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Abstract. This paper proves the existence of non-periodic and not everywhere
dense billiard trajectories in convex polygons and polyhedrons. For any n ̂  3
there exists a corresponding convex rc-agon (for n = 3 this will be a right
triangle with a small acute angle), while in three-dimensional space it will be a
prism, the n-agon serving as the base.

The results are applied for investigating a mechanical system of two
absolutely elastic balls on a segment, and also for proving the existence of an
infinite number of periodic trajectories in the given polygons.

The exchange transformation of two intervals is used for proving the
theorems. An arbitrary exchange transformation of any number of intervals
can also be modeled by a billiard trajectory in some convex polygon with many
sides.

1. Introduction. Formulation of Theorems

Billiards in a polygon Q on the Euclidean plane R2 are a dynamical system. This
system is defined by uniform motion of a point (particle) inside Q with elastic
reflections at the polygon's boundary δg, such that the tangential component of
the velocity remains constant and the normal component changes sign. We will
assume that the magnitude of the particle's velocity equals one.

The motion described is not limited in time if the particle does not fall into a
vertex of Q. Otherwise, its motion is determined only till it falls into a vertex this is
a special case and we will not consider it.

The phase space M = Jί(Q) of this dynamical system is a subset of the direct
product Q x S1 (S1 being the circle of unit velocities), which is obtained by
identifying pairs (q,v) and (#,«/) for qedQ, v^v'eS1 and

where ^ = ̂ (q) is the external unit vector normal to cQ at point q.
A billiard system in a polyhedron is defined in the same way.
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Sometimes not only the billiard trajectory in the phase space J((Q) is called the
trajectory in β, but also its projection onto the configuration space β, i.e., the trace
of the moving particle in Q. As a rule, we will also call this projection in the
configuration space a billiard trajectory, unless stated otherwise.

In this paper we will discuss individual billiard trajectories in polygons and
polyhedrons, and in particular, in "rational" polygons in which all the angles are
commensurate with π. In papers [1, 2] it is proved that for billiards in a rational
polygon Q almost every trajectory is either (a) periodic or (b) everywhere dense in Q
(for the remaining polygons this assertion is not proved). However, an arbitrarily
chosen billiard trajectory in a polygon (not necessarily a rational one) can a priori
be (c) non-periodic and not everywhere dense in Q. Such a trajectory must be
everywhere dense in a subset of Q.

A natural question arises: Can all cases (a)-(c) be realized 1 For cases (a) and (b)
a positive answer is obvious. For case (c), however, the answer is not yet clear. For
a long time there was a hypothesis that any individual trajectory in any convex
polygon suits either case (a) or case (b), i.e., the set of trajectories of case (c) is
empty (according to an oral communication by Zemlyakov, author of paper [1]
also see his popular article [3]). This hypothesis was stated with a view to the
following considerations.

From the point of view of analytical mechanics the billiard considered is a
Hamiltonian system with two degrees of freedom. In the case of a rational
polygon, this system has two independent first integrals, its phase space is stratified
into invariant two-dimensional manifolds of some genus g (pretzels), and
studying the billiard in the polygon Q is reduced to studying the windings of these
manifolds [1]. As is known, for a torus (g = ί) such a winding is always either
closed (then the trajectory in Q is periodic) or everywhere dense on the torus (then
the billiard trajectory is dense in β), and thus there is no case (c). For example,
billiards in the following simplest polygons are reduced to windings on a torus: a
rectangle, an equilateral triangle, and right triangles with angles π/4 and π/6.
Already in a triangle with angles π/2, π/8, 3π/8, studying a billiard is not reduced to
windings on a torus it must be examined in a more complicated way. However,
the statement of the hypothesis holds for this case too.

The well known example of a dynamical system consisting of two point
particles with masses mί and m2 moving freely on the interval [0, 1] and
rebounding elastically from each other and from the endpoints of the interval (in
accordance with the classical laws of an elastic collision; see [4]) leads us to
consider a billiard in a right triangle. The configuration space of this system is a

right triangle with acute angle α = arc tan / —— and the system itself is equivalent

to a billiard in this triangle. The collision of the point particles is represented by a
configuration point reflecting from the hypotenuse, and the reflection of the
particle from an endpoint is represented by the point's reflection from a cathetus. If

k = ̂  has one of the following values: 1 3 (3 + 2 1/2)2 1/3 (3 + 2 1/2)" 2 (the fc's
m2 \

π π π π 3π . ., . , . 1 \ 1correspond to angles α= — — — —, and — in the right triangle , then the
4 3 8 6 8 /
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configuration trajectory of the mechanical system described will be as in cases (a)
and (b) here case (c) is absent.

In this paper the hypothesis is solved negatively. We prove that the set (c) of
billiard trajectories, neither periodic nor everywhere dense in Q, is not empty.

We cite below the exact formulations of all the results obtained.

Theorem 1. For any n^3 there exists on the Euclidean plane 1R2 a convex n-agon Q
in which there is a non-periodic and not everywhere dense billiard trajectory Γ.

Theorem 2. For almost all α from some interval (0, α0), there exists on the Euclidean
plane IR2 a right triangle with acute angle α in which there is a non-periodic and not
everywhere dense billiard trajectory.

Theorem3. Consider the dynamical system of two point particles elastically
colliding on the interval [0, 1], with masses m and km. For almost all k in some
interval (0, /c0), and with some initial state of the particles' positions and velocities,
the set of points where they collide with each other fills everywhere densely the union
of a finite number of non-intersecting intervals on [0, 1].

Theorem 4. In Euclidean three-dimensional space IR3 there is a convex polyhedron
containing a non-periodic billiard trajectory, which is not everywhere dense, but
which is everywhere dense in a three dimensional region in this polyhedron.

The main idea of the proof of Theorems 1-3 consists of constructing a family of
a parallel segments in the polygon, such that the billiard dynamical system induces
an exchange transformation of two intervals on a cross-section perpendicular to
this family. The criterion for aperiodicity of this permutation is applied later.

In the proof of Theorem 4 there appears a homologous equation which has a
"good" solution, allowing us to pass from the plane into space.

Note, besides, that with the help of the construction given in the proofs of
Theorems 1 and 2, we can prove the existence of periodic billiard trajectories in
configuration space β, approximating as closely as desired the non-periodic and
not everywhere dense billiard trajectory Γ from Theorem 1.

Denote the closure of the trajectory Γ as ©Cβ, and the interior of © as
Ω = int ©, this being an open region in Q.

