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Bifurcation to Infinitely Many Sinks
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Abstract. This paper considers one parameter families of diffeomorphisms
{Ft} in two dimensions which have a curve of dissipative saddle periodic
points Pf, i.e. Fn

t(Pt} = Pt and |detDF"(Pf)|<l. The family is also assumed to
create new homoclinic intersections of the stable and unstable manifolds of Pt

as the parameter varies through ί0. Gavrilov and Silnikov proved that if the
new homoclinic intersections are created nondegenerately at f0, then there is
an infinite cascade of periodic sinks, i.e. there are parameter values tn accumulat-
ing at ί0 for which there is a sink of period n [GS2, Sect. 4]. We show that this
result is true for real analytic diffeomorphisms even if the homoclinic
intersection is created degenerately. We give computer evidence to show that
this latter result is probably applicable to the Henon map for A near 1.392 and
B equal -0.3.

Newhouse proved a related result which showed the existence of infinitely
many periodic sinks for a single diffeomorphism which is a perturbation of a
diffeomorphism with a nondegenerate homoclinic tangency. We give the main
geometric ideas of the proof of this theorem. We also give a variation of a key
lemma to show that the result is true for a fixed one parameter family which
creates a nondegenerate tangency. Thus under the nondegeneracy assumption,
not only is there a cascade of sinks proved by Gavrilov and Silnikov, but also a
single parameter value t* with infinitely many sinks.

1. Introduction

The existence of a cascade of sinks is important because it analyzes a sequence of
bifurcation which is different than period doubling. The existence of infinitely
many sinks in Theorem C shows that there are generic situations which often arise
where points tend to infinitely many distinct attractors. It indicates that for certain
parameter values near A = 1.392 the Henon map does not have a transitive strange
attractor but actually many different periodic sinks with narrow basins of
attraction. (See Example 2.4 below.)
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These results for diffeomorphisms have similarities with bifurcations of maps
of the intervals and also differences. A family of maps of the interval {/J
nondegenerately creates homoclinic intersections if there is an unstable periodic
point Pt and a nondegenerate critical point Qt in the unstable manifold of Pt, such
that Qt is mapped back to Pt by some power of ft (Qt is an eventually periodic
critical point). If the family {/J nondegenerately creates homoclinic intersections,
then there is an infinite cascade of sinks as in Theorem A below, but there is no one
parameter value with infinitely many sinks as in Theorem C. See Remark 8.3
below and [V] for further discussion of this comparison.

Newhouse originally proved there exists a specific example where there is a
residual subset ^ of an open set of diffeomorphisms J\^ such that each G in ̂  has
infinitely many sinks, [N2]. Later he proved this occurred near any dissipative
diffeomorphism F which had a nondegenerate tangency of stable and unstable
manifolds, [N4]. This later result follows from first proving that there is an open
set of diffeomorphism in the C2 topology Jf, which is C2 near F such that for each
G in Jf there is a hyperbolic basic set Λ = Λ(G) which has WU(Λ) having a
nondegenerate tangency with FP(yl). He also proved, [N4, Theorem 3], that for a
fixed one parameter family of diffeomorphisms {Ft} which creates a nonde-
generate tangency of stable and unstable manifolds of a n periodic point Pt at
ί = ί0, where \detDFn(Pt)\<l, then for any ε>0 there is an interval [ί1?ί2]
C[ί0 — ε, ί0 + ε] such that for t in [ί1?ί2] Ft has a nondegenerate tangency of the
stable and unstable manifolds of a hyperbolic basic set At containing Pt. He has
stated in talks and implies in [N4, Remark 1, p. 105], but does not state explicitly
in his papers, that there is a residual subset J in [ί1? f2] such that for t in J the fixed
one parameter family Ft has infinitely many sinks, [N4, Remark 1, p. 105].
Theorem E below states and proves that this is indeed true. See also [N5, Theorem
8.1], and [GH]. Earlier Garilov and Silnikov had proved that if a C3 family
nondegenerately creates the homoclinic intersection then there is an infinite
cascade of sinks as in Theorem A below, [GS2, Sect. 4]. They also showed that
hyperbolic invariant sets were created which are not conjugate to each other, so
the system is inaccessible by a simple bifurcation from at least one side, [GS] or
[GH].

This paper proves a key result, Proposition 3.3, that whenever there is a one
parameter family {Ft} and a box B such that the images of the box Ft(B) are pulled
across B in the shape of a horseshoe, then there is an interval of parameter values J
such that for t in J, Ft has at least one periodic sink. Using this result it can be
shown that a fixed one parameter family of real analytic diffeomorphism which
creates homoclinic intersections (as defined in Sect. 2) has an infinite cascade of
periodic sinks, Theorem A. Therefore there is a sequence of periodic sinks pn for
different parameter values tπ, but not necessarily infinitely many sinks for one
parameter value ί*. This theorem has fairly weak hypothesis. It is almost certainly
applicable to the Henon map to show there is an infinite cascade of sinks for
B= —0.3 and A near 1.39. See Example 2.4. Using the stronger hypothesis used in
[N4] that the family nondegenerately creates homoclinic intersections,
Proposition 3.3 is the only new ingredient needed to show that the one parameter
family can be fixed and prove there are many parameter values which have
infinitely many sinks, Theorem C. Most of the work goes into proving that if {Ft}
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nondegenerately creates homoclinic intersections, then there is a persistent
tangency of stable and unstable manifolds, Theorem D. This result is proved in
[N4]. Since its proof is very involved, we present the main aspects of the proof
with reference for the analytic details. (This result is stated in [N5] but those
lectures do not discuss the proof.)

The outline of the paper is as follows. Section 2 states the main results and
gives examples where the theorem applies. Section 3 states and proves the
proposition on the creation of one sink. Section 4 proves that if a family of real
analytic diffeomorphisms create intersections then they create odd order in-
tersections. Section 5 proves the result on the existence of an infinite cascade of
sinks. Section 6 discusses the persistence of intersection of "thick" Cantor sets.
Section 7 shows how thick Cantor sets of stable manifolds arise from the
nondegenerate creation of homoclinic tangency. Section 8 shows how the parame-
ter value can be chosen to get both a thick Cantor set of stable manifolds and a
nondegenerate tangency - hence a persistent tangency. Finally Sect. 9 proves that
the persistence of nondegenerate tangency leads to infinitely many sinks.

