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Bifurcation to Infinitely Many Sinks
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Abstract. This paper considers one parameter families of diffeomorphisms
{Ft} in two dimensions which have a curve of dissipative saddle periodic
points Pf, i.e. Fn

t(Pt} = Pt and |detDF"(Pf)|<l. The family is also assumed to
create new homoclinic intersections of the stable and unstable manifolds of Pt

as the parameter varies through ί0. Gavrilov and Silnikov proved that if the
new homoclinic intersections are created nondegenerately at f0, then there is
an infinite cascade of periodic sinks, i.e. there are parameter values tn accumulat-
ing at ί0 for which there is a sink of period n [GS2, Sect. 4]. We show that this
result is true for real analytic diffeomorphisms even if the homoclinic
intersection is created degenerately. We give computer evidence to show that
this latter result is probably applicable to the Henon map for A near 1.392 and
B equal -0.3.

Newhouse proved a related result which showed the existence of infinitely
many periodic sinks for a single diffeomorphism which is a perturbation of a
diffeomorphism with a nondegenerate homoclinic tangency. We give the main
geometric ideas of the proof of this theorem. We also give a variation of a key
lemma to show that the result is true for a fixed one parameter family which
creates a nondegenerate tangency. Thus under the nondegeneracy assumption,
not only is there a cascade of sinks proved by Gavrilov and Silnikov, but also a
single parameter value t* with infinitely many sinks.

1. Introduction

The existence of a cascade of sinks is important because it analyzes a sequence of
bifurcation which is different than period doubling. The existence of infinitely
many sinks in Theorem C shows that there are generic situations which often arise
where points tend to infinitely many distinct attractors. It indicates that for certain
parameter values near A = 1.392 the Henon map does not have a transitive strange
attractor but actually many different periodic sinks with narrow basins of
attraction. (See Example 2.4 below.)
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These results for diffeomorphisms have similarities with bifurcations of maps
of the intervals and also differences. A family of maps of the interval {/J
nondegenerately creates homoclinic intersections if there is an unstable periodic
point Pt and a nondegenerate critical point Qt in the unstable manifold of Pt, such
that Qt is mapped back to Pt by some power of ft (Qt is an eventually periodic
critical point). If the family {/J nondegenerately creates homoclinic intersections,
then there is an infinite cascade of sinks as in Theorem A below, but there is no one
parameter value with infinitely many sinks as in Theorem C. See Remark 8.3
below and [V] for further discussion of this comparison.

Newhouse originally proved there exists a specific example where there is a
residual subset ^ of an open set of diffeomorphisms J\^ such that each G in ̂  has
infinitely many sinks, [N2]. Later he proved this occurred near any dissipative
diffeomorphism F which had a nondegenerate tangency of stable and unstable
manifolds, [N4]. This later result follows from first proving that there is an open
set of diffeomorphism in the C2 topology Jf, which is C2 near F such that for each
G in Jf there is a hyperbolic basic set Λ = Λ(G) which has WU(Λ) having a
nondegenerate tangency with FP(yl). He also proved, [N4, Theorem 3], that for a
fixed one parameter family of diffeomorphisms {Ft} which creates a nonde-
generate tangency of stable and unstable manifolds of a n periodic point Pt at
ί = ί0, where \detDFn(Pt)\<l, then for any ε>0 there is an interval [ί1?ί2]
C[ί0 — ε, ί0 + ε] such that for t in [ί1?ί2] Ft has a nondegenerate tangency of the
stable and unstable manifolds of a hyperbolic basic set At containing Pt. He has
stated in talks and implies in [N4, Remark 1, p. 105], but does not state explicitly
in his papers, that there is a residual subset J in [ί1? f2] such that for t in J the fixed
one parameter family Ft has infinitely many sinks, [N4, Remark 1, p. 105].
Theorem E below states and proves that this is indeed true. See also [N5, Theorem
8.1], and [GH]. Earlier Garilov and Silnikov had proved that if a C3 family
nondegenerately creates the homoclinic intersection then there is an infinite
cascade of sinks as in Theorem A below, [GS2, Sect. 4]. They also showed that
hyperbolic invariant sets were created which are not conjugate to each other, so
the system is inaccessible by a simple bifurcation from at least one side, [GS] or
[GH].