Call a point qeQ of configuration space Q a periodic point if a periodic
trajectory passes through it.

Theorem 5. The set of periodic points in Q is everywhere dense in the region Ω. More
precisely: for any ε>0 and for any point q0£Q, there exists a point q in the
^-neighborhood of q0 such that a periodic billiard trajectory passes through q at an
angle less than ε to the trajectory Γ.

Theorem 5 thus states that the billiard which generates trajectory Γ in the
polygon Q can be shifted from Γ by less than (an arbitrary) ε both in its coordinate
(\q — q'\<ε) and its angle (\v — v\<ε\ after which it will generate a periodic
trajectory in Q. Besides the ideas stated above, we use the following concept in the
proof of this theorem : every periodic trajectory has a bundle of parallel periodic
trajectories reflecting from the same sides of the polygon as the original periodic
trajectory does.
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2. Proof of Theorem 1 for n ̂  4

Generally speaking, the assertion of Theorem 1 for n^4 can be obtained as a
corollary of Theorem 2. Indeed, it follows from the proof of Theorem 2 that the
constructed billiard trajectory never falls into a certain neighborhood of the acute
angle vertex of a right triangle. Hence, that neighborhood can be replaced by
another, polygonal one, forming a convex n-agon with a preassigned n^4 (Fig. 1).

However, because of the complexity of the proof of Theorem 2, we will give an
individual proof of Theorem 1 for n ̂  4, without using Theorem 2. The case n — 3
will be examined in the proof of Theorem 2.

We now describe the plan of the proof. First we construct a special convex
hexagon ABCAB'C, in which we will afterwards construct an everywhere dense
billiard trajectory which will never reflect from sides AB and A'B'. Afterwards,
extending sides AC and BC to their intersection, and sides B'C and AC to theirs,
we obtain a convex quadrangle in which the billiard trajectory will be non-periodic
and not everywhere dense: it does not enter the two triangular regions added to the
hexagon. If we replace one of the triangular regions by a polygon, we obtain a
convex polygon with any preassigned number of sides n > 4.

Hexagon ABC A B'C will satisfy the following conditions:
1. ABC A B'C is centrally symmetric: AB\\AB', AC\\AC and BC\\B'C (we

will consider sides AB and A'B' as vertical) (Fig. 2)
π '"•

2. The angle at vertex A equals —hα and at vertex B
\

0 < α, β < — , where

cot2α>tanβ, cot2β>tanα. (1)

3. The perpendicular at point A to side AC is the bisector of angle BAC and the
perpendicular at point B to side BC is the bisector of angle ABC (Fig. 2).

Fig. 1

> L'

A'

Fig. 2
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The existence of a hexagon satisfying conditions 1.-3. is seen from the
following. Consider segment AB and draw straight lines EC and AC at angles 2α
and 2j8, intersecting by virtue of inequalities (1) (these,, inequalities will naturally
appear further on, and we will not discuss them now).

Next, by drawing lines through points A and B, perpendicular to the bisectors
of the angles BAG and ABC, respectively, we find the points C and C at their
intersections with the straight lines AC and EC', respectively. Then we complete
the figure obtained to form a centrally symmetric hexagon ABC Af B'C'.

Let us clarify the meaning of condition 3. If we start a particle from point B to
point A (forget for a while that A and B are vertices), after reflecting from the
straight line AC, the particle falls into point C; if it is started from point A to point
B, then after reflecting from the straight line BC it falls into point C'. This behavior
of the particle gives us the desired trajectory.

We will call the segment between two neighboring reflections of the billiard
trajectory from boundary dQ a link of the billiard trajectory in Q. Transformation
S, which turns every trajectory link into the following one, acts on the set of
billiard trajectory links; we will say that the trajectory link reflects from the
boundary under the action of S.

Consider the family 5ί of segments parallel to the side AB of the hexagon, the
ends of which lie on the hexagon's sides (vertical family). Every segment ye 51 may
be considered as a link of some billiard trajectory in a hexagon we will also call 51
a family of vertical links. Mentally divide this family into two families: the first (I)
contains all the segments between side AB and segment K, which passes through
vertex C parallel to AB the second (II) consists of all the segments between K and
side AB'.

All the segments of family I reflect from side AC under the action of S, and all
segments of family II reflect from side B'C. After reflecting, family I turns into a
family of segments parallel to AC, and family II turns into a family of segments
parallel to BC (Fig. 3). Then these reflected families reflect from sides AC and BC,
symmetric to sides AC and B'C, and uniting, turn into a family of vertical
segments again.

Hence, if some link 7 of the billiard trajectory belongs to family 21 (vertical),
every second link of this trajectory also belongs to 5ί.

For a vertical link y of the billiard trajectory, denote by F(y) the first vertical
link that y turns into after reflecting from a pair of opposite sides of the hexagon.
The mapping of family 51 into itself is thus defined: F : 5I-»5I F is the square of
transformation S.

Fig. 3
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Let π be the orthogonal projection of the vertical links of family 2ί onto a
horizontal straight line, and let AB project into the endpoint {0}, and A'B' into the
endpoint {1} of the interval [0, 1] (Fig. 3). Then under projection π, the image of
family I is an interval [0, a] C [0, 1]. Denote the length of interval [α, 1] as b = 1 — a.
The mapping F : 2Ϊ-»2I induces a mapping / of the interval [0, 1] into itself, /
being defined by F according to the formula

f(x)ά=π(F(y))9 where xe[0,l] and x = π(γ). (2)

Using property 3. of the hexagon ABCA'B'C, we can rewrite equality (2) as

ίx + fo if x<0,

/(*)= T > (3)

[ x — a li x^a

or, in short, as

(4)

Formula (4) defines the exchange transformation of the intervals [0, a] and [0,1].
As is known, for the exchange transformation of two intervals, the trajectory of

any point xe [0, 1] is everywhere dense on [0, 1] if, and only if, the length ratio - of
b

these intervals is irrational (otherwise the trajectory is periodic). Hence, the billiard
trajectory, the first link of which belongs to family $ί, is everywhere dense in

hexagon ABCA'B'C if, and only if, ̂ Q.
b

We will express this ratio in terms of the angles α and β (Fig. 4). From right
triangles ACM, BC'N, and ACK, in which AM = BN = a and CK = b, we obtain

[by virtue of inequalities (1), a and b are positive]. Hence,

- d^f ^(α, β) = (cot 2α - tan β) (cot 2β - tan α) ~ 1 .
b

(5)

Now note that the function ά(<x,,β) is continuously differentiable and non-
constant on a region produced on the plane (α,/J) by inequalities (1). Therefore,

Fig. 4
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*f(α,/?)£Q for almost all (α,/?) of some region. Among the hexagons produced by
such α and β, some have angles incommensurate with π. Indeed, for almost all α
and β satisfying condition (1), the corresponding hexagon will satisfy our
requirements, having angles incommensurate with π. Then the desired n-agon,
n^4, obtained from our hexagon by adding two triangular regions and clipping
one or both of them, as described above, can have all angles incommensurate
with π.

