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Wannier Functions

G. Nenciu*

Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna SU-141980, USSR

Abstract. A partial answer (Theorem 1 below) to a problem concerning
analytic and periodic families of projections in Hubert spaces is given. As a
consequence the existence of exponentially localised Wannier functions corre-
sponding to nondegenerated bands of arbitrary three-dimensional crystals is
proved.

1. Statement of the Problem and the Result

The present note is motivated by one of the few basic questions of the quantum
theory of periodic solids in the one-electron approximation which is not completely
solved: the existence of exponentially localised Wannier functions [1, 2]. We shall
consider only nondegenerated bands and neglect the spin (for the results obtained
so far for degenerated bands, we refer to [3-5]). The Wannier functions falling off
exponentially at infinity for arbitrary rc-dimensional crystals. The proof is based on
dimensional crystals [4 ,6] ; ii) rc-dimensional crystals {n>l) with a center of
inversion [4] ; iii) arbitrary crystals (i.e. with or without a centre of inversion) in
the tight binding limit [4]*.

The result of this note is the existence of Wannier functions falling off
exponentially at infinit for arbitrary rc-dimensional crystals. The proof is based on
a partial answer (Theorem 1 below) to the following problem concerning analytic
families of projections in Hubert spaces.

Problem P. Let Jf be a separable Hubert space, q be a positive integer, J\ = {zq

= (z1,...,zq)e€q\\lmzi\<a, a>0} and Q(zq): J f -»J f be a projection-valued func-

* Permanent address: Central Institute of Physics, P.O. Box MG 6, Bucharest, Romania
1 There is a widespread opinion (see e.g. [2]) that the existence of exponentially localised Wannier
functions has been proved for arbitrary ^-dimensional crystals by Blount [7]. Unfortunately, this is not
true since by his argument Blount proved only analyticity (as functions of the crystal momentum) of the
Bloch functions, while for the exponential falling off the Wannier functions analyticity and periodicity
of the Bloch functions is nedeed
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tion, analytic in J\ and satisfying:

(1.1)

(1.2)

Find a bounded, with bounded inverse, operator-valued function Λ(zq)\ JΓ
analytic in J>q

a and satisfying

(1.3)

(1.4)

A(zq) β(0) = A(zq + 2πp«) β(0), z«e ./«, p«e Z«. (1.5)

Without the periodicity conditions (1.2), (1.5) the Problem P has been
thoroughly investigated in connection with perturbation theory [8, 9], asymptotic
theory of differential equations [10,11], etc., and it is fully solved. For q = l
Problem P has been solved in [5] (see also [12] for finite dimensional Jf). For
q> 1, except for the case \\Q(zq) — Q(0)\\ < 1, where a solution of Problem P can be
constructed using the Sz-Nagy lemma on unitary equivalence of projections in
Hubert spaces (see e.g. [8, Chap. Π.4]), we are not aware of any other results, and
in fact it seems that in general Problem P does not admit solutions [13]. The result
in Theorem 1 below gives another sufficient condition for the solutions of Problem
P to exist.

Theorem 1. Under the conditions of Problem P, suppose

i) dimβ(z«) = l . (1.6)
ii) There exists an antίlinear involution θ: J f —> Jf such that

(1.7)

Then A(zq) satisfying the requirements of Problem P exists.

In the rest of this section, relying on Theorem 1, we shall outline the proof of
the existence of exponentially localised Wannier functions (see also [2, 3, 5]). The
Wannier functions, ω^x), are defined by (see e.g. [2, Sect. 5.1])

ωΠ(x) = const j> Π > k (x)Λ, (1.8)
B

where B is the Brillouin zone and ψn k(x) = exp(/k x) Un k(x) are the Bloch
functions of the considered band, n. The definition is not unique since ψn^k are
defined by the eigenvalue problem only up to a k dependent phase factor.
Rewriting (1.8) as

ωn(x) = const j exp(/Rx k) exp(/ρx k) Unk(x)dk, x = ρx + Rx, where ρx belongs to the
B

unit cell and Rx is a vector of the direct lattice, the Paley-Wiener theorem implies
[4] that the existence of exponentially localised Wannier functions is equivalent to
the existence of Bloch functions ψnk for which vn k(x) = exp(fρx k) Un k(x) is
analytic and periodic in k.
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Let βπ(k) be the orthogonal projection in L2 (unit cell) corresponding to vnk

[note that in βn(k) the arbitrary phase factor cancels out]. We claim that Qn(k) is
the restriction to B of a projection-valued function satisfying the requirements of
Theorem 1. The analyticity follows from the fact that unk can be chosen to be
analytic by k —p perturbation theory [7, 9]. The periodicity follows from the fact
that ψn k and then vnk are periodic in k up to a phase factor. If θ is the involution
representing the complex conjugation (i.e. time reversal in a theory in which spin is
neglected), then θψn k equals ψn _k [14] up to a phase factor, wherefrom (1.7)
follows. Finally dimβπ(k) — 1 from the nondegeneracy of the considered band. Let
now the phase factor for υn 0 be fixed and ϋn k = A(k)vnt0, where A(k) is given by
Theorem 1 applied to βπ(k). Clearly vnk is analytic and periodic in k.