2. Statement of Main Theorem and Applications

For a diffeomorphism F let DF(p) denote the derivative of F at p, i.e. the matrix of
partial derivatives. A point p is called a periodic sink (respectively source) for a
diffeomorphism F if p is a periodic point, Fn(p) = p, such that all eigenvalues of the
derivative of Fn, DFn(p\ have absolute value less than one (respectively all have
absolute value greater than one). Thus a sink is a periodic attractor and there is a

neighborhood U of the orbit &(p) = {Fj(p) :j in Z} such that f) FJ(U) = Θ(p). A
.j=°

point p is called a periodic saddle point for a diffeomorphism F in two dimensions if
it is a periodic point with Fn(p) = p for some n and the eigenvalues of DFn(p) are λu

and λs, both real, with |ΛJ>1 and |AJ<1. The stable and unstable manifolds of a
saddle point for a Cr diffeomorphism F are then C curves tangent to the
eigendirections defined by Ws(p, F) = {q: distance Fj(q) to Fj(p) goes to zero as j
goes to infinity} and Wu(p9F) = {q: distance Fj(q) to Fj(p) goes to zero as j goes to
minus infinity}.

We need to distinguish the direction of crossing of two oriented curves and the
order of tangency. Let y1 and y2 be two oriented differentiate curves. We say that
y1 has positive (respectively negative) intersection with y2 at a point p if p is on both
curves and there are local coordinates (x, y) near p with x(p) = y(p) = 0 and in which
there are oriented parametrizations {(x/s), y/s)): |s|<ε} of y7 with (ϊ) y2(s) = Q,
x2(0) = 0, and x'2(0) >0 and (ii) ̂ (0) = 0 = x1(0), 3^(5) <0 for - ε <s < 0 (respectively
0<s<ε), and 3^(5) >0 for 0<s<ε (respectively -ε<s<0). We say that {y\y 2}
have intersection of order n+l at p (or tangency of order n) if there are
parametrizations as above with (i) y2(s)~0 and (ii) j;1(0),yι(0) = 0, ...,/1

ll)(0) = 0,
but /"+1)(0)ΦO. Note that y1 and y2 are transverse at p if and only if they have
intersection of order one if only if they have tangency of order zero.

We say that Ft creates (respectively destroys) homoclinic intersections at t0 for a
periodic saddle point Pt if there are ε>0, Qt = F*(Pt) for some fc, and continuously
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varying subarcs ys

t C Ws(Pt, Ft) and yu

t C Wu(Qt, Ft) for ί0 - ε ̂  t ̂  ί0 + ε such that
(i) y*ny f

M = 0 for ί0 - ε ̂  ί < ί0 (respectively, ί0 < t ̂  ί0 + ε),
(ii) for ί 0<ί^f 0 + ε (respectively, ί0 —ε:gί<f 0 ) y* has both positive and ne-

gative intersections with y".
We say that {FJ creates odd order homoclinic intersections at ί0 if condition

(i) is satisfied and
(ii)' for ί0 < ί ̂  ί0 + ε y" has at least one positive intersection with y" of odd order

and at least one negative intersection with ys

t of odd order.
In condition (ii)' there can be more than two intersections some of which are of

even order. In the proof of Theorem A below show that if {Fj is a family of
analytic diffeomorphisms which depend continuously on t and satisfying (ii)' then
it satisfies condition (ii). Also in the proof of Theorem B condition (ii) is not
needed for all ί0<ί^ί0 + ε but only for a sequence of parameter values tj>tQ

which accumulate on ί0. The definition of (ii)' could be weakened accordingly.
The above condition is sufficient to prove there is a cascade of sinks, but to

prove that there are infinitely many sinks for a single parameter value another
condition is needed. We say that {Fj nondegenerately creates homoclinic in-
tersections at ί0 if {Ft} creates odd order homoclinic intersections [conditions (i)
and (ii)'] and

(iii) y*o and y"o have intersection of order two (tangency of order one),
(iv) If coordinates are taken so y* lies on y = Q and y*(i) is the extreme value of

y along y", then dy*/dt3=Q at t = t0.
Note in this case, the intersections for t > ί0 are necessarily transverse, i.e. of

order one. If {Fj nondegenerately creates homoclinic intersections, Newhouse
uses the terminology that it creates a nondegenerate tangency at ί0. His termi-
nology emphasizes the tangency in condition (iii), while ours emphasizes the
topologically transverse intersections in condition (ii).

Theorem A. Let {Ft} be a one parameter family of real analytic diffeomorphisms in
two dimensions which depend continuously on t. Assume it creates (or destroys) a
homoclinic intersection at ί0 for the periodic points Pt of periodic n with
|detDF"o(Pίo)| < 1. Then Ft has an infinite cascade of sinks. More specifically there is
a sequence of parameters values t converging monotonically to ί0 such that Ft has a
periodic sink of period n^ The orbits of the sinks pass near the point of tangency of
Ws(Pto, Fίo) and VF"(Fk(Pίo), Fίo). The periods HJ of the sinks grow like nj+1 — n = nor
2n depending on whether Ft preserves the orientations on Ws(Pt, Ft) and W"(Pt, Ft) or
not.

The result for real analytic diffeomorphisms follows quite directly from the
following result about Cj diffeomorphisms.

Theorem B. Assume {Ft} is a one parameter family of CJ diffeomorphisms in
Theorem A but assume it creates (or destroys) odd order homoclinic intersections at
ί0 of oder j. Then the conclusion of Theorem A is true. Here j^ 1.

2.1. Remark. Curry and Johnson, [CJ], calculated by means of a computer the
asymptotic rate of the creation of sinks in the cascade for the family of maps
studied in [ACHM]. They noted that
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where λu is the unstable eigenvalue of the saddle fixed point. They also include a
proof with details to be supplied elsewhere. As noted above Gavrilov and Silnikov
proved Theorem A under the assumption that a C3 family nondegenerately
creates homoclinic intersections. They also proved bounds on the parameter
values for the existence of the sink of period n which imply the asymptotic rate of
creation of sinks noted by Curry and Johnson, [GS2, 4.4 and 4.5]. At the end of
Sect. 5, we indicate how this asymptotic rate is related to the proof of Theorem B.

The following theorems are essentially the results of Newhouse. In particular
Theorem D is [N2, Theorem 2].