However, for any n ̂  4 there exists a convex rational n-agon in which there is a
non-periodic billiard trajectory that is not everywhere dense. To prove the
existence of such an n-agon we will present a concrete example.

First we will construct a rational hexagon ABCA'B'C' with properties 1.-3., in
which the trajectory of the type described above is everywhere dense.

Assume that α = — , β = — then the angles at the hexagon's vertices A, B, and
12 6

C equal — -, — , and — , respectively. The value of the function /f (α, β) for these α

and β equals

and therefore the billiard trajectory is everywhere dense in the hexagon.
It follows that for any n-agon, n > 4, obtained from this hexagon by the method

described above, the angle at vertices C and C' equals — , and we can choose all

the remaining angles to be commensurate with π. For n = 4 there is no such
freedom of choice, but by extending sides AC and BC, and also B'C and AC to

their intersections, we obtain the parallelogram LCL'C with acute angle — (Fig. 2).
Thus Theorem 1 is proved for n ̂  4. Π

Remark. As was mentioned in the Introduction, in rational polygons the billiard
problem is reduced to windings on closed oriented two-dimensional manifolds.
Every one of these manifolds is obtaining by sewing together [i.e., identifying the
sides according to formula (*) of the Introduction] a number of copies of the
original polygon β the genus of this manifold is determined only by the type of
the polygon (see Statement 1, [1]). Several branching points of the parallel billiard
flow arise on this manifold : they are obtained by identifying the vertices of the

polygon whose angles have values π— , m> 1 the number m is called the order of
n

branching. In the neighborhood of any point of the manifold, except for the
branching points, the billiard family induced on the manifold is a local family of

parallel shifts (or in the neighborhood of vertices of — valued angles the family is
supplemented to a continuous flow).

For this family, the branching point of order m is a multisaddle of order 1 — m,
i.e., the phase portrait of the family in the neighborhood of this point consists of 2m
hyperbolic sectors separated by m in- and m out-separatrices (see Statement 2, [1]).
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b ι

'X >
d '

Fig. 5

s*

From this, by Euler's formula it is easy to calculate the genus of the manifold

using the polygon's angles n—L :

2-2g=Σ(l-mt) ,.- 1).

We will describe the topological behavior on an invariant manifold of a non-
periodic and not everywhere dense billiard trajectory constructed in a paral-

elogram with angle — . By reflecting the parallelogram from its sides adjoining the

vertex of angle — , we obtain a non-convex 16-agon, the sides of which are identified

as shown in Fig. 5. After identifying the corresponding sides, it becomes a surface
A of genus g= 1 + ^(2 + 2) = 3, divided into eight curvilinear parallelograms (for
this and analogous examples, the genus can be calculated, as is known in two-
dimensional topology, by selecting cells of type aba~lb~l in the "word" w
defining the polygon). There are two branching points, both of them of order 3.

It is possible to trace, in detail the behavior of the family of parallel segments 91
(in the hexagon ABCA'B'C) on the surface A. To do this, we must draw a set of
patterns and identify (sew) the corresponding sides this is cumbersome, so we will
not consider it here.

It is simpler to do as follows : Since there is an exchange transformation of the
two intervals, we shall separately trace I, the left family of parallel segments, and II,
the right family, in the union of segments of family 21, whose cross-section is [0,1].

Family I defines the left "strip," obtained by the movement of segment [0, d]
until it lands in segment [1 — α, 1]; similarly, family II defines the right "strip,"
obtained by the movement of segment [#, 1] until it lands in segment [0, 1 — α].
Both strips should be imagined as being located in 1R3 then there appears the
surface presented in the left part of Fig. 6. This surface is homeomorphic to a two-
dimensional torus Tor2 with a hole, shown in the right part of Fig. 6. The billiard
trajectory on Tor2 which flows past the hole and winds around the remaining part
of Tor2, and which is everywhere dense, is also shown on Fig. 6. In particular, both
branching points are shown two separatrices enter and one exits from one of the
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Fig. 6

points, and two separatrices exit and one enters the other point (Fig. 6). Note that
the billiard trajectories on Tor2 with vertical links in family 2ί separate into
trajectories to the left and to the right of the hole and then merge. This accords
with the situation described.

In order to present the billiard trajectories with links of family 91 on the whole
manifold A we must cover up the hole in Tor2 with a disk and two handles. The
handles, as well as the interior of the disk, are free from billiard trajectories (the
two remaining triplets of separatrices are located on them).

The same topological situation takes place in the general case when examining
the billiard family with links in 9ί, on the cross-section of which two segments are
exchanged in any rational polygon. If the manifold A of genus g corresponds to
this polygon, then A can be represented as the union of Tor2 and the (g—1)
handles attached to the Tor2 on the disk. The billiard trajectory corresponding to
the interval exchange transformation indicated lies on (Tor2\dzsfc) and acts as in
Fig. 6.

3. Proof of Theorem 2. Corollary: Proof of Theorem 1 for «=3

As in Sect. 2, in the case of a triangle (n = 3) we will use the same construction: an
exchange transformation of two segments on the cross-section of the family of
parallel billiard trajectories.

3.1. Reducing the Billiard Flow to an Exchange Transformation of Two Segments

We will fix a right triangle with acute angle α. By reflecting it from the side
opposite angle α, we obtain an isosceles triangle ABC with angle π — 2α at vertex C.
After the reflection, a billiard trajectory in the right triangle will become a billiard
trajectory in the triangle ABC. Triangle ABC will be the basic one in what follows.
Vertex C will simply be the vertex and side AB will be the base.