This paper proves a key result, Proposition 3.3, that whenever there is a one
parameter family {Ft} and a box B such that the images of the box Ft(B) are pulled
across B in the shape of a horseshoe, then there is an interval of parameter values J
such that for t in J, Ft has at least one periodic sink. Using this result it can be
shown that a fixed one parameter family of real analytic diffeomorphism which
creates homoclinic intersections (as defined in Sect. 2) has an infinite cascade of
periodic sinks, Theorem A. Therefore there is a sequence of periodic sinks pn for
different parameter values tπ, but not necessarily infinitely many sinks for one
parameter value ί*. This theorem has fairly weak hypothesis. It is almost certainly
applicable to the Henon map to show there is an infinite cascade of sinks for
B= —0.3 and A near 1.39. See Example 2.4. Using the stronger hypothesis used in
[N4] that the family nondegenerately creates homoclinic intersections,
Proposition 3.3 is the only new ingredient needed to show that the one parameter
family can be fixed and prove there are many parameter values which have
infinitely many sinks, Theorem C. Most of the work goes into proving that if {Ft}
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nondegenerately creates homoclinic intersections, then there is a persistent
tangency of stable and unstable manifolds, Theorem D. This result is proved in
[N4]. Since its proof is very involved, we present the main aspects of the proof
with reference for the analytic details. (This result is stated in [N5] but those
lectures do not discuss the proof.)

The outline of the paper is as follows. Section 2 states the main results and
gives examples where the theorem applies. Section 3 states and proves the
proposition on the creation of one sink. Section 4 proves that if a family of real
analytic diffeomorphisms create intersections then they create odd order in-
tersections. Section 5 proves the result on the existence of an infinite cascade of
sinks. Section 6 discusses the persistence of intersection of "thick" Cantor sets.
Section 7 shows how thick Cantor sets of stable manifolds arise from the
nondegenerate creation of homoclinic tangency. Section 8 shows how the parame-
ter value can be chosen to get both a thick Cantor set of stable manifolds and a
nondegenerate tangency - hence a persistent tangency. Finally Sect. 9 proves that
the persistence of nondegenerate tangency leads to infinitely many sinks.

2. Statement of Main Theorem and Applications

For a diffeomorphism F let DF(p) denote the derivative of F at p, i.e. the matrix of
partial derivatives. A point p is called a periodic sink (respectively source) for a
diffeomorphism F if p is a periodic point, Fn(p) = p, such that all eigenvalues of the
derivative of Fn, DFn(p\ have absolute value less than one (respectively all have
absolute value greater than one). Thus a sink is a periodic attractor and there is a

neighborhood U of the orbit &(p) = {Fj(p) :j in Z} such that f) FJ(U) = Θ(p). A
.j=°

point p is called a periodic saddle point for a diffeomorphism F in two dimensions if
it is a periodic point with Fn(p) = p for some n and the eigenvalues of DFn(p) are λu

and λs, both real, with |ΛJ>1 and |AJ<1. The stable and unstable manifolds of a
saddle point for a Cr diffeomorphism F are then C curves tangent to the
eigendirections defined by Ws(p, F) = {q: distance Fj(q) to Fj(p) goes to zero as j
goes to infinity} and Wu(p9F) = {q: distance Fj(q) to Fj(p) goes to zero as j goes to
minus infinity}.

We need to distinguish the direction of crossing of two oriented curves and the
order of tangency. Let y1 and y2 be two oriented differentiate curves. We say that
y1 has positive (respectively negative) intersection with y2 at a point p if p is on both
curves and there are local coordinates (x, y) near p with x(p) = y(p) = 0 and in which
there are oriented parametrizations {(x/s), y/s)): |s|<ε} of y7 with (ϊ) y2(s) = Q,
x2(0) = 0, and x'2(0) >0 and (ii) ̂ (0) = 0 = x1(0), 3^(5) <0 for - ε <s < 0 (respectively
0<s<ε), and 3^(5) >0 for 0<s<ε (respectively -ε<s<0). We say that {y\y 2}
have intersection of order n+l at p (or tangency of order n) if there are
parametrizations as above with (i) y2(s)~0 and (ii) j;1(0),yι(0) = 0, ...,/1

ll)(0) = 0,
but /"+1)(0)ΦO. Note that y1 and y2 are transverse at p if and only if they have
intersection of order one if only if they have tangency of order zero.

