be used later. Let Tα, Mα, and Pτ denote the
(everywhere defined) translation, multiplication and power maps, given as follows

Ta(x) = x + a ( # 0 ) , (6)

Mβ(x) = αx ( α φ O o r l ) , (7)

Pτ(x) = sgn(x)|x|τ ( τ > 0 , τ φ l ) . (8)

Observe that the cases in which these maps give the identity map are excluded.
Write T= Tx (α= 1). Denoting function composition by juxtaposition, and inverse
maps as usual, evidently Ma-1=M~1 and (F) is (for α>0)

(F)

Now observe that T=Tγ satisfies

T2 — T =M~1 TM (9)
1 — 12 1V1H21 lvl\/2 •> \y)

and so f=T satisfies (F) for α = f. Next observe that, if / satisfies (F), so does
g = Mβ 1fMβ for any β Φ 0, since Mβ commutes with Mα. Hence

M-^TMβ = Tιlβ = Ta (a = ί/β)

also satisfies (F) for α = -|. And an obvious computation shows directly that

The power and multiplication maps satisfy the relation

P 'MJ^M^ α' = sgn(α)|α|1/τ. (10)

Hence, by conjugating either side of (F) with Pτ, one finds that, if f2=M~ιfMa,
then

g2 = M^gMa,9 a' = a^\ (11)

where g = P~ 1fPτ. In particular, the solution / = Ta for α = \ gives rise to a solution
g = P;1TaPτ of (F) for α = 0 1 / τ = 2~1/τ. That is, by choosing τ appropriately, the
particular solution / = Ta for α = | can be used to give a solution g = P~ιTaPτ for
any α with 0 < α < l .

All of the solutions so far obtained are everywhere defined (bijective con-
tinuous) solutions. Further local solutions can be obtained as follows. Let / denote
the inverse forming map, defined everywhere except at x = 0, by

x~\ xφO. (12)
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Then one finds that, whenever both sides are defined,

r 1 M β / = M β - 1 , ΓιPτl = Pτ. (13)

By conjugating either side of (F) with / it follows that, if / 2 = M~ 1 /M α , then
g2 = M~-\gMa-1, where

Hence, from any solution / of (F) with 0 < α < 1 one obtains a local solution
g = l~1fl with l < α < o o . In particular,

g=r1(p;ίτapτ)i=p;1(r1τai)pτ (15)

satisfies (F) with α = [ 2 " 1 / τ ] " 1 = 2 1 / τ . In detail, this is

lτ. (16)

This is the solution (4) of Hu and Rudnik [9] for τ = 1/y (with a replaced by — a).
The above derivation shows that the local nature of the solution can be
understood as a consequence of the local nature of / in (12).

3. Preliminaries and the Conjugacy Criterion

Every continuous bijection g : JR-+IR is a strictly increasing or strictly decreasing
homeomorphism, and every conjugate h~1gh by such a map h : R->ΊR is increasing
(decreasing) whenever g is increasing (respectively, decreasing). It follows that
every continuous bijection / : IR-»IR which solves (F) is increasing. For f2 is
always increasing, so the conjugate M~ιfM^ and hence / itself, must be
increasing. The first result deals with trivial solutions.

3.1. Proposition. For any αΦO, the identity function / = 1 (defined by l(x) = x, all
satisfies (F). For |α| = l, every solution of (F) is the identity function / = 1.

Proof It is immediate that / = 1 satisfies (F) for any αφθ. Suppose next that α = 1,
so that f(f(x)) = f(x). Since / is onto, every y e R is of the form y = f(x) for some
xelR. But then f(y) = y, and / is the identity function. Finally suppose that α = — 1,
so that (F) is f2 = J~ xfJ, where J = M_ x is defined by J(x) = - x. It follows that f4

= J~1f2J = J~2fJ2=f Every yelR is of the form y = f(x) for some xeIR, so
/3(/(^)) = P{y) = f(x) = y Suppose that, for some yeJR, f(y) Φ y, say f(y) > y. Since
/ preserves order, this gives f2(y)>f(y) and f3(y)>f2(y). Thus y = f3(y)>f2(y)
> f(y)>y, a contradiction. Similarly f(y)<y leads to a contradiction. Hence f(y)
= 7 for all yeIR, so / is the identity function. The proof is finished. •