Consider a family 9X of parallel segments, not parallel to the base, in triangle
ABC. Distinguish particularly the segment <j of the family, which passes through
vertex C (Fig. 7a -0 = CS). Assume that the point S, the endpoint of segment <? on
base AB, is located near the middle of AB. Trace any two billiard trajectories in the
triangle, the initial links of which a) belong to family 91, b) are "infinitely close" to
segment 0, and c) are located to the right and to the left of 0. We will call these
trajectories the right and the left, respectively.
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P S K M L

S K M L

Fig. 7a and b

Assume that after many reflections, some link / of the left trajectory is situated
to the right of segment o and parallel to it, and that some link / of the right
trajectory is situated to the left of 0 and also parallel to it. Then we can hope that
the bundle of segments of family $1 which is located between / and 0 (the left
bundle), will reflect from the sides of triangle ABC in the same way as the left
trajectory reflects, and that after some reflections it will turn into a bundle of
segments parallel to <?, located between some segment m(\\o) and segment /;
similarly, the bundle of parallel segments between 0 and / (the right bundle) will
turn into a bundle of parallel segments between / and m (Fig. 7 a). In this case,
segments PS and SL will be exchanged on the segment PL, which is located on the
base AB:PS^ML, SL-+PM.

To fulfil this hope, the following is necessary: In the billiard trajectory which
contains segment m. as a link, the link directly preceding m should exit from vertex
C into point M (i.e., the particle should reflect from side AC onto point C and
should fall into point M on AB. Thus, this billiard trajectory is degenerate).

Indeed, in our case, the left and right bundles moved independently to point C,
but after some reflections from the triangle's sides they went parallel to the mutual
link m, reflecting from the base AB immediately before that. This means that the
preceding links of these bundles' trajectories (directly before their reflection from
AB) were also parallel among themselves. However, one part of these preceding
links reflected from side BC and the other from side AC. From this it follows that
after reflecting from the lateral sides, the bundles went parallel to each other along
the mutual link CM, which lands in link m after reflecting from the base AB. In
other words, the left trajectory's evolution (if we continue it beyond link /) must
have the following form: o...Λ. .nφm (Fig. 7b). Here link n lands in link φ after it
reflects from side AC at vertex C, and segments 0 and φ are symmetric in the
segment CK.

3.2. Straightening the Trajectory

We will represent the desired trajectory in straightened form, using the known
procedure for straightening a billiard trajectory in an arbitrary polygon. A
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A ι q f A

P n S

straightened trajectory which satisfies the conditions of the previous section is
shown in Fig. 8.

In the process of straightening the billiard trajectory, there appear 45 triangles
obtained by reflections of triangle ABC from its sides. Number these triangles
0,1,...,44 (0 corresponds to triangle ABC). We will use a single letter with an
index to designate any point's image obtained by reflections of triangle ABC, the
index indicating the triangle's number. In particular, triangle ,4050C0 is triangle
ABC; all points without indices belong to triangle ABC. We will call points
C0 = C, C 1 ? . . ., C44 the vertices of the reflected triangles.

The straightened trajectory connects vertices of the 0th and the 43rd triangles
(points C0 and C43) and intersects the base of triangle No. 32 at point L32, the base
of triangle No. 0 at point 50 = S, and the base of triangle No. 44 at point M44. The
"corridor" between the parallel segments S0L32 and P0M32 (the latter passing
through vertex C3 1; triangle A31B31C31 is upside down and side A31B31 is
horizontal) shows the mapping of the bundle of parallel segments between links /
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and ό from Fig. 7 a into a bundle of parallel segments between links m and /.
Analogously, the corridor between segments L32M44 and S32P44 (the latter
passing through vertex C32) shows the mapping of the bundle of segments between
links 4 and / into a bundle of segments between links / and m.

To prove that this construction can be realized, we must check that the
corridor indicated intersects precisely the sides of the triangle as shown in Fig. 8
for instance, vertex Bl lies to the right of the corridor, vertex C6 to the left, and*so
on. To do this, we must make complicated computations (we omit them here),
showing that with a sufficiently small α, such geometric correlations do take place.
The idea of these computations can be understood from the computations of
certain vertex coordinates, as follows.

3.3. Linear Transformations of Rhombuses

We shall prove that the ratio of lengths of the transmuted segments PS and SL is
irrational. We shall calculate the coordinates of the points we are interested in. We
will place the origin of coordinates in the middle K of segment AB, direct axis OX
along the beam KB, and axis OY perpendicular to the axis OX along the beam KC.

Instead of considering triangles {A^ CJ, we will paste them in pairs and
consider the rhombuses obtained. We will designate the rhombus obtained by
pasting triangles with numbers fe and fc+1, fc^l, as Qk>k+1. Moreover, we will
reflect triangle No. 0 from the base AB and designate the rhombus obtained as

β-ι,o
In order to find the coordinates of the vertices in a triangle we will define an

affine transformation of the plane that transforms rhombus Q_1 0 into the
rhombus we are interested in. We will construct the affine transformation as a
composition of elementary transformations L and R :

L = Rφ

A is the rotation of the plane around vertex A counter-clockwise by angle
φ = 2α, equal to the angle at the rhombus vertex (the transformation L turns
rhombus Q _ t 0 into rhombus Q1 2);

R = Rρφ is the rotation of the plane around vertex B clockwise by angle φ = 2a.
Moreover, denote parallel transport along vector x by Tx. Assume the length

of segment AB is one. We will write the result of applying any transformation j/ to
the argument ξ as ξjf \ ξ^^ means (ξ^ί)Sί.

Any rhombus Qkk+l can be obtained from the rhombus β_ 1 0 by a sequence
of transformations L and R. Construct this sequence as follows : Move along the
chain of rhombuses from rhombus Qkk+l to rhombus Q_ί 0, and for every pair of
neighboring rhombuses in this chain write the letter L or R depending on whether the
rhombuses have a mutual left vertex (i.e., vertex Ar, r being an index), or a mutual
right vertex (i.e., vertex Br). For instance (Fig. 8),

= β - 1 0LRRLLRRLLLRRRRLLLLRRRL
43, 44

= _ 1 0
LR

2
L
2
R
2
L
3
R
4
L
4
R
3
L . (6)

We will need Formula (6) further on.
^ In order to prove the assertion, denote the transformation turning rhombus

β*,*+ι into rhombus βm > m + 1 by ̂ m (in particular, β-1|(X-ι,m = βm,m+ι). We



Billiard Trajectories in Polygons 199

want to represent transformation j/_ 1 m as a composition of transformations R
and L. First, we find the connection between the transformations jtfmm+2

 and

^-i,mTransformation j/m m + 2 turns rhombus βm > m + 1 into rhombus βw + 1 > m + 2 This
mapping can be represented thus: first turn rhombus Qm m+1 into rhombus Q_ 1 0

by the transformation stf~\>w, then make an L or R rotation of rhombus β _ l j 0

(depending on which rotation, left or right, turns rhombus Qm m +1 into Qm +1 ? m+2),
and then turn rhombus Q_ 1 > 0 into βm>m + x by the transformation j/_ 1 m the new
rhombus will be Qm + 1 m + 2. Thus,