Theorem C. Suppose {Ft} is a fixed one parameter family of C3 diffeomorphisms of
a two manifold which nondegenerately creates homoclinic intersections at ί0 for the
periodic points Pt of period n with |detDF"0(Pίo)| < 1 (respectively |detDF"o(Pίo)| > I).
Then given ε>0 there is a subinterval [t^t2~\ C[ί0 — ε, t0 + ε] and a residual subset
«/C[ί 1 5 f 2 ] such that for t in J, Ft has infinitely many sinks (respectively sources).

In Theorem C we assume {Ft} is a C1 curve of C3 diffeomorphisms, i.e. the
third derivative of F with respect to q in M has one continuous derivative with
respect to the parameter t. Ft is assumed C3 in order to almost C2 linearize
near Pt. See Sect. 7 for more details.

2.2. Remark. Theorem C can not be proved by showing the intervals of parameter
values with sinks given in Theorem A overlap. In fact, Remark 5.2 indicates why
no two of the sinks of Theorem A occur for the same parameter value. In terms of
bifurcation subsets of the function space of diffeomorphisms, Theorem C, or more
precisely [N4, Theorem 1], means that there is an open set of C2 diffeomorphisms,
Jf, such that Σί = {GεΛr :G has a generic saddle node} is dense in Jf. Such
bifurcations are codimension one, for each G in Σ1 there is a codimension one
submanifold Σ\(G) in Ji such that each H in I\(G) has a saddle node bifurcation.
A generic arc crosses these bifurcations transversally. Theorem E does not prove
there are transverse crossings but does prove there are infinitely many sinks. If the
periodic point P, has eigenvalues that are independent enough to C2 linearize
near Pt, then it appears that the bifurcations are actually generic saddle node
bifurcations. This result would use a lemma like [N2, Lemma 2] and is not
included in this paper.

Theorem C follows from Theorems D and E below. To state these results we
need further definitions. See [N5] for more precise statements and examples. The
creation of homoclinic intersections implies the creation of Smale horseshoes. In
fact there are integers n, boxes Bn, and parameter values t = tn such that F"(Bn)
crosses Bn in the shape of a horseshoe, see Fig. 5b below. Letting G = F" and
B = Bn, the set A = {Gk(B): k is in Z} is the maximal invariant set for G in J3, i.e. A is
the set of all points q such that both the forward and backward orbit of q by G
stays in B. Each point q in A also has a contracting (stable) direction Es

q and an
expanding (unstable) direction Eu

q much like the eigendirections at a saddle fixed
point. More precisely, a closed invariant set A for G is said to have a hyperbolic
structure if the tangent space of the ambient manifolds has a splitting at points q
of A, TqM = Es

q + Eu

q, where the splitting varies continuously with q, and if there are
constants C>0 and λ>ί such that for /c^O and for vs in Es

q9 \DGk(q)vs\^Cλ~k\vsl
and for vu in Eu

q, \DG~k(q)vu\ ^ Cλ~k vu\. If A has a hyperbolic structure for G, then
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the nonlinear map G has a family of invariant nonlinear manifolds tangent to the
linear directions Es

q and Eu

q which are contracted and expanded respectively by G.
More precisely, for each point q in A, the stable manifold of q for G is the set
Ws(q, G) = {m: distance Gk(q) to Gk(m) goes to zero as k goes to infinity}. The local
stable manifold of q of size ε>0 is the set W*(q, G)={m in Ws(q, G): distance Gk(q)
to Gk(m) is less than ε, for all /c^O}. Thus Ws(q9 G) = (J{G~jW*(Gj(q), G):j^Q}. If A
has a hyperbolic structure for a Cr diffeomorphism G, then (i) W*(q, G) is a Cr

differentiable disk with dimension equal to dimE*, (ii) the disks W*(q, G) vary
continuously in the Cr topology as q varies in A, and (iii) the disks are invariant,
G(Wt

s(q, G))C W?(G(q), G). The (global) stable manifold is an immersed C differen-
tiable manifold. Similarly the unstable manifold of q for G is the set Wu(q, G)
= {m : distance Gk(q) to Gk(m) goes to zero as k goes to minus infinity} and the local
unstable manifold of size ε is W?(q, G) = {m in Wu(q,G}: distance Gk(q) to Gk(m) is
less than ε for all /c^O}. Again W(q9 G) = (J{Gj(W?(G~j(ql G)):;^0}. A closed set
A is called a hyperbolic basic set for G if (i) it is invariant for G, G(Λ) = Λ, (ii) it
has a hyperbolic structure for G, (iii) there is a point q in A with a dense orbit,
closure(0(g)) = /L, and (iv) /I has a local product structure, i.e. if ε>0 is sufficiently
small and p, <? are in /I then W?(p, G)n H/%, G)C A.

If ΛL is a hyperbolic basic set then there is a neighborhood U of A such that
oo

Q pj(U) = A. For G which is C1 near F, Λ(G) = Q G7(£7) is a hyperbolic basic set
7 = ~ °° J
for G. A hyperbolic basic set A is called a w/W hyperbolic set for F (or has
persistent tangencies of stable and unstable manifolds) if for any G which is C2

near F there are points q1 and q2 in Λ(G) for which Ws(q2, G) has a nondegenerate
tangency with W/M(^f1,G). (See [N5] for further definitions and more precise
statements.)

Theorem C follows from the following two theorems.

Theorem D. Suppose {Ft} nondegenerately creates homoclinic intersections at t0 for
the curve of periodic points Pt with |detDF"o(Pίo)| φ 1 and each Ft is C3. Then given

ε>0 there is a subinterval [ί15ί2] C E^o ~ ε> to + εl 5WC^ ̂ αί for t ™ \t\^2},Ft ^αs a

wild hyperbolic set containing the corresponding periodic point Pt of period n.

Theorem E. Assume {Ft} has an interval of parameter values [ί1? ί2] such that for t
in [ίls ί2], F, /zαs « wild hyperbolic set containing a periodic point Pt with
|detDF"(Pf)|<l (respectively >1). Then there is a residual subset JC[ί15ί2] such
that for t in J, Ft has infinitely many sinks (respectively sources).

2.3. Remark. If Ft are area preserving then Theorem D is unknown. It can be
shown that Ff goes through a cascade of bifurcations producing elliptic points as
in Sect. 5 below. See [N3].