Henceforth, only those α will be considered with |α|Φ 1. In fact, until Sect. 6,
only positive values of α will be considered. Henceforth, A(I) will denote the group,
order function composition, of increasing self homeomorphisms of an open
interval I (possibly infinite) of IR, and A will often denote v4(IR). The next result
shows that, to solve (F) for any α>0, it is enough to solve (F) in the special cases
oc = ̂  and α = 2.
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3.2. Proposition. (A) Suppose 0 < α < l . Then the general solution feA of f2

= M~ίfMa is obtained from the general solution geA of g2 = M^/lgMlί2 by the
formula f = PτgP~1, where τ > 0 is the unique number with α~1 / τ = 2.

(B) Suppose l < α < o o . Then the general solution feA of f2 = M~1fMa is
obtained from the general solution geA of g2 = M2~

1gM2 by the formula
f = PσgP~ι, where σ>0 is the unique number with α 1 / σ = 2.

Proof This follows from formula (10) by conjugating either side of f2 = M~1fMa

with the appropriate power function. For 0 < α < 1, P~1MaPτ = M1/2, and for 1 <α
< oo, P; 1MaPσ = M2. The proof is finished. •

Because of the special role of the multiplication operators M 1 / 2 and M 2 , it will
be convenient to write, henceforth, M = Mί/2 and N = M2. For any given
multiplication operator Mα, let Ma denote the subgroup of A = AQR) of elements
which commute with Mα

Mam). (17)

In particular, write Jί~Jίlj2 and Jί = Jί2. An obvious way to generate new
solutions from old is given by

3.3. Proposition. For some given α φ 0, let feA be a solution of f2 = M ~ 1fM0C. Then
f' = m~1fm, meJίa, is also a solution of the same equation.

Proof This follows immediately by conjugating both sides of the equation with m,
giving f'2 = M;1fMa. D

It will also be convenient to define, for each translation TaeA, the group

(18)

In particular, write &~ = &'v Both groups, Jta and ^ , will be seen to play a role in
describing the full solution space of (F) in A = v4(IR).

For a given open interval /, the group A(I) may be described as the group of
order preserving bijections of /. To analyse bijective solutions of (F), I will use a
long known conjugacy criterion (recent references: [10, 11]) in A(I). With each
geA(I) associate a function θ: /-»{15 — 1,0} by defining θ(χ)= 1 whenever g(x)>x,
θ(x) = 0 whenever g(x) = x and θ(x) = — 1 whenever g(x) < x. The fixed point set
SCI oϊgis the closed set S= {x\g(x) = x}, which is the zero set Θ'^O) of ft Often, θ
will be called the indicator function of g. Like all open subsets of IR, the
complement M = I — S decomposes into a countable disjoint union of open
intervals μp where j ranges over a countable index set. It is easy to see that g
restricts to a countable family of component maps g.eA(μj) with gfx)>x (all
xeμj) or gpc)<x (all xeμ3). That is, these maps are fixed point free homeomor-
phisms of the intervals μp and θ restricts to a constant map θj of μj in each (with
value 1 or — 1, respectively). The required criterion is given by [10, 11].

3.4. Theorem. g9 g'eA(ΐ) are conjugate in A(I) if and only if there is an element
keA{I)such that θk = θ'.

Proof Suppose first that g, g' are conjugate g' = k~ ιgk for some ke A(I). Suppose,
in turn, that θ'(x) = 1, - 1 or 0. So g\x)>x, g'{x) < x o r g'(x) = x. That is (fc~ xgk){x)
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>x, < x or = x. Hence (gk)(x)>k(x\ -<k(x) or = fc(x), respectively. Therefore
0fe =0'.