2. Proof of Theorem 1

We shall construct Aft), z'eC', ί=l,...,q analytic in </[, unitary for z'eIR/ and
satisfying

Aft) Qψ- \ 0) AT V ) = Q(z\ 0), 4(0) = 1, (2.1)

Aft) β(zf- \ 0) = Ai(zi + 2π$ί) β(z'" \ 0), tfeΈ. (2.2)

Clearly

A(z*)= Γ K ^ z * - ' ) (2.3)
i = 0

satisfies all the requirements of the theorem. We shall give in detail the
construction of Aq(zq\ the construction of Aft), i=l,...,q—l being similar.

Let Aq(zq) be the solution of

i -^ Aq(z«) = ί((l- 2Q(z«)) j - β(z^)j λq{z% Aq(z« " 1 , 0 ) = l . (2.4)

Then [8, Chap. 2.4; 9, Chap. XII.2; 11], Aq(zq) is analytic in J% unitary for Z^GIR^,
satisfies (2.1), (2.2) with respect to zq~ι but not (2.2) with respect zq. Consider

T(zq-ί) = Aq(zq-\π)A;1(zq-\ -π) . (2.5)

Clearly Ύ{zq~γ) is analytic invertible and periodic in Jq~x. Supposing that T{zq~x)
has a logarithm analytic and periodic in J*q

a~
ι [i.e. T(z ί " 1 ) = exp(2πίM(z^~1),

M(zq~1) analytic and periodic in .Z^" 1 ] , then the arguments in [5] show that
Qxp(ίzqM(zq~ x))^g(zg) satisfies all the requirements for Aq(zq) with (2.2) replaced by
the following (stronger) condition:

zxφzqM(zq-'))λq(zq) = oxp(i(zq + 2πVq)M{zq~γ + 2πp«" '))Aq{zq + 2πp«). (2.6)

Unfortunately, we have been unable to prove that T(zq~1) admits an analytic and
periodic logarithm [in fact for zq~1φW~1, we do not know, if T(zq~1) admits a
logarithm at all], and therefore we shall follow a slightly different route, suggested
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by the fact that the weaker condition (2.2) instead of (2.6) is required. Due (1.2) and
to the fact that Aq(zq) satisfies (2.1), we have

i.e.for/1eβ(zβ-1,π)Jf,

Tφ-^f^λφ-1)/^ (2.7)

where [recall that dimβ(zg) = l ] λ(zq~1) is a complex-valued function. We shall
prove [and it is just the point where (1.7) is used] that there exists a unique
function φ{zq~λ) analytic and periodic in Jl'1, real for τq~1eW~ι, φ(0)e[0,1)
such that

λ(zq~x) = Qxp(2πίφ(zq~*)). (2.8)

Taking this for granted it is easy to finish the proof of Theorem 1 with

Aq(z") = exp( - izqφ(x" ~ 'U^x"). (2.9)

Indeed all the required properties except for the periodicity in zq are obvious. Since
Aq(zq) as defined by (2.9) satisfies a differential equation with periodic coefficients,
the only thing we have to verify is that

Λq(zq-\ -π)Q(zq-\0) = Λq(zq-\π)Q(zq-\0). (2.10)

Now (2.10) can be verified as follows using (1.2), (2.2), (2.5), [T(z«"1), β(z« ~ *, π)] = 0,
(2.7) and (2.8),

Λq(zq~\ -π)Q(zq~ \0) = exp(iπφ(zq-1))T- V ~ X)Aq{zq- \ π)

• Q(zq~ \ 0) = exp(ίπφ(zq- 1 ))T" \zq~ γ)Q{zq~ \ n)Aq{zq~ \ π)

= Aq(zq-\π)Q(zq-\0).

Let us return to (2.8). The invertibility of T{zq~ι) implies ^ " ^ φ O for
zq~1eJq

a~\ Let 0=/eβ(0,π). There exists a neighbourhoods of 0 in (C3"1 such
that (/ Q(zq~ \ π)f) + 0. Then

λ(zq~') = (/ Q(zq~ \ π)f)- \f, Q!dq- \ π)T(zq~')f),

and hence λ(zq~x) is analytic inX. By an analytic continuation argument λ(zq~ι) is
analytic in J>q~x. Hence (2.8) holds true with φ{zq~x) analytic in J>q~1. The reality
of φ{zq'1) for τq~ιeWx follows from the unitarity of Ύ(zq~ ι\ The periodicity of

i/ a-u u o dλ dφ dφ
λ(zq ) is obvious. Since — =ιλ—, — are periodic, and hence

dze dze dze

φ(zq-1) = ψ(zq-1)+qΣ Peze, (2.11)
Z = l

where xp(zq~x) is periodic and pe are integers. We shall show now that (1.7) implies

φφ-^φi-Ί?-1). (2.12)
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From (1.7) and (2.4) it follows:

ί^θΆq(-zq)θ = i[(l-2Q(zq))J-Q(zq)yΆq(-zq)θ, (2.13)

where of

θΆq(-zq)θ = Aq(zq),

and hence

θT(-zq~1)θ = T~1{zq~1), z ^ e R 9 " 1 . (2.14)

From (1.2) and (1.7), one has

θQ(zq-\π)θ = Q(-zq~\π). (2.15)

Let now feQ(-zq~\π)Jf. Using (2.14), (2.15) and the reality of φ, one has

θT(zq-1)θf=Qxp(-2πίφ{-zq-1))f

= exp(-2πiφ(zq~1))f,

which proves (2.12). Now (2.11) implies pe = 0 in (2.11). Indeed, for example

and the periodicity of ψ implies px=0. The proof of the theorem is completed.
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