2.4. Example. Recently there has been much interest in the Henon map

For £ = 0, the map is like the graph of a parabola map of the interval. For certain
values of A the end of the parabola gets mapped to the line x = x0 containing one
of the fixed points. This line is in the stable manifold of the fixed point. Thus as A
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αj
b j

c j

Fig. la-d. Henon map. The stable and unstable manifolds of the fixed point P are labelled by S and U,
respectively. The small box in a is enlarged in b-d for different values of A. 5=—0.3. a A = 1.39,
b A = 1.39, cA = 1.392, d A - 1.395

varies it creates a nondegenerate tangency. This holds for \B\ small enough.
Therefore for small B there are values of A with infinitely many sinks. See
[V, Theorem D] for details.

Earlier, [N4, Remark 1, p. 105] had indicated that for some parameter values
the Henon map has infinitely many sinks. It does not specify the values of A and B
for which this is true, but oral communication indicated it is for this case with \B\
small.

More interestingly, for B— — 0.3 and as A varies from 1.39 to 1.4, computer
studies indicate FA creates homoclinic intersections. See Fig. 1. This fact is
probably verifiable either via more careful computer studies or analytically.
Because everything is analytic, if {FA} does create homoclinic intersections then
there is an infinite cascade of sinks. Therefore the computer studies strongly
indicate that there is an infinite cascade of sinks.

Further the homoclinic tangency appears nondegenerate in the computer
studies: the stable manifold has small curvature while the curvature of the
unstable manifold is very large (it appears as a sharp point). See Fig. 1. Therefore it
is indicated, but is unproved analytically or via computers, that there are values of
A between 1.39 and 1.4 for B= —0.3 with infinitely many sinks. The nonde-
generacy condition appears much more difficult to prove than the creation of
homoclinic intersections.

The plots of iterates of a single point for A between 1.39 and 1.4 and B= —0.3
all appear like attractors. One aspect of the explanation of why the sinks are not
visible is that the basis of attraction of the sinks are very narrow. Further
theoretical and numerical explanation is needed.
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α ) b )

Fig. 2a and b. Forced Duffing equation with damping. a <5=0, ε > 0 ; b < 5 = <50>0, ε>0

These computer results contrast with the result of Misiurewicz, [Mis], for the
Lozi map for which a hyperbolic attractor exists. The difference is that the smooth
bend in the Henon map causes a saddle node to be created as the image of the box
is pulled across itself. The "piecewise linear" character of the Lozi map avoids this
and immediately creates two saddle points.

The paper by Aronson et al. [ACHM], contains computer studies of an
equation which models delayed regulation of population growth. Their studies like
those for the Henon map indicate the creation of odd order homoclinic
intersections.

2.5. Example. Another type of example that has been studied is forced oscillators.
Consider the forced Duffing equation with damping

x = υ,

ύ = βx — ax3 + ε(y cos ωt — δv).

For (5 = 0, and 0<ε<ε0 there is a transverse homoclinic orbit for the time 2π map.
This can be seen by using the Melnikov integral, [HM, Sect. 4]. As δ increases, the
dissipation pulls the unstable manifold inward creating a nondegenerate tangency
at δ = δ0. (This corresponds to y = y0 in [HM].) Thus for δ near <50 there are
infinitely many sinks.

2.6. Example. Levi considered a forced van der Pol equation of the type studied
by Levinson

εx + φ(x)x + εx = bp(i),

where φ(χ) and p(t) are rounded off square periodic functions. He showed there
were hyperbolic basic sets for certain values of b. Moreover he showed for other
values of £>, there are nondegenerate homoclinic tangency and so infinitely many
sinks [L, p. 33 and Sect. 3.6].

3. Creation of One Sink

3.1. Example. Before considering the creation of sinks in two dimensions, con-
sider a map of the real line f t : IR->IR with 92ft/dx2 ^ a > 0, dfjdt < 0 and f0(x) > x,
e.g. /f(x) = x2 —ί + 2. As t increases there is a first parameter value tί where
yf1(x1) = x1. At this point f'(xΐ)=l.

Then for ί1<ί<ί1+ε, ft(x) = x has two solutions x f<x|, and 0<//(xί)<l
<ft'(x't). Thus xf is a sink for ft (and x't is a source).
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α) b) c)

Fig. 3a-c. Graph of y=f(x) with diagonal y = x. (a) t<tί; (b) t = t1 (c) t>t1

Fig. 4. The box — 2 5Ξ x ̂  2, — 2 ̂  _y ̂  2 with vertices a, b, c, d. The primed letters label the vertices which
are the images of the vertices labelled by the corresponding unprimed letters, e.g., a' = FA(ά)

3.2. Example. Next consider a Henon type map

with 0<£<1 fixed, e.g. 5 = 0.3. The fixed points (for appropriate A) are

The eigenvalues at the fixed point (x,y) are given by λ = y±[y2 — B']
fixed point (x^y^) has the following type:

112 Thus the

A<AQ= — + B)2

Aί<A<A29

A,

A3<A,

there are no fixed points,
saddle node, λ = l,B9

sink with real positive eigenvalues,
sink with complex eigenvalues,
sink with real negative eigenvalues,
eigenvalues λ = — 1, — B,
hyperbolic with reflection λ_< — 1 < Λ, + < 0.

As far as the uses for this paper, the important bifurcation occurs at A = A0, where
a saddle node bifurcation creates a sink for A slightly larger than A0. The
difference between maps of the real line and the plane is apparent with the
eigenvalues becoming complex for Aί <A<A2. Π

The next proposition gives a general criterion for the creation of one sink. The
basic hypothesis is that there is a box B such that the family {Ft} pulls the image of
B across B creating a saddle point whose expanding eigenvalue is negative. (There
is a reflection in the unstable direction.) See Fig. 5. This result is related to [N5,
Lemma 8.2] but the argument there seems to apply only to a generic one
parameter family. Also see [N2, Lemma 2]. This proposition is the only modifi-
cation of the proof in [N4] needed to prove Theorem E.
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FIB)

α) b)

Fig. 5. a The image F(B] for F = Ftl lies outside 5; b The image F(B] for F = Fί2 crosses B at
least twice. The saddle point with reflection is contained in

3.3. Proposition. Let Ft(x,y) be a one parameter family of C1 diffeomorphisms
defined in a neighborhood of a box B = {(x, y) : \x — x0\^δί and \y — y0\^δ2} for
ίi ̂  t ̂  t2. Assume |detDFf(x, y)\ < 1 for all t1^t^t2 and (x, y) in B. Further assume

(i) FtιBnB = 0,
(ii) Ft2 has a fixed point that is a saddle point with reflection, i.e. has real

eigenvalues λ^ — ί and \λ'\ < 1,
(iii) Ft has no fixed points on the boundary of B for all tί ^t^t2.
Then there is a ί0 with t1<t0< t2 such that Fto has a fixed point sink. If

dQtDFt>0 so Ft is orientation preserving, the value ί0 can be chosen so the
eigenvalues have nonzero imaginary part.