Conversely, suppose that g, g'eA(I) are such that, for some keA(I\ θk = θ\
Define g" = k~1gk so that, as in the first section, θk = θ". Since g and g" are
conjugate, it is enough to prove that g' and g" are conjugate, using the fact that θ'
= 0". The last equation implies that g' and g" have the same fixed point set S, and
θ'j = θ'j in each μ.. Select a particular μ = μp and suppose for definiteness that
θj(x) = 1 for xeμj. Choose a pair of points p. qeμj and let K, L denote the intervals
(PJ 0J(P)1 0?> 0j O?)] Then, using the fact that g' , g"- preseve order, it is easily checked
that the intervals (g')m(K), meZ, are disjoint. And these intervals cover μ , for

lim (g'j)m(p) must be the right (left) endpoint of μ , otherwise μ. would contain a
ra-> ± oo

fixed point of g'. Similarly, the intervals (g'j)m(L) are disjoint and cover μ.. Let
α '.K-+L be the unique (necessarily increasing) affine map from K onto L. Each
xeμ. belongs to (g'j)m(K) for exactly one meZ. Define a function l \μ.-+μ. by \.(x)
= ((g'j)mtt(g'j)~m)(x) for xe{g')m(K). Then it is easy to check that l^Aiμ) and l.g'.
= g"jlj. A similar construction works for θ {x)= — 1 for xeμ.. Now define h :I->I
by h(x) = x for xeS, /ι(x) = /J.(x) for xeμ^. Then one can check that heA(I), and one
gets hg' = g"h. Hence g' = h~1g"h, and g\ g" are conjugate. The proof is
finished. •

3.5. Corollary. An important special case of this theorem is given as follows: Every
fixed point free map gεA (i.e. S is empty) with θ = l in M = IR is conjugate to every
other such map. In particular, every such map gεA is conjugate to TeA, since the
translation T(x) = x + 1 is fixed point free and has 0 = 1. Thus one has the useful
canonical form for such maps

g = k~1Tk, some keA. (19)

Similarly, every fixed point free map g'εA with θ= — ί is conjugate to every other
such map, and can be written

g'^k~lT"lk, some keA. (20)

3.6. Corollary. Every map gεA with exactly one fixed point, and with θ = 1(— 1) in
the interval to the right (respectively, left) of the fixed point is conjugate to every
other such map, and has the canonical form (here N = M2)

g = k~xNk, some keA. (21)

Similarly, every map g'eA with exactly one fixed point, and with θ= —1(1) in the
interval to the right (respectively, left) of the fixed point is conjugate to every other
such map, and has the canonical form (here M = M1/2)

g' = k'ιMk, some keA. (22)

3.7. Corollary. Suppose that m is a positive integer, and that the maps α, βeA are
related by am = β. Then a and β are conjugate. Indeed, it is easy to check that the
indicator functions of α and β must coincide, and the result then follows from
Theorem 3.4 (compare [10-12],).
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4. Fixed Point Free Solutions of (F), α > 0

It will be important to deal first with certain properties of elements of the group
£Γ C A of elements commuting with the translation T. The required results are
contained in the following two propositions.

4.1. Proposition. Every element πe?Γ is of the form π(x) = x + p(x), where p(x) is a
continuous periodic function of period 1 such that x + p(x) is one-one. For every

, there are fixed real numbers r, s such that

all χeR. (23)

Proof. By definition, πT=Tπ, so π(x+l) = π(x)+l. Define p(x) by π(x) = x + p(x).
Then p(x + l) = p(x). Since π is continuous, so is p. Because [0,1] is compact, p(x)
attains its upper and lower bounds s and r in [0,1], and because p is periodic of
period 1, r^p(x)^s for all XEJR. The desired inequality then follows because π(x)
= x + p(x). •

4.2. Remark. It is easy to see that there is a plentiful supply of continuous periodic
functions p of period 1 such that π(x) = x + p(x) is one-one. For example, p(x) could

be any differentiate function of period 1 such that — (x)> — 1 for all x e R
ax

4.3. Proposition. Suppose π e ^ and M — Mιj2. Then the function πM has the
following properties: (A) πM has at least one fixed point. (B) There are π's for
which πM has exactly one fixed point. (C) Whenever πM has exactly one fixed
point, the indicator function θ is equal to —1(+ 1) to the right (left) of the fixed
point.