^m,m+2=^-ί,m L ^-l.m
\ K /m,m+2

From this, the recurrence relation

/ m, m + 2

follows, and from the latter we find that for any r

since j/_ 1 x is the identity transformation.
Thus, the assertion stated has been proved : The chain of transformation L and

R should be written as described above. >

3.4. Calculations

In order to compute the compositions of the rotations L and R obtained, use the
identities

τaf, (7)

where

\β = (l- cosβ, sin/?), uβ = ( - 1 + cosβ, sinβ) . (8)

For an arbitrary point H of the plane and a vector x,

RβHTx = TxR-βR
β

H, TxR£ = R^TxΛ0, (9)

where Rβ is the rotation of linear two-dimensional space IR2 by angle β. Note that
the transformations L and R introduced are just the transformations Rφ

A and R^φ :

L = Rφ

A,R = RB

φ.

Simplify formula (6) with the help of identities (7) and (9) :

LR2L2R2L3R4L4R3L - L(R2L2) (R2L2) L(R4L4) R2(RL)
= kTU2<pTU29>LTU49>R =LLT(2u2<pjRΦ + U4(p)R Tu<^
_ T li^l-T1 _ -y

-̂  Λ L(2u2φR
(P + n4φ}R~2φ + ̂ φ

 1(\2φ + 2u2φR-φ+U4φR-2φ + uφ)'

(10)
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Thus, transformation (10), which turns Q _ l f 0 into Q^Λ4 and hence vertex
C_ 1 into vertex C43, is a parallel transfer along the vector (Fig. 8)

(H)

From this we see that
* / n \

(12)

We will further assume that the angle φ is small and we will make a Taylor
series expansion about the point φ = 0 for all the functions with argument φ. Each
time it will be sufficient for the proof to consider only the first several terms and to
bound the remaining ones by 0(φn) with an appropriate n.

For further calculation we will need the vectors \φ, uφ in coordinate form and
the linear transformations Rφ, R~φ in matrix form.

1 03 _|_ O((o5}} 1

(13)

nφ cosφ / φ-^φ3 + 0(φ5), 1- \ φ2 + ̂ 4 φ4 + 0(φ6),

R-φ=

cosφ \ -φ + ±φ3 + 0(φ5), 1 - ±φ2 + ̂  φ4 + O(φ6\

(14)

Now we change the right hand side of (12) with the help of formulas (13) and (14),
writing the first three summands separately.

- 2φ _U Λ ,nl\ —

= (- φ4 + 0(φ6), 4φ - f φ3 + 0(φ5))

2φ2 + jφ4 + 0(φ6), 2φ - j φ3 + O(φ5)

+ 0(φ5)).
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In coordinate form, Formula (12) is rewritten thus:

C^ι=(ϊ<P2 + l%94 + 0(φ6l^φ + %φ3 + 0(φ5)). (15)

Now write the transformation that turns rhombus Q_1 0 into rhombus Q31 32,
using the assertion of Sect. 3.3 and also formulas (7) and (9):

631,32 = Q- 1 0
RLLLRRRRLLLLRRRL

= β _ ! , 0RL3R4L4R3L = Q_, 0(RL) L2(R4L4) R2(RL)
= 8-ι,oTUφL TU4φR Tu<p = β_1 > 0T2 l l 2 < p + l l 4 < p j R-2 < p + V 2 < p . (16)

Thus, rhombus β3 1 > 3 2 is a copy of rhombus 2 _ 1 > 0 > under parallel transport
along vector ζ = B0B32 (since vertices J50 and E32 coincide after this transfer).
From (16), we see that

ξ = B^2 = 2u2φ + u4φR~2« + v2φ. (17)

Now calculate the coordinates of the vector ξ, using the formulas obtained for the
summands on the right side of (17)

(2φ - i φ3) + (4φ + f </>3) + (2φ - f φ3) + O(φ5)) (18)

We want to find the ratio of the lengths of segments PS and SL, or
equivalently, 1^32^3 2 1/1^3 2^3 2 1> an<3 to examine when this ratio is irrational. To do
this, find the lengths of the vectors £32L32, K32L32, M32L32, and S32L32 in
sequence, and then the lengths of the segments needed.

First calculate the coordinates of the vector C0L32. Denote the second
coordinate of vector a by (a)y. Then

). (19)

Now find the first of the vectors we need, B32L32 :

- £32^0 + ̂ 0^0 + ̂ 0^32 ~ ~~
2

+ C0L32

o) (20)
As expected, vector £32L32 proved to be horizontal. To define vector L32M32

draw a straight line through vertex C30 parallel to vector C0L32 and find the
intersection of this line with the straight line ^432£32. This will be the point M32.
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Let D be the intersection of the straight line C0C43 with the horizontal line passing
through vertex C3 0; then DC30 = L32M32. On the other hand, DC30 = C0C30

— C0D, so it remains to define vectors C0C3Q and CQD in order to find vector

- ΐ tan^i

_ι
2

= (φ2 + T <P4 + 0(Ψ6), ¥ φ ~ ff <P3 + 0(φ5)). (21)

Vector C00 is proportional to vector C0L3\ with coefficient given by

i.e.,

--λ C0C32 = λ (^φ2 + 1^φ4 + 0(φ6),^φ-^φ3 + 0(φ5))

=(τf<P2 + f2oiφ4+θ(φ6), Jf<?'-ffφ3 + θ(<p5))- (22)

Fig. 9
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Finally, we obtain

^^2-^-C^-^^(-^φ2 + ̂ ^φ4 + 0(φ6),0). (23)

Vector L32M32 is also horizontal, as it should be.
Now we can calculate the tenths of the vectors we are interested in: £32L32,

L32M32, K32M32, and S32M32. From formulas (20) and (23) and from Fig. 9, it
follows that

Finally, calculate the ratio

|P32S32|/|S32L32| =

(24)

3.5. 77ιe End of Proof of Theorem 2

It remains to prove that the ratio (25) is irrational for almost all φ in some interval
(0, φ0). Note that the function 4(φ) on the right side of (25) is continuously
differentiable and non-constant, from which the assertion of Theorem 2
follows. Π