3.4. Remark. The way condition (iii) is satisfied in the applications of (3.3) is
as follows. Assume Ft(B) does not intersect the sides of the box,
{(x0±δvy) : \y — y0\<δ2} for t1 ^ί^£2, then there are no fixed points on the sides
of B. If the top and bottom edges of B always have images outside the box,
Ft(x, y0 + <52) is not in B for tί ^ t ̂  f 2, then there are no fixed points on the top and
bottom of B. Thus with these two assumptions, there are no fixed points on the
boundary of B.

Proof. The proof uses two key ideas : (1) eigenvalues vary continuously and (2) if
Ft has a fixed point p(t) whose eigenvalues are not equal to + 1 then by the implicit
function theorem there is an interval (t — ε, t + ε) such that for s in this interval Fs

has a fixed point p(s). Let p(t2) be the fixed point given by assumption (ii) with
eigenvalues λί(t2)^ — ί and |Λ,2(£2)| < 1. Let ί3<ί^ί2 be the maximal interval of
continuing the fixed point p(i) in the interior of B. It follows that for t = ί3, Ft has a
fixed point p(t3) because this is a closed condition. By assumption (iii), p(t3) can not
be on the boundary of JB, so is in its interior. By assumption (i), for t = ί15 Ft has no
fixed points in B, so tί <ί3. By (2) above it follows that p(t3) has an eigenvalue
equal to +1.

Either λ1(ί3) = l or Λ, 2(f 3)=l. If /I2(ί3)=l, then at some intermediate value
ί = ί4, |detDFf(p(ί))|<μ2(ί4)|<l. Because \detD Ft(p(t))\ = \λ1(t4)\ \λ2(tj\9 it follows
that also (^(ίj^l and p(t4) is a sink. One the other hand if λί(t3) = l, then at
some parameter value ί5, Re/ί1(ί5) = 0. Since Ft is a diffeomorphism, A 1(ί 5)φO so it
must be pure imaginary with λ2(ts)=—λί(t5). Then for ί = ί5, l>|detDFf(p(ί))|
= |/l2(ί5)|2 and p(t5) is a sink.

Note in the case where detDFt(p) >0, the second case must occur so there must
be a complex sink. Π
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4. Creation of Homoclinic Intersections for Real Analytic Maps

In this section we reduce the proof of Theorem A to Theorem B, i.e. we show that if
{Ft} is a real analytic family which creates homoclinic intersections, then it creates
odd order homoclinic intersections.

Let Pt be the periodic points such that the stable and unstable manifolds of the
orbit of Pt create homoclinic intersections. There is a fc such that for Qt = F*(Pt), the
manifolds Wu(Qt,Ft) and Ws(Pt,Ft) create homoclinic intersections. These man-
ifolds are real analytic for fixed t because Ft is real analytic. These manifolds do
not coincide for ί0<ί^ί0 + ε, because they have two topologically transverse
intersections, condition (ii). Because they are real analytic, all the intersections are
of finite order. Any intersection of finite order which is topologically transverse is
necessarily of odd order. Therefore by condition (ii) there are both positive and
negative intersections of odd order.

5. Infinite Cascade of Sinks: Theorem B

For simplicity we assume the stable and unstable manifolds which create
homoclinic intersections belong to a fixed point Pr The case of a periodic point is
not much different. See [N4]. We also assume both of the eigenvalues for Pt are
positive. Again the case where one of these is negative can be handled by replacing
Ft with Ff. Because 0<detDFίo(Pfo)< 1, the product of the eigenvalues is less than
one, 0<μ/L<l, where 0<μ<l and l<λ. The tangencies also can occur from
various sides and for different branches of Ws(Pt, Ft) and W^(Pί9 Ft). Some of these
cases imply that Ws(Pt, Ft) and Wu(Pt, Ft) already have other intersections for t = ί0.
See the work of Gavrilov and Silnikov, [GS] or [GH]. These differences make no
difference in the proof given here. Compare the cases in Figs. 1 and 2 which are
different.

For simplicity of discussion we assume that Ft can be linearized near Pί? i.e.
there is a neighborhood U of Pt and Cj coordinates (x, y) on U so that Ft(x, y)
= (μx, λy). Here 7 is the order of the intersection of stable and unstable manifolds. If
Ff is C°° and satisfies nonresonance conditions of the eigenvalues at Pί? the
Sternberg linearization gives such coordinates. In Appendix 5.4 at the end of the
section, there is a discussion of how to obtain the necessary estimates without
linearizing.

Let g0 be the point at which W\PV Ft) and WU(PV Ft) have a tangency at t = ί0.
By looking along the orbit of qQ9 we can assume q0=(x0,ty is in U on the local
stable manifold of Pίo. Also by taking k large enough, qί = F~o

k(q0) = (Q,yί) will
also be in U.

We next form boxes Bn near q0 to which Proposition 3.3 can be applied to get a
sink. Take δu

19 δ\, δu

0, δ
s

0>0 and form

and
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Fn(BΓ

α) b)

Fig. 6a and b. Location for boxes Bn and their images F™(Bn) and F"(Bn) for one case of homoclinic
tangency. a ί = ί0 b t > t0

These choices can be made so that 70nFί(70) = 0, 71nFf(F1) = 0, y'C boundary F0,
and y? C boundary Fk

t(V^\ where y* C W\Pt, Ft) and y? C Wu(Pt, Ft) are as specified in
the condition that {Ft} creates odd order homoclinic intersections at t0 near q0.
For N large enough, n^JV, and m = n — k,

^-component (K0nFΓm(KJ)-{(x,y):|x-

is a horizontal strip near q0, where we take the component which is the first
intersection along F~m(F1). Then

is a vertical strip near qί9 and F" = F^oF^(Bn) is a thin nonlinear box near q0 which
is parallel to W(Pt,Ft).