Proof (A) Since (πM) (x) = πφc), (23) gives the inequality \x + r ^ (πM) (x) <£ \x + s.
Hence (πM) (x) — x satisfies — \x + r ^ (πM) (x) — x ^ — | x 4- s. The extreme left and
right of this inequality are both positive (both negative) for sufficiently small
(large) x, so the same is true of the middle term. Hence, for some x, the middle term
is zero (πM) (x) = x, and the assertion is proved. For (B), observe that examples
are given by taking π(x) = x + p(x), with p(x) periodic of period 1, and differentiable,

with —1< — < 1 for all x e R For (C), observe that the indicator must be
dx

constant to the right (left) of the fixed point, and (πM) (x) — x is negative (positive)
for sufficiently large (small) x, as remarked above. Π

The next two theorems deal with fixed point free solutions of (F) for α > 0.

4.4. Theorem. Suppose col. Then there are no fixed point free solutions feA of f2

Proof By Proposition 3.2(B), no generality is lost by supposing α = 2. So the
equation is f2 = N~1fN, where N = M2. Suppose that there is a fixed point free
solution / One may suppose θ — \ for this f for if θ = — 1, k = f~ί has θ=l and
satisfies (F) (by inverting both sides of the equation). Since / is fixed point free and
has indicator θ = 1, 3.5 implies that, for some geA, f=gTg~ι. Substituting into the
equation gives



438 P. J. McCarthy

But, by Eq. (9), T2 = M~1TM, where M = M1/2. So

That is, for some function πeA with πT= Tπ (i.e. πe£Γ)

(24)

By Corollary 3.6, the left hand side of (24) has exactly one fixed point peIR, and has
indicator function θ = 1 to the right of p, θ — — 1 to the left of p. By Proposition
4.3(B) there are functions π e J such that πM has exactly one fixed point. But, from
Proposition 4.3(C), πM has indicator function 0 = — 1 to the right of this point,
0 = 1 to the left of this point. Hence (24) is impossible. The contradiction
establishes the theorem. •

4.5. Remark. This result applies to the solutions (2), (4) of [8, 9] (for which α> 1).
These solutions are not everywhere defined, and Theorem 4.4 shows that this is
inevitable if continuous bijective solutions are sought. Many local solutions with
α > 1 (including those of [8, 9]) can be generated from the solutions described in
the-next theorem; see Remark 4.8.

By Proposition 3.2(B), to find the general solution fe A of (F) for 0 < α < 1, it is
enough to restrict attention to α = f.

4.6. Theorem. Suppose α = ̂ , and write M = M1/2. Then the general fixed point free
solution feA of f2 = M~1fM is

f = gTg~1 or f=gT~ιg-\ (25)

where πe$~ is any element for which πM has exactly one fixed point, and geA is
any element such that g~1Mg = πM.

Proof. If / is fixed point free and satisfies / 2 = M ~ 1 /M, one may suppose that
θ = 1, for otherwise / " x satisfies the same equation and has 0 = 1. So it is enough to
prove that the first formula of (25) gives the general solution with 0 = 1. By
Corollary 3.5, f=gTg~1 for some geA. Substituting into f2=M~ifM gives

But, from Eq. (9), T2 = M~1TM. Hence

gM-1TMg~1=M~1gTg~1M.

Rearranging gives

{g"ιMgM~ X)T= T(g~ ιMgM~x).

That is, for some π e J (i.e. πT= Tπ)

(26)

By Corollary 3.6, the left hand side has exactly one fixed point, with θ= — 1(0= 1)
to the right (left) of this point. Hence the same must be true of the right hand side
πM. By Proposition 4.3(B), there are maps π e J such that πM has these
properties so π must be such a map. By Proposition 4.3(C), the indicator function
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θ of πM for such π is —1(+1) to the right (left) of the fixed point. But then, by
Corollary 3.6 [Eq. (22)], πM is conjugate to M in Λ(R). That is, Eq. (26) is soluble
for g\ the explicit method of solution is given in Theorem 3.4. Let g be any
solution then

(27)

is the general solution of (F) with 0 = 1 . The proof is complete. •

Recall from Proposition 3.3 that, if / solves f2 = M~ xfM, so does f' = m~ ιfm
for any meJt. Call two solutions which are related in this way Jί-related. The
next result shows that a given π gives rise to a family of ^-related solutions.

4.7. Theorem. For α = | , fixed point free solutions of f2 = M~1fM are param-
etrised by spaces of 3~-cosets of the form JίgJβΓ, where gπ is a particular solution
of (26) for a given admissible πe3Γ.