We say that Ft creates (respectively destroys) homoclinic intersections at t0 for a
periodic saddle point Pt if there are ε>0, Qt = F*(Pt) for some fc, and continuously
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varying subarcs ys

t C Ws(Pt, Ft) and yu

t C Wu(Qt, Ft) for ί0 - ε ̂  t ̂  ί0 + ε such that
(i) y*ny f

M = 0 for ί0 - ε ̂  ί < ί0 (respectively, ί0 < t ̂  ί0 + ε),
(ii) for ί 0<ί^f 0 + ε (respectively, ί0 —ε:gί<f 0 ) y* has both positive and ne-

gative intersections with y".
We say that {FJ creates odd order homoclinic intersections at ί0 if condition

(i) is satisfied and
(ii)' for ί0 < ί ̂  ί0 + ε y" has at least one positive intersection with y" of odd order

and at least one negative intersection with ys

t of odd order.
In condition (ii)' there can be more than two intersections some of which are of

even order. In the proof of Theorem A below show that if {Fj is a family of
analytic diffeomorphisms which depend continuously on t and satisfying (ii)' then
it satisfies condition (ii). Also in the proof of Theorem B condition (ii) is not
needed for all ί0<ί^ί0 + ε but only for a sequence of parameter values tj>tQ

which accumulate on ί0. The definition of (ii)' could be weakened accordingly.
The above condition is sufficient to prove there is a cascade of sinks, but to

prove that there are infinitely many sinks for a single parameter value another
condition is needed. We say that {Fj nondegenerately creates homoclinic in-
tersections at ί0 if {Ft} creates odd order homoclinic intersections [conditions (i)
and (ii)'] and

(iii) y*o and y"o have intersection of order two (tangency of order one),
(iv) If coordinates are taken so y* lies on y = Q and y*(i) is the extreme value of

y along y", then dy*/dt3=Q at t = t0.
Note in this case, the intersections for t > ί0 are necessarily transverse, i.e. of

order one. If {Fj nondegenerately creates homoclinic intersections, Newhouse
uses the terminology that it creates a nondegenerate tangency at ί0. His termi-
nology emphasizes the tangency in condition (iii), while ours emphasizes the
topologically transverse intersections in condition (ii).

Theorem A. Let {Ft} be a one parameter family of real analytic diffeomorphisms in
two dimensions which depend continuously on t. Assume it creates (or destroys) a
homoclinic intersection at ί0 for the periodic points Pt of periodic n with
|detDF"o(Pίo)| < 1. Then Ft has an infinite cascade of sinks. More specifically there is
a sequence of parameters values t converging monotonically to ί0 such that Ft has a
periodic sink of period n^ The orbits of the sinks pass near the point of tangency of
Ws(Pto, Fίo) and VF"(Fk(Pίo), Fίo). The periods HJ of the sinks grow like nj+1 — n = nor
2n depending on whether Ft preserves the orientations on Ws(Pt, Ft) and W"(Pt, Ft) or
not.

The result for real analytic diffeomorphisms follows quite directly from the
following result about Cj diffeomorphisms.

Theorem B. Assume {Ft} is a one parameter family of CJ diffeomorphisms in
Theorem A but assume it creates (or destroys) odd order homoclinic intersections at
ί0 of oder j. Then the conclusion of Theorem A is true. Here j^ 1.

2.1. Remark. Curry and Johnson, [CJ], calculated by means of a computer the
asymptotic rate of the creation of sinks in the cascade for the family of maps
studied in [ACHM]. They noted that
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where λu is the unstable eigenvalue of the saddle fixed point. They also include a
proof with details to be supplied elsewhere. As noted above Gavrilov and Silnikov
proved Theorem A under the assumption that a C3 family nondegenerately
creates homoclinic intersections. They also proved bounds on the parameter
values for the existence of the sink of period n which imply the asymptotic rate of
creation of sinks noted by Curry and Johnson, [GS2, 4.4 and 4.5]. At the end of
Sect. 5, we indicate how this asymptotic rate is related to the proof of Theorem B.