The next step is to show Proposition 3.3 implies F" has a sink in Bn for
appropriate t. Take ί0 < T< ί0 + ε. Orienting PFS(PΓ, Fr) and FΓ(PΓ, Fτ), there is at
least one intersection of these manifolds at some q2 near qQ which is an odd order
intersection and the sign of the intersection is different at q2 than at Pτ. For
large n, WU(PT, Fτ) intersects Bn monotonically near q2 and F n

τ(Bn] crosses Bn

monotonically with a reversal in the y direction. We show below in Proposition 5.1
that F" has a saddle point in Bn with eigenvalue λ1 < — 1. Remark 3.4 applies to
show that there are no fixed points on the boundary of Bn as t varies. Also
Fn

τ(Bn)nBn = β for either ί = ί0 or ί = ί0 — ε. Therefore Proposition 3.3 applies and
there are tn and εn > 0 such that for tn<t<tn + εn, Fz has a sink pn in βn of period n.
Note that if Fn

t(B^r\Bn = 0 for ί = ί0, then it follows from Proposition 3.3 that ί0 < tn

<tn + εn<T<t0 + ε.On the other hand if F"(5jn5nφ0 for ί = ί0, then t0-ε<tn

<tn + εn<t0.
As ^z increases 5n is closer to FP^F,) and F^(5W) is closer to W(Pt,Ft).

Therefore for larger n, T can be chosen nearer to ί0 in the argument above to show
there is a sink of period n. Therefore as n increases tn approaches t0.

All that is left is to show that there is a saddle fixed point of Fn

τ in Bn with
eigenvalues λ1< — 1 and \λ2\ < 1. This fact follows from the following proposition
with F = FΓ and P = PT.
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5.1. Proposition, (a) Assume F is Cj and has a fixed point P which has a homoclinic
intersection of order] at q2 withj odd. Then q2 is the limit of hyperbolic saddle point
zn of period n, where zn is in the box Bn as defined above, (b) // the sign of the
intersection of WS(P, F) and H^P, F) is different at q2 than at P, then the saddle
points zn have negative unstable eigenvalue, λί< — 1.

When the family nondegenerately creates intersections, then j=l and this
result follows from the usual transverse homoclinic point result. When j is larger
than one, then the image Fn(Bn) stretches across Bn but the slope is small and so the
argument is delicate. In fact if the intersection is C°° flat, then the result is probably
false. Therefore we give the details of this proof which takes most of the rest of the
section (up to Remark 5.2).

Proof. We take the case as in part (b) of the proposition, but the other case is
similar. Let q2 =(x2,0) and q3 = F~k(q2) = (Q,y3) be in the linearized neighborhood
of P. We take n large enough so that Fn(Bn) crosses Bn monotonically. Therefore
there is a horizontal subbox

in Bn such that (i) Fn(B'n) stretches across Bn, F
n

2(x,Al}^λ~myl+λ~mδ\^A2 and
Fn

2(x,A2)^λ-my1-λ-mδ\^A1, and (ii) dFn

2/dy(z)<Q for z in B'n. Because of the
hyperbolic estimates on U, \dF"/dx(z)\ < 1 for z in Bn.

In this situation it follows that Fn has a fixed point zn = (xn, yn) in B'n. The
existence of zn can be shown using an index argument on B'n. Alternatively it is
possible to show there are (i) a horizontal curve of points in B'n which have the y
coordinate fixed, and (ii) a vertical curve of points in B'n which have the x
coordinate fixed. The point zn where these two curves intersect is a fixed point. We
need to show that zn is a saddle point with reflection in the unstable direction.
Since \λμ\<l, it follows that |detZλP(zn)|<l. Thus if we show one of the
eigenvalues λl < — 1, the other eigenvalue λ2 will have to have \λ2\ < 1.

The graph of WU(P, F) near q2 is given by y = g(x) = a(x — x2)
j + h(x). The slope

is g'(x)=ja(x — x2)
j~1+h'(x). As a function of y, the slope at zn = (xn,yn) is about

ja(yn/a}(j-^lj=jailjyl

n~
llj = ξn. Let ξf =\ξn\. We need an estimate below on £ + .

Since (\y1+δu

ί\)λ-m^\yn\^\y1-δu

ί\λ~m, there is a C independent of n such that
2Cλ-m + m/j^ξ+ ^ Cλ~m + m/j. To find the unstable eigenvector we take the sector of
vectors whose slopes are about ξn,

S(zn) = {v = (v1,v2):η~1<v2/(v1ξn)<η},

where η > 1 is independent of n. Thus for v in S(zn) the slope of v is between η~1ζn

and ηξn. We show that for υ in S(zn), υ" = DFn(z^v is also in S(zn) and ||t/'|| > | |u | | .
Thus there is a vector υQ in S(zn) such that DFn(zn)vQ = λ1v0 and |A1 |>1. Since
DFn(zn) reverses the second coordinate, λ1< — ί.

The proof of these facts about vectors v in S(zn) is l ike the proofs of Lemmas
7.5 and 7.6 below. There we prove there is a hyperbolic invariant set under
slightly different assumptions. Let v = ( v ί 9 v 2 ) be in S(zπ), v' = (v\,v'2) = DFm(zn)v
= (μmvv λ

mv2), and v" = (t/(, v'2) = DFn(zn)v. The linear estimates in U and the bound
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α) b)
Fig. 7a and b. The stable and unstable manifolds of Pt are labelled S and U, respectively. The images
FJ

t(Bj) are labelled BJ. a Ft is as in Fig. 5 with f,,<f <f,, + f,,,ι b F, is as in Fig. 2 with f n + 1 < f

on the slope of z; show that v is nearly vertical for n large :

Then z/' has slope about ξn, in fact the slope is between η~1ξn and ηξn for large n.
Thus v" lies in S(zn). Moreover using the fact there is a constant C1 >0 such that for
any z near g3 and for any v'9 \\vff\\ = ||DF*(z)z/|| ^Cx | |z/| | it follows that \\v"\\ > \\v\\:

^^

for large enough m. This completes the proof of Proposition 5.1 and Theorem D.