Proof Let gπ be a particular solution of (26), so g~1Mgn — πM, and let h be any
other solution; h~1Mh = πM. Then hg~1Mgπh~1=hπMh~1 =M, so hg~1=m,
where mM = Mm. That is, the general solution of (26) is h = mgπ for some me Ji. By
(27), two such solutions h, h' give rise to the same / if and only if h! = hτ for some
τe?Γ. Hence, for a given π e J such that πM has exactly one fixed point, the
solutions are parametrised by MgJZΓ. •

4.8. Remark. Particularly simple fixed point free solutions may be found as follows.
If π is the identity function, an obvious solution of (26) is given by taking g = Mβ,
the operator of multiplication by β. Then (27) becomes f = MβTMβ

1 = Tβ. This
solves (F) for α = ̂ . A local solution / ' for a = 2 is therefore, by (14), given by / '
= I~1fI = I~1TβI, where /(x) = x~1(x + 0). This, when power conjugated as in
Proposition 3.2(B), is the Hu-Rudnik solution. Many more local solutions for
1 <oc < co are given by f = I~ *//, with / defined by (27) (with appropriate power
conjugation understood).

It is easy to see that another simple possibility, namely that of taking π(x)
= x + k9 where k is a constant (i.e. π is the translation map π = Tk), merely has the
effect of replacing g by gT2k. By (27), this leaves the solution / unchanged.

4.9. Remark. It is easy to see that each map meJίa, (α>0), determines, and is
determined by, a pair of maps σ+, σ~ e3/~. Indeed, applying mMa = Mam to the
origin OeIR gives m(0) = 0. But m preserves order so restricts to a pair of maps
m+e^(IR+), m~e^(lR~). Let £α:IR-^IR+ be the homeomorphism Ea(x) = ax, with
E~ 1(x) = logα(x). Then E~ 1MocEOί = T, and conjugation of m + Ma = Mam

+ gives σ+T
= Tσ+, where σ+ =E;1m+EaeΛ{M). Hence σ+eP. Similarly using E'a :R->R"
E'a{x)=-oί~x, one finds σ~T~1 = T~1σ~9 whence σ~ =E'~ίm~E'ae3~. The result
follows.

5. Solutions of (F) with Fixed Points, and α > 0

For any given α>0, let Ga denote the countable group
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generated by the multiplication operator Mα. Obviously Gα has three types of orbit
in IR, namely (i) the origin OGIR, (ii) the countable collection of isolated points Ga(p)
= {M"(p)| neZ} for some positive peIR, and (iii) the countable collection of isolated
points Ga(-q) = {Ml{-q)\neZ} for some negative -qe]R(q>0). If R + = ( 0 , oo)
(R"=(-oo,0)) , evidently Gα(p)CR+ and Gα(-g)CR~.

Suppose that /e,4(R), and let S denote the fixed point set of / ;

S={χeWL\f(x) = x}.

By Corollary 3.7, the indicator functions of / and of f2 coincide. Hence, in
particular, the fixed point sets of / and f2 coincide. The next result concerns the
nature of S for solutions of (F).

5.1. Proposition. Suppose feA(ΊR) satisfies f2 = M~1fMa for α>0, and has fixed
point set S. Then if S is nonempty, S contains the origin O G R

Proof. Suppose Sφ0. To prove the second sentence, it is enough to show that, if
seS, then Ma{s)eS and M;\s)eS. The fixed point set of f2 is also S. Apply f2

= M~xfMa to M'1^). This gives

f\M~ \s)) = (M; V) (s) = M- \s).

Hence M~ ι{s) is fixed by / 2 , whence M~ 1{s)eS. Now apply the equation to s. This
gives

Hence Ma(s) is fixed by /, whence Ma(s)eS and so the set S is a disjoint union of Gα-
orbits in IR.

If reS, either r = 0 or reϊR+ or reIR~. If r = 0, S contains the origin. If not,
suppose r > 0. Then, by the above paragraph, S contains the sequence rm = M™(r),
m=l,2,3,..-. and also the sequence r'm = M~m(r). If 0 < α < l , the first sequence
tends to OeIR, and if 1 < α < oo, the second sequence tends to O E R But S is closed,
and so OeS. Similarly, r < 0 leads to the same conclusion. Hence in all cases, OeS,
and the assertion is proved. •

Since S contains the origin OeR and feA{lR) preserves order, /(0) = 0 implies
that / restricts to a pair of maps / + G ^ ( R + ) and f'eAQRΓ), where R + =(0, oo)
and R " = ( — oo,0). The next result concerns these maps.