4. Proof of Theorem 3

It follows from the proof of Theorem 2 that when the ratio of the lengths of
segments PS and SL is irrational, any trajectory, the first link of which is parallel
to segment 0 and which lies between segments / and 0, will fill a set everywhere
densely in the isosceles triangle ABC furthermore, in the straightened form this
set fills two corridors, as-shown in Fig. 8, these being the corridor between the
parallel segments S0L32 and P0M32, and the corridor between the parallel
segments L32M44 and S32P44. In every triangle AίBiCί these corridors will cut out
one quadrilateral - a trapezoid, the lateral sides of which lie on the base and on a
lateral side of the triangle Aβ^^

By returning triangles ^^C to the original triangle ABC (i.e., by making
reverse reflections from the corresponding sides of the triangles), we obtain region
(5 (a non-convex polygon) in the original triangle ABC, which is the union of 44
such trapezoids (region (δ is roughly depicted in Fig. 10; it is not precise). Note
that the number of sides of polygon © can be different for different values of the
angle φ.
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Fig. 10

It is easy to see that there exists a number * > 0, such that circular sectors of
radius 4 with centers at the points A and B (^-neighborhoods of points A and B) do
not intersect the points of polygon ©. Thus there is a billiard trajectory, the first
link of which is parallel to segment o and belongs to polygon ©, which fills
polygon (δ everywhere densely, and never falls into a ^-neighborhood of vertices A
and B.

Finally, by making a last reflection of the left half of triangle ABC in the
segment CK, we obtain the right triangle we began with containing a polygonal
region ©' that is everywhere densely filled by a billiard trajectory, which avoids the
^-neighborhood of the vertex with angle α. ©' is a union of trapezoids, the lateral
sides of which lie on a cathetus and on the hypotenuse. These trapezoids cut out a
finite number of non-intersecting segments κ1 ?κ2, ...9κN on the hypotenuse.

Consider now the configuration space of the mechanical system of two point
particles with masses m and km on the interval [0,1] - that is, the right triangle
with angle α, tana = k (without loss of generality, we assume fc<l).

By virtue of Theorem 2, for almost all α in some interval (0, α0), and hence for
almost all k in some interval (0, fc0), the configuration trajectory fills polygon ©'
everywhere densely and, in particular, the configuration point fills the union of the
segments κί9...,κN everywhere densely on the triangle's hypotenuse.

Any point on the segment κi corresponds to a point where our particles collide
with each other, which belongs to some segment <5. C [0,1]. Hence, the set of points
where the particles collide is an everywhere dense set of points on δ1 u<52 u ... uc)N

this is a union of a finite number of segments on [0,1]. Therefore Theorem 3 is
proved. Π

5. Proof of Theorem 4

The polyhedron whose existence is asserted in Theorem 4 is a prism - the direct
product of segment [0,f], (the vertical generator of the prism) and the convex
π-agon from Theorem 1. When moving in the n-agon as described in the proofs of
Theorems 1 and 2, a "flat" billiard trajectory fills some region © in the n-agon
everywhere densely. Here region © does not coincide with the whole rc-agon. It is
asserted that a vertical component v along the prism's generator can be added to
the velocity vector of this particle (the modulus of which is one), such that the new
"three-dimensional" billiard trajectory will fill everywhere densely a three-
dimensional region in the prism, which does not coincide with the whole prism.

In order to prove this assertion, first trace the flat trajectory. Consider those
trajectories from the bundle in Fig. 3 (or Fig. 7a), whose initial points belong to the
segment [0, α] of family 21's cross-section [0,1] (or to segment PS on triangle
ABCs base AB). We know from the proof of Theorem 1 that segment [0, d\ turns
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into segment [1 — a, 1] under the action of the "billiard system." It is easy to see
that the same time is required for every point of segment [0, α] to reach segment
[1 — a, 1]. Denote this time by Tr Analogously, all points of segment [α, 1] reach
segment [0, 1 — a] in time T2.

Now trace the trajectory of the three-dimensional particle in the prism. First,
symmetrically reflect the prism from its upper base we obtain a new prism, the
generator of which is twice as large - it is / = [0, 1]. In this prism, the particle
moves with a vertical component of velocity v , and after reaching the upper base, it
skips vertically downwards onto the lower base.

Consider the particle's intersections with the square

which is orthogonal to the prism's base (the square lies in the prism's vertical
cross-section). Then at time Tt point (x,y)£Π will have travelled to the point

Here a is the length of the segment [0, a] C [0, 1]. Note that by choosing the billiard
trajectory, a can be irrational rewrite a = Θ.

Consider an arbitrary point (x,y)EΠ and its subsequent images under the
indicated transformation. If the set of these images fills the square Π everywhere
densely, then the billiard trajectory fills everywhere densely the three-dimensional
region © x /, which does not coincide with the whole prism. We must define the
conditions under which Π will be filled everywhere densely by images of the point
(x, y). In the following lemma we give the criterion for an everywhere dense filling
of square Π by these images.

Lemma. Let Θ be a positive, irrational number less than 1, T± and T2 be arbitrary
positive numbers, and x0, y0 e [0, 1]. Define the two sequences (xn) and (yn), n = 0, 1, . . .
by the following recurrent relations:

(a) xn = {x0 + Θn}, where {•} is the fractional part of a number,

if xn^ + Θ^l,
(b) v =

* if

We assert that the set of points (xM,j>π)e[0, Ή x Ά 1] =# fills Π everywhere
densely if, and only if

i) the number γ = v(T2 + (T1 — T2)Θ) is irrational, and
ii) the numbers 1, Θ, y are rationally independent (i.e., nl l + π2 0 + n 3 y φ O

with any integers n1,n2,n?>).

Proof of Lemma. Define ocί =(ί>T1)modl, α2=(^T2)modl. Then on the two-
dimensional torus Tor2 = 5* x S1, obtained by identifying the opposite sides of
square Π, relations (a) and (b) give the following transformation P:

where χ[0 Θ](x) is the indicator of segment [0, Θ~\. Define



206 G. A. Galperin

Then

P(x,y) = (x + Θ,y + g(x)), (26)

i.e., P is a skew shift on torus Tor2 (see [5]). Let C be another skew shift on this
torus :

C(x9y) = (x9y + φ(x))9 (27)

where φ(x) is some function on the circle S1.
Consider the transformation R = CPC~1. Write it explicitly:

Thus,

R(x, y) = (x + Θ,y + g(x) + φ(x + 0) - φ(x)) . (28)

Define γ = a2 + (a1 — oί2)Θ. Assume that the transformation C is such that

(29)

i.e., R is a shift on the torus Tor2. Then it follows from the equalities Rk = CPkC~ \
RkC = CPk that for any point z = (x9y),

C(Pkz) = Rk(Cz)9

and the trajectory {Pfcz}£°=0 of the point z coincides with the trajectory
{Rk(Cz)}?=Q "shifted" with the help of C"1 :

From this it follows that the trajectory {Pkz}™=0 is everywhere dense on the
torus if, and only if, the trajectory [Rkz}™=G is everywhere dense on the torus, and
the latter holds by virtue of (29) when lemma conditions (i) and (ii) hold.