5.2. Remark. The intervals of parameter values £n<ί<£n + εn obtained above for
the sinks pn of period n do not overlap for large n,n^N, at least in the case where
{FJ nondegenerately creates homoclinic intersections. In the case of Figs. 7a
and 6, by the time t>tn, where the sink pn exists and F"(BΠ) n£MΦ0, the geometry
forces F"+1CBπ+1)nJ3n+1 to be a complete horseshoe and the periodic point pn + 1

has become a saddle point with reflection. Therefore tQ<...<tn+1<tn+1+εn+1
<tn<tn + εn f°Γ w = N' In otner cascs sucn as ^S8- 7^> and 2 the geometry does not
force the situation but a distance estimate does. The boxes Bn and Bn+1 are
roughly λ~m(l — λ~l) distance apart where m = n — k, while the images F"(JBΠ) and
F" + 1 (5Π + x ) are roughly μw( 1 - μ) distance apart. Since μ < /I ~ 1 , by the time tn+ί<t

a complete horseshoe and pn is a saddle point with reflection. Therefore
ί0 > . . . > ίn+ 1 > tn+ 1 + εn+ 1 > tn > tn + επ for n ̂  N. Therefore in any case the above
argument can prove the existence of an infinite cascade of sinks, but it is not
sufficient to prove there is one parameter value with an infinite number of sinks.
The extra needed ingredient in the proof is the thickness of the Cantor set of stable
manifolds of a basic set. The next section defines the thickness of a Cantor set and
then Sect. 7 applies it to the stable manifolds.
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5.3. Remark. The result of Curry and Johnson mentioned in Remark 2.3, [CJ],
follows from the distance of the boxes Bn from Ws(Pt,Ft) and F"(Bn) from
Wu(Pt,Ft). There distances are roughly C 1 A~ m and C2μ

m for m = n-k. If these
boxes are pulled across at a linear rate then tn — 10 ^C3(Cίλ~m±C2μ

m) ~Cλ~m

since λ~l >μ. Thus

See [CJ]. Also compare with the result in [GS2] about the parameter value
having hyperbolic sets.

5.4. Appendix. Estimates without linearizing. Because we use the Taylor expansion
of the graph of PF"(PΓ, FΓ), we need Cj coordinates. Unless we make nonresonance
assumptions on the eigenvalues, it is not possible to linearize the system. However
it is still possible to find coordinates on which there are hyperbolic estimates which
are good enough to prove zn is a saddle point with reflection in the unstable
direction.

There is a neighborhood u of P = Pτ and Cj coordinates (x, y) on U so that the
local stable and unstable manifolds of P are given by comp(PP(P,_F)ni7)
= {(x,0)nt/ and comp(Wu(P,F)nU) = {(Q,y)}nU. Also

where μ — ε^b11^μ + ε, λ~ε^b22^λ + ε, \b12 ^ε|x|, and |fo21 |:gε|j;|. These last
two estimates follow because fr12(0,};) = 0, (W" = {(Q9y)}), so

by the Mean Value Theorem. By a change of scale the second partial derivatives
can all be made less than ε. The estimate on b21(x, y) is similar.

We need to show that v' = (v'1,v'2) = DFm(zn)υ is nearly vertical. The fact that
\\v"\\ = \\DFn(zn)v\\> \\v\\ follows directly as before. If (xr,yr) = Fr(zn) for Ogr^m,
then

WH^1(xr-1,j>r-1)-F1(o,^^^

by induction. Similarly \yr\<\ym\(λ-ε)r-m. Let DF(xr, yr) = (br

tj) . Then

\b\2\ gε|

It suffices to consider v in S(zn) with v1 = 1. Let vk = (vr

vv
r

2) = DFr(zn)v. We know
that η~*ξΐ^\v2\^ηε+ and ξ+=Aλ~m+mlj with C^,4^2C. We prove by in-
duction on r that

(5.5)

Once we prove these inequalities then

|ϋ^/|t;;| = |ι;5l/|t;7l^f7"1^(λ--2ε)w/ 7'[(μ + 2ε)μ + 2ε)]

is arbitrarily large as m goes to infinity (for small enough ε).
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To show (5.5) for υ\

for ε small enough. Similarly for vr

2,

ι/+1 6

for ε small enough. The upper estimate for \vr

2

+1\ is similar. This completes the
necessary modifications without linearization.

6. Persistent Intersections of Cantor Sets

Given two Cantor sets A1 and A2 in the line IR, we want a criterion to imply that
AinA2ή=0. The relevant condition is the thickness as defined by Newhouse in
[Nl]. It is related to the Hausdorff dimension of the set, but different. See [N4,
p. 107].

A Cantor set A in the line can be represented as A = P| Ai9 where A0 is the

ί^O
smallest interval containing A and Ai = A0— ^i^j^j and Uj are open intervals.
Such a sequence of sets {At} is called a defining sequence of A. It is obtained by
specifying an ordering of the gaps removed from A0 to form A.

The thickness is the ratio of the length of intervals left in At to the length of the
adjacent gap Ut. Let Itj for j= 1, 2 be the two components of At on either side of
the gap Ut. Let // be the length of an interval J. The thickness of a defining
sequence is defined by

This thickness depends on the choice of the defining sequence. The thickness of the
Cantor set is defined as the thickness for the best choice of a defining sequence :

φl) = sup{τ({y4.}): {At} is a defining sequence for A}.

For a Cantor set Aa formed by removing the middle α of the remaining
intervals at each step, the intervals at the kth step have length ((1 — α)/2)fe. The gaps
formed at the /cth step are each α of the length of the intervals at the (fe— l)th step, or
α((l — a)/2)k~1. Therefore the ratio is always

1-α

~2α~
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α) b)

Fig. 8. a F"(Bn) is shown crossing Bn for r as in Proposition 7.1 : b F~"(Bn) is shown crossing Bn

This defining sequence is actually the best choice so τ(Aa) = (1 — α)/2α. In particular
τ(A 1/3) = 1 for the middle third Cantor set. Also note 0 < τ(A) < oo and τ(AΆ) goes to
infinity as α goes to zero.

The reason for the above definition of thickness is the following lemma which
is proven in [N4, Lemma 4, p. 107].