5.2. Theorem. Suppose fe ^l(R) satisfies f2 = M~ 1 /M α and has fixed point set S φ 0,
and let f±eA(HK±) be the restrictions of f to R ± . Then neither f+ nor f~ is fixed
point free.

Proof Consider first / + G ^ ( R + ) and let / : R + - + R denote the map l{x) = logα(x).
Observe that IMJ~1 = TeA(R). Conjugate either side of ( / + ) 2 =M~ 1f+Ma with /,
giving

g2 = T-'gT, (28)

where f̂ = //+/~1Gy4(R). If / + is fixed point free, so is g, and one may assume
without loss of generality that θ = l for g. Hence, by Corollary 3.5, g = k~1Tk for
some keA(K). Substituting into (28) gives

k~1T2k=T~1k~1TkT.
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But T2 = M~1TM, and rearranging gives {kTk~ 1M~ ι)T= T(kTk~ ιM~ *). Hence,
for some π e ^ ,

kTk~1=πM. (29)

By Corollary 3.5, the left hand side is fixed point free. But by Proposition 4.3(A),
the right hand side had at least one fixed point. Hence Eq. (29) is impossible, so / +

cannot be fixed point free. By a similar argument, /~ cannot be fixed point free
either. The theorem is proved. •

To summarise, every solution feA(R) of (F) with 5 + 0 satisfies /(0) = 0, and is
determined by a pair / + Gv4(IR+), / " Gv4(IR~) of solutions of (F), each of which has
fixed points. The next result relates / + , /~ to solutions of (28).

5.3. Proposition. Suppose f+eA(Ί&+) (f~eA{JR~)) satisfies (F) and has fixed point
pe"R+ (respectively, qeΊR~). Let /cp:]R+->]R (respectively, k :1R~-+ΊR.) be the

homeomorphism fcp(s) = logJ-J {respectively, kq(x) = \ogl-\\. Then f+=k~igkp

(respectively, f~ = k~1gkq) where geA(W)

g2 = T-'gT, (30)

and g leaves every point of ZCIR fixed.

Proof. For definiteness, consider / + first. Define geA(lR) by g = kpf
+kp

ί.
Conjugating either side of (/ + ) 2 = M~ ίf+M0C gives g2 = T~ ιgT since kpMak~1 = T.
Applying gkp = kpf

+ to p gives g(0) = 0. The same reasoning as in Proposition 5.1
shows that / + leaves M"(p) fixed for any neZ. Hence g leaves T"(0) fixed for any
neΈ. That is, g leaves each point of n=Tn(0) of ZCIR fixed. Applying the same
reasoning to f~eA(JR.~), the proposition is proved. •

Hence, to find the general solution of (F) with S φ 0, it is enough to solve (30)
for functions $e^4(IR) leaving 7L pointwise fixed. / + and / " are then defined by the
formulae in Proposition 5.3, and /(0) = 0. As a preliminary to solving (30), we need
the following result.

5.4. Theorem. Given βeA(I), let Aβ{I) denote the centralίser {leA{I)\lβ = βl} of β.
Let m be any positive integer. Then there exists exactly one conjugacy class of Aβ of
functions fe Aβ(I) such that

r=β. (p)

Proof By Corollary 3.7, βm is conjugate to β, so βm = k~1βk for some keA(I).
Define φ = kβk~\ Then φm = kβmk~ λ=β,so f= φ solves (P). Also by Corollary 3.7,
every solution / of (P) is conjugate to β, and it follows directly from (P) that every
solution / commutes with β. (It is proved in [10, 11]) that A(I) is divisible.
Solutions of (P) are treated very explicitly, and in a wider context, in [12].) Any
solution / of (P) will be called an mth root βm~ * of β. •

To give the general solution of (30) leaving TL CIR fixed, all that is needed is an
application of Theorem 5.4 to the interval / = (0,1).
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5.5. Theorem. Let neΈ, and define ln = {n,n+ 1), / = Io. Let βe A{I) be any function.
Define geA{K) by

g(n) = n9 g\In = Tnβ^T~". (31)

Then g satisfies (30) and leaves TL pointwise fixed. Every solution of (30) leaving TL
pointwise fixed is obtained in this way.