The following theorems are essentially the results of Newhouse. In particular
Theorem D is [N2, Theorem 2].

Theorem C. Suppose {Ft} is a fixed one parameter family of C3 diffeomorphisms of
a two manifold which nondegenerately creates homoclinic intersections at ί0 for the
periodic points Pt of period n with |detDF"0(Pίo)| < 1 (respectively |detDF"o(Pίo)| > I).
Then given ε>0 there is a subinterval [t^t2~\ C[ί0 — ε, t0 + ε] and a residual subset
«/C[ί 1 5 f 2 ] such that for t in J, Ft has infinitely many sinks (respectively sources).

In Theorem C we assume {Ft} is a C1 curve of C3 diffeomorphisms, i.e. the
third derivative of F with respect to q in M has one continuous derivative with
respect to the parameter t. Ft is assumed C3 in order to almost C2 linearize
near Pt. See Sect. 7 for more details.

2.2. Remark. Theorem C can not be proved by showing the intervals of parameter
values with sinks given in Theorem A overlap. In fact, Remark 5.2 indicates why
no two of the sinks of Theorem A occur for the same parameter value. In terms of
bifurcation subsets of the function space of diffeomorphisms, Theorem C, or more
precisely [N4, Theorem 1], means that there is an open set of C2 diffeomorphisms,
Jf, such that Σί = {GεΛr :G has a generic saddle node} is dense in Jf. Such
bifurcations are codimension one, for each G in Σ1 there is a codimension one
submanifold Σ\(G) in Ji such that each H in I\(G) has a saddle node bifurcation.
A generic arc crosses these bifurcations transversally. Theorem E does not prove
there are transverse crossings but does prove there are infinitely many sinks. If the
periodic point P, has eigenvalues that are independent enough to C2 linearize
near Pt, then it appears that the bifurcations are actually generic saddle node
bifurcations. This result would use a lemma like [N2, Lemma 2] and is not
included in this paper.

Theorem C follows from Theorems D and E below. To state these results we
need further definitions. See [N5] for more precise statements and examples. The
creation of homoclinic intersections implies the creation of Smale horseshoes. In
fact there are integers n, boxes Bn, and parameter values t = tn such that F"(Bn)
crosses Bn in the shape of a horseshoe, see Fig. 5b below. Letting G = F" and
B = Bn, the set A = {Gk(B): k is in Z} is the maximal invariant set for G in J3, i.e. A is
the set of all points q such that both the forward and backward orbit of q by G
stays in B. Each point q in A also has a contracting (stable) direction Es

q and an
expanding (unstable) direction Eu

q much like the eigendirections at a saddle fixed
point. More precisely, a closed invariant set A for G is said to have a hyperbolic
structure if the tangent space of the ambient manifolds has a splitting at points q
of A, TqM = Es

q + Eu

q, where the splitting varies continuously with q, and if there are
constants C>0 and λ>ί such that for /c^O and for vs in Es

q9 \DGk(q)vs\^Cλ~k\vsl
and for vu in Eu

q, \DG~k(q)vu\ ^ Cλ~k vu\. If A has a hyperbolic structure for G, then
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the nonlinear map G has a family of invariant nonlinear manifolds tangent to the
linear directions Es

q and Eu

q which are contracted and expanded respectively by G.
More precisely, for each point q in A, the stable manifold of q for G is the set
Ws(q, G) = {m: distance Gk(q) to Gk(m) goes to zero as k goes to infinity}. The local
stable manifold of q of size ε>0 is the set W*(q, G)={m in Ws(q, G): distance Gk(q)
to Gk(m) is less than ε, for all /c^O}. Thus Ws(q9 G) = (J{G~jW*(Gj(q), G):j^Q}. If A
has a hyperbolic structure for a Cr diffeomorphism G, then (i) W*(q, G) is a Cr

differentiable disk with dimension equal to dimE*, (ii) the disks W*(q, G) vary
continuously in the Cr topology as q varies in A, and (iii) the disks are invariant,
G(Wt

s(q, G))C W?(G(q), G). The (global) stable manifold is an immersed C differen-
tiable manifold. Similarly the unstable manifold of q for G is the set Wu(q, G)
= {m : distance Gk(q) to Gk(m) goes to zero as k goes to minus infinity} and the local
unstable manifold of size ε is W?(q, G) = {m in Wu(q,G}: distance Gk(q) to Gk(m) is
less than ε for all /c^O}. Again W(q9 G) = (J{Gj(W?(G~j(ql G)):;^0}. A closed set
A is called a hyperbolic basic set for G if (i) it is invariant for G, G(Λ) = Λ, (ii) it
has a hyperbolic structure for G, (iii) there is a point q in A with a dense orbit,
closure(0(g)) = /L, and (iv) /I has a local product structure, i.e. if ε>0 is sufficiently
small and p, <? are in /I then W?(p, G)n H/%, G)C A.