Thus, it remains to reduce expression (28) to the form of (29) in other words,
we must solve the following equation :

g(x) + φ(x + 0) - φ(x) = y .

By substituting g(x) in the left side, we obtain

(30)

We define f(x) = (u2 — α 1)~ 1 φ(x). In the theory of skew shifts, Eq. (30) is a
homologous equation.

It is easy to see that the function

f ( χ ) = - { χ - Θ } 9
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where { } is the fractional part of a number, is the solution of Eq. (30). It can be
obtained by expanding both sides of Eq. (30) into a Fourier series and comparing
the corresponding Fourier coefficients.

This proves the lemma and also Theorem 4. Π

6. Proof of Theorem 5

Since the trajectory Γ fills region Ω everywhere densely, it is sufficient to prove that
in an arbitrary ε-neighborhood of a point geΓ, the set of periodic points is
everywhere dense, and the periodic trajectories passing through these points are at
an angle <ε to Γ.

Trajectory Γ is a special one (see the construction in the proofs of Theorems 1
and 2). Its first link belongs to that family 21 of parallel segments, whose cross-
section [0,1] undergoes an exchange transformation / of the two segments [0, a]
and [α, 1], i.e., Vxe [0,1] f(x) = (x + b) mod 1, where b = 1 — a, or in another form,
f(x) = (x — α)modl, where the number a is irrational. We will denote the £th

exchange transformation image of some object x (a point, a segment, etc.) by f\x)
if 4 ̂ 0, and the £th preimage of x if t <0, also by /*(x).

Consider the preimages f~*(a) of the point a on segment [0,1], /f = 0,1,.... It is
obvious that f~*(a) = {(£+l)a}, where {•} is the fractional part of a number. All
these preimages are different for different I and they fill the segment [0,1]
everywhere densely when /->oo.

If & runs through only a finite set of values 0,1,2, ...,n — 1, the numbers
{(/+l)α) divide [0,1] into n+1 non-intersecting (except for their endpoints)
segments which we will designate as [0, αj, [α1? α2],..., [αn_ 1? αj, [αn, 1].
Consider only those values of n for which the the leftmost segment is [0, {na}~\, and
such that {na} is less than the length of any of the remaining n segments (we
consider an n for which point α, bouncing rightwards, jumps over point 1 and
turns out to be near the left endpoint 0 of segment [0,1]). We prove that the set of
such n's is infinite.

Indeed, decompose the number a into a continued fraction and let pjqϋ,
4 = 1,2,..., be convergents of the continued fraction (pjq^a when 4->oo). It is
known from the theory of continued fractions (see [6]) that convergents are the
best approximations to the number α; a — pJq<ί<Q when 0 is odd and a — pJq<J>Q
when 6 is even. From this it follows that the numbers {aqό} = {aq^ — p^} and {aq<)+^}
= {aq<)+1—p<}+1}, which are interpreted as points on the circle S1, obtained by
pasting together the endpoints 0 and 1 of segment [0,1], lie on different sides of the
point 0 and that one of the arcs (0, {aqj) and (0, {aqϋ+1}) has minimal length
among the remaining arcs into which the circumference is divided. If, for instance,
point {aqύ+i} is closer to 0 than point {aqϋ}, replacing 0 by 4 +1, we obtain (from
the theory of continued fractions) that point {aq<ί + 2} is closer to 0 than point
{<z#d+1} (and the distance from {aqϋ + 2} to 0 will be less than the lengths of all
newly created arcs on S1). Therefore, by taking the denominators of the
convergents of the number a as n, we will obtain the required assertion for an
infinite subset of this set.
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Choose any n from the set indicated. Choose an arbitrary point β on an
arbitrary segment of the partition [α/? α ί+ 1], such that β is at least the distance {no}
from the segment's right endpoint, and consider the segment

Denote this segment by A (β).
Let us see what happens to Δ.(β) under the iterations of the exchange

transformation /. It is easy to see that by our choice of n, segment fk(Δi(β)} is of
length {no} for all/, 1 rg £ ̂  n, and lies fully within one of the segments [α^Oy+J of
the partition. Since the endpoints of the partition's segments are preimages of the
point α, we find that none of the preimages of point α, including the nth one, belong
to the segment /fc(zl .(/?)). The last segment

/" W)) = Un(β] fn(β + {no}}] = Un(β) β]
adjoins the segment A (β) at its right endpoint.

Now consider all the trajectories of family 91 leaving segment A (β) and
straighten them out in accordance with the procedure for straightening billiard
trajectories. As a result, we obtain a bundle of parallel trajectories reflecting from
the same sides of polygon g, including the nih iteration of segment A.(β). Indeed, by
virtue of the above reasoning, this bundle cannot pass through any polygon vertex
in the number of reflections mentioned.

Figure 11 shows how the straightened bundle, which intersects the sides of
polygon Q from which it reflects, transfers segment Δ^β) on one cross-section of
family 21 into segment /"(zl .(/?)), which lies on another cross-section of family 91. A
parallelogram with bases Δ.(β) and fn(Δ.(β)) forms as a result of the straightening;
the lateral sides of the parallelogram are parallel to the straightened trajectory Γ.
It is easy to see that the diagonal of this parallelogram which connects points β

(1) is a straightened periodic trajectory in Q,
and

(2) reflects from the same sides of Q as the bundle.
It is clear that when rc— »oo the set of points β will fill segment [0, 1] everywhere

densely, the lengths of the segments will tend to zero, and the angle between the
base of the parallelogram considered and its diagonal will also tend to zero (since
the angle between the straightened trajectory and the cross-section of family 21 is

Fig. 11
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fixed and when «-»oo the parallelogram stretches along Γ and shrinks along the
cross-section of 51).