Proof. The function geAQR) given in (31) leaves Έ pointwise fixed by definition,
and a simple verification shows that it satisfies (30). Conversely, given any solution
g of (30) leaving TL pointwise fixed, define β = g\Γ Then repeated application of (30)
and induction show that g is given by (31). •

It is interesting to note that, for positive n, the arbitrary function βeA(I)
uniquely determines the restriction of g to In, but for negative n, n = — m(m > 0), the
2m-th root β2~™ can be any function from a whole conjugacy class of Aβ(I).

This completes the discussion of solutions of (F) with fixed points. The trivial
solutions f+ =1 or / " = 1 arise by taking β = l in (31). The general solution is
obtained from 5.1-5.5.

6. Solutions of (F) with α < 0

If feAQSty is fixed point free, it has indicator either 0 = 1 (f{x)>x for all xeR) or
θ= - l(f(x)<x for all xeR). It follows easily for α<0, that M~1fMa has indicator
function opposite to that of / But f2 has the same indicator function as / Hence,
for α<0, no fixed point free /e^4(IR) can satisfy (F). This leads to

6.1. Proposition. Suppose α < 0 and feA(β) satisfies f2 = M;xfMa. Then /(0) = 0
and f is determined by its restrictions /+Gy4(lR+), /~e^4(IR~), which satisfy

(fΎ-M y-M,, (32)

(f-)2 = M-ψMΛ. (33)

Either of / + , /~ determines the other via these equations, and each satisfies the
equation (for geA(Ί^+) or A(JR.~))

g* = M;2

1gMa2. (34)

Proof. By the remarks above, / cannot be fixed point free. By an argument similar
to the one in Proposition 5.1, it follows that /(0) = 0. Hence / restricts to a pair of
maps / + E^4(IR+), / " e,4(IR~). Applying f2 = M~ xfMa to positive x gives (32), and
to negative x gives (33). Squaring (32), gives, using (33),

(fΎ^M 'iΓfM^M^ΓM^, (35)

that is, Eq. (34). Similarly, / " satisfies (34). If / + is defined to be any solution of
(35) and / " is then determined by (32);

Γ=Ma(f+)2M;\ (36)

it follows that
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Similarly, the roles of / + , / " can be reversed. •

Hence it is enough to solve (34) for geA(]&+). A simple modification of the
proof of Theorem 5.2 (in which M is replaced by M 1 / 4 , and T4' = M^/lTMί/4_ is
used) shows that every solution g of (34) must have fixed points. If pelR+ is such a

point, define heA(1R) by h = kpgkp \ where kp{x) = \ogΛ — \. Then (34) is equivalent

to ^'
h4 = T~1hT, (37)

where heA(Ήty leaves Z CIR point wise fixed. The general solution of (37) is obtained
in a manner similar to Theorem 5.5, and is given by

6.2. Proposition. Let neΈ, and define In = (n,n+l)9 I = I0. Let βeA{I) be any
function. Define heA(W) by

h(n) = n, h\In=Tnβi4n)T-". (38)

Then h satisfies (37) and leaves TLC^pointwise fixed. Every such solution of (37) is
obtained in this way.

Proof This is an obvious parallel to the proof of Theorem 5.5. •

In summary, (38) gives the general solution of (37), which gives the general
solution of (34) (/+), which then defines /~ via (32). The general exact bijective
continuous solution / [necessarily in 4̂(IR)] has thus been found for any αφO.
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Note added in proof. (1) In the present context, solutions of Feigenbaum's equation are very far from
unique; the above results show that they are parametrised by arbitrary functions.

(2) One can also study the functional equations fλ = M~1fMa for any value of λ: even non-
integral ones make sense in the context of functions feA(lR). Feigenbaum's equation is the case
Λ = 2, and Eq. (34) the case λ = 4. Again f=Ta gives a solution for a special value of α, namely % = λ~ί.
One can find the general solution of fλ = M~ιfMa using the above methods.