If ΛL is a hyperbolic basic set then there is a neighborhood U of A such that
oo

Q pj(U) = A. For G which is C1 near F, Λ(G) = Q G7(£7) is a hyperbolic basic set
7 = ~ °° J
for G. A hyperbolic basic set A is called a w/W hyperbolic set for F (or has
persistent tangencies of stable and unstable manifolds) if for any G which is C2

near F there are points q1 and q2 in Λ(G) for which Ws(q2, G) has a nondegenerate
tangency with W/M(^f1,G). (See [N5] for further definitions and more precise
statements.)

Theorem C follows from the following two theorems.

Theorem D. Suppose {Ft} nondegenerately creates homoclinic intersections at t0 for
the curve of periodic points Pt with |detDF"o(Pίo)| φ 1 and each Ft is C3. Then given

ε>0 there is a subinterval [ί15ί2] C E^o ~ ε> to + εl 5WC^ ̂ αί for t ™ \t\^2},Ft ^αs a

wild hyperbolic set containing the corresponding periodic point Pt of period n.

Theorem E. Assume {Ft} has an interval of parameter values [ί1? ί2] such that for t
in [ίls ί2], F, /zαs « wild hyperbolic set containing a periodic point Pt with
|detDF"(Pf)|<l (respectively >1). Then there is a residual subset JC[ί15ί2] such
that for t in J, Ft has infinitely many sinks (respectively sources).

2.3. Remark. If Ft are area preserving then Theorem D is unknown. It can be
shown that Ff goes through a cascade of bifurcations producing elliptic points as
in Sect. 5 below. See [N3].

2.4. Example. Recently there has been much interest in the Henon map

For £ = 0, the map is like the graph of a parabola map of the interval. For certain
values of A the end of the parabola gets mapped to the line x = x0 containing one
of the fixed points. This line is in the stable manifold of the fixed point. Thus as A
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αj
b j

c j

Fig. la-d. Henon map. The stable and unstable manifolds of the fixed point P are labelled by S and U,
respectively. The small box in a is enlarged in b-d for different values of A. 5=—0.3. a A = 1.39,
b A = 1.39, cA = 1.392, d A - 1.395

varies it creates a nondegenerate tangency. This holds for \B\ small enough.
Therefore for small B there are values of A with infinitely many sinks. See
[V, Theorem D] for details.

Earlier, [N4, Remark 1, p. 105] had indicated that for some parameter values
the Henon map has infinitely many sinks. It does not specify the values of A and B
for which this is true, but oral communication indicated it is for this case with \B\
small.

More interestingly, for B— — 0.3 and as A varies from 1.39 to 1.4, computer
studies indicate FA creates homoclinic intersections. See Fig. 1. This fact is
probably verifiable either via more careful computer studies or analytically.
Because everything is analytic, if {FA} does create homoclinic intersections then
there is an infinite cascade of sinks. Therefore the computer studies strongly
indicate that there is an infinite cascade of sinks.

Further the homoclinic tangency appears nondegenerate in the computer
studies: the stable manifold has small curvature while the curvature of the
unstable manifold is very large (it appears as a sharp point). See Fig. 1. Therefore it
is indicated, but is unproved analytically or via computers, that there are values of
A between 1.39 and 1.4 for B= —0.3 with infinitely many sinks. The nonde-
generacy condition appears much more difficult to prove than the creation of
homoclinic intersections.

The plots of iterates of a single point for A between 1.39 and 1.4 and B= —0.3
all appear like attractors. One aspect of the explanation of why the sinks are not
visible is that the basis of attraction of the sinks are very narrow. Further
theoretical and numerical explanation is needed.