Hence, the periodic trajectory can differ by as little as desired from the
trajectory Γ and thus region Ω contains an everywhere dense set of periodic points

D

7. Remarks and Hypotheses

1. From the proofs of Theorems 1 and 2 we can see that in some convex polygon a
non-periodic and not everywhere dense billiard trajectory can be constructed
according to any aperiodic exchange transformation of two segments. Can an
analogous billiard trajectory be constructed in some convex polygon according to
some given aperiodic exchange transformation of three or more segments!

It turns out that we can construct a convex polygon with such a trajectory
according to any aperiodic exchange transformation of n ̂  3 segments. We will not
submit the proof here, due to the awkwardness of the exact construction we shall
instead argue plausibly using mirrors and rays of light. These arguments can be
made conclusive.

Place horizontally the segment [0,1], divided into the n segments. Emit
upwards a beam of parallel light rays and regard it as a union of n beams from
each segment. After a complex motion of these n beams in the polygon, which we
will describe, they return parallel to each other onto the segment [0,1] from below,
transformed in accordance with the given permutation. This can be visualized in
the following way:

First, n rising beams (i.e., the whole beam) reflect from a hyperbolic concave
mirror of small curvature and then separate (the mirror will later be replaced by
neighboring flat mirrors). At a sufficiently large distance from the separation point
we can place n flat mirrors which effect the given permutation π after that, with
the help of another n mirror, transfer the beams onto a hyperbolic concave mirror
placed below segment [0,1] (also to be replaced by flat mirrors). The lower mirror
unites all n beams into one parallel beam which lands on segment [0,1] from
below. Then, the required polygon is completed with the mirrors. All these mirrors
can be set in such a way that the polygon obtained will be convex.

If the polygon appears to be rational (which can be achieved by small shifts),
then the billiard trajectories, when dislocated on the manifold constructed
according to the polygon (on a sphere with a large number of handles), will
everywhere densely fill a submanifold & with an edge, as described below.

Consider a rectangle, the upper base of which is divided into n oriented
segments 1,2,..., n and the lower base divided into n segments similarly oriented:
π(l), π(2),..., π(n). From every segment i emit a rectangular strip ("ribbon")
obtained by the movement of segment i till it reaches segment π(i) (see the remark
at the end of Sect. 2). Doing this, we obtain a two-dimensional oriented surface
with a certain number of holes cut out of it. The billiard trajectory fills this surface
everywhere densely. It flows past the holes as shown in Fig. 6, right. The remaining
part of the manifold is free of this trajectory.



210 G. A. Galperin

2. It seems that in an n-dimensional simplex <(χ15 ...,xπ) :0^x f^

which is the configuration space of a dynamical system of n particles

with masses mί9m2,...,mn on the segment [0,1], with elastic reflections, as in a
right triangle, there exists a non-periodic and not everywhere dense billiard
trajectory. (I do not known the proof.)

3. If the previous assertion is true, then for some initial conditions, the points
of the particle collisions fill everywhere densely the union of a finite number of
non-intersecting segments on [0,1], apparently as in the case of two particles.
Generally speaking, this assertion is not an automatic corollary from the assertion
of the previous section, since the fact that a trajectory is everywhere dense in some
region © does not mean that the points of this trajectory's reflection from the
boundary 3© fill 3© everywhere densely. (See the hexagon example in the proof of
Theorem 1.)

4. We can pose the following questions in connection with the construction
described in the proof of the lemma in Sect. 5. Consider the following dynamical
system on the torus Tor2 = S1 x S1 pasted from the square [0, 1] x [0, 1] : n vertical
flows advance along the vertical layer of [0, 1] with different velocities ?>1? ...,^π;
and the base S1 revolves by an irrational angle Θ (in the lemma of Sect. 5 there
were two flows the dividing line was x = Θ). How does an arbitrary point behave
under this transformation ? What is the criterion for the images of this point to be
everywhere dense on Tor2?

5. Note that the prism constructed in the proof of Theorem 4 can be
considered as the configuration space of the following dynamical system :

Consider two 2-dimensional elastic balls (disks) of small diameter D with
masses mί and w2, located at the same vertical height at an initial time in the
square [0, 1] x [0, 1] with elastic walls. Let the initial velocities of these balls be V1

and V 2, = v2 (Fig. 12a).
It is easy to see that at each moment of time the balls will be at the same height

the vertical components of their velocities will be the same and will equal either v
or ( — v) the horizontal components will be redistributed according to the laws of
an elastic collision when the balls collide the horizontal components will change
signs when the balls reflect from the side walls. Thus, our dynamical system is a
direct product of two independent systems and its configuration space is a direct
product of the corresponding configuration spaces : a right triangle and a segment,
i.e., a three-dimensional prism. [Generally speaking, the configuration space of

Fig. 12a and b

ΓV
1
1 t

1 ^j

i 1
I

^
Li

rr — φ

1~I1

l_l_

ίl1
1
1* 't

1 ?
'*. ϊ
\ *

UL
α) b)



Billiard Trajectories in Polygons 211

two balls in a square is a four-dimensional manifold, the intersection of the interior
of a four-dimensional cube and the complement of the cylinder (xί — x2)

2

+ (y1—y2)
2^D2 in IR4 (see [7, Part II] for details). However, in the given case the

configuration point moves only in the three-dimensional cross-section of the four-
dimensional manifold - the prism indicated.]

From the results of Theorems 3 and 4 we promptly obtain the following

Assertion. For almost allk= — in some interval (0, fe0) in the described mechanical
m2

system of elastic balls in a square, and for some initial state of the balls (the
positions and velocities v , v ̂  v 2), the set of points where the balls collide is
everywhere dense in the union of a finite number of non-intersecting rectangles
(Fig. 12b).

6. It seems that Theorem 5 of Sect. 6 can be made stronger. Call a point (q, v)
of phase space M= Q x S1 periodic if a periodic trajectory passes through it in Jί.

Hypothesis 1. The set of periodic points is everywhere dense in some region Ω of M.

It is natural to generalize Hypothesis 1 to the following :

Hypothesis 2. For any polygon Q the set of periodic trajectories is everywhere dense
in the whole phase space Jί.

7. Do there exist polygons in which any billiard trajectory is either periodic or
everywhere dense (i.e., no trajectories considered in this paper)? It seems to me the
following hypotheses deal with that question.

Hypothesis 3. For any n^3 there exists a convex n-agon in which any non-periodic
trajectory of a particle is everywhere dense.

This hypothesis can be reinforced.

Hypothesis 4. For any ε > 0 and any convex n-agon Qn there exists a convex n-agon
Q*9 the angles of which differ from the corresponding angles of polygon Qn by less
than ε, and in which all non-periodic trajectories are everywhere dense.
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