6.1. Lemma. Let A1 and A2 be ίwo Cantor seίs in IR with A1 not contained in any
gap of A2 and vice versa. In particular if AJ

0 is the smallest interval containing Aj,
then assume intτ4jnint^Qφ0. Further assume τ(A1)τ(A2)>ί. Then A1πA2ή=&. In
fact if {A{} are defining sequences for Aj for j = 1,2 such that τ ( { A l } ) τ ( { A f } ) > l ,
then for each i_ l, int(AlnAf

7. Thick Cantor Sets of Stable Manifolds from a Nondegenerate Tangency

If A is a hyperbolic set for F, the stable thickness of A, τs(A), is defined by τs(A)
= limsup{τ(yεn P^s(/l))}, where γ is any C1 arc transverse to the stable manifolds

WS(A) at q and yε is the arc of length ε in y centered at q. The result [N4,
Proposition 5] shows this definition of thickness is independent of y and q for F
which is C2 and y is C1. Thus it is well defined. The unstable thickness, τ"(/t), is
defined in a similar manner.

It is not hard to construct a diffeomorphism which has a horseshoe A with
Ws(A}r\ys and Wu(A)r\yu any desired middle α and β Cantor sets. Thus τs(A) and
τu(A) are arbitrarily large. Moreover it can be done so that the fact τs(A)τu(A) > 1
implies there is a persistent tangency of WS(A) and W(Λ). See [Nl] and [N5, pp.
103-104].

In this section and the next, we show that whenever a family nondegenerately
creates a homoclinic intersections, then there are created hyperbolic invariant sets
A(t) which have τs(A(t)) arbitrarily large and a persistent tangency. The idea of the
construction is as follows. In this section the parameter value t* is chosen carefully
so that there is a hyperbolic invariant set An(t*) in Bn with τs(An(t*)) arbitrarily
large. The parameter value must be chosen so F"(Bn) comes out the bottom of the
box Bn enough so the maximal invariant set in Bn has a hyperbolic structure, An(t)
= P) F"(Bn). On the other hand t must be chosen so that most of F"(Bn) lies in Bn so

n

An(t*) has lar.ge stable thickness. In terms of the quantities in Fig. 9 below, the gap
g must be large enough to make Λn(t*} hyperbolic while the gap g' must be small
enough to make τs(An(t*)) large. However for ί = ί* there might not be any
homoclinic tangencies because the local extreme points of Wu(An(t^)) relative to
Ws(An(t*)) lie away from Ws(An(t*)). In the next section, ί* is decreased to ί** to
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9 ί

<\

T
h

_L
g'

Fig. 9. The gaps g and g' are indicated as well as the height h and width w. The point Q is (xn(t\ yn(t})

cause the extreme points of Wu(Λn(t*)) to intersect the Ws(Λn(t*)) and so to cause a
persistent tangency. The value t = t** is chosen carefully so that F?(Bn) does not
come out the bottom of Bn but there is still a smaller hyperbolic set Λ'n(t) in Bn with
τs(Λ'n(t}) large. There is a C1 curve y along which Wu(Λ'n(t)} has extrema relative to
Ws(An(t}\ The value ί = ί** is chosen so that yrW"(Λ;(ί)) and yrWV^W) overlap
along y and the product thickness is larger than one. Thus there is a tangency of
W"CΊJ,(ί)) an<3 W%4,(f)) at some point of y. This tangency persists for t near t**.
More details of the construction will follow.

It is easier to use coordinates in which Ft is linear. We need to have C2

coordinates because we look at the curvature of Wu(Pt, Ft) near q0. If Ft is C°° and
the eigenvalues at Pt satisfy nonresonance conditions, then Sternberg linearization
gives C2 coordinates in which Ft is linear near Pt. Even without the nonresonance
conditions, Newhouse showed that if Ft is C3 it is possible to find coordinates on
U that are C1 everywhere, are C2 off Wu(Pt,Ft) = {(Q,y)}, and such that in these
coordinates Ft is linear, Ft(x,y) = (μx,λy). See [N4, pp. 124-126]. The proof uses
the fact that μλ<l. The main idea is that with these assumptions there are C2 line
bundles in the stable and unstable directions off W^P^F^. We use these
coordinates in this and the next section.

7.1. Proposition. [N4, Lemma 7.] For suitably chosen t>tn + εn, the hyperbolic
basic set Λn(t) created in F"(Bn)nBn has arbitrarily large τs(Λn(t}}.

Proof. The idea of the proof is that because μλ<i, F"(Bn) is much thinner than it is
long. Therefore by carefully choosing the dimensions of Bn, for value t for which
F"(Bn)nBn first has two components, the length of the bend F"(Bn) — Bn is much
smaller than the length of the components F"(Bn)πBn. This ratio is roughly the
same as the ratio of the height of the component of F"(Bn)r\Bn to the height of the
middle gap in Bn — F~n(Bn\ which in turn can be shown to be roughly the stable

00

thickness of the hyperbolic set for F" in Bn, An(t)= f) FJ

t

n(Bn). See [N4, pp.
7= -oo

121-138] for the proof. Since this ratio is arbitrarily large for large n, τs(Λn(t)) is
arbitrarily large for suitably chosen ί and large n. Also Λn(t) has a dense orbit
because it is conjugate to a shift on two symbols. Therefore Λn(t) is a basic set.

Let g be the gap by which F"(Bn) clears the bottom of Bn at the bottom bend

g = M {sup {distance (F"(x0, y\ Bn) :(x0,y)eBn x0 fixed} :x0 varies

with(x0,y)eBj.
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See Fig. 9. Let g' be the distance the lowest point on the bend is from the bottom
of Bn, g' = sup {sup {distance (F"(x0, y), Bn) : (x0, y)tBn x0 fixed} : x0 varies with
(x0,y')εBn}.

The dimensions of the box Bn and bounds on g and g' (hence choice of t) have
to be chosen to satisfy four conditions :
(7.2a) the height h of Bn must be big enough for F"(Bn) to stretch across Bn from

top to bottom and back to the top again,
(7.2b) the width w must be large enough so that F"(Bn) comes out the top of Bn

and not the sides,
(7.2c) the bound on g' must be small enough to insure that for x' fixed the length

of a component of F"{(x',y) :(x',y)eBn}nBn must be long relative to the
components of F"{(x', y)eBn} — Bn so that τs(Λn(t)) is arbitrarily large,

(7.2d) the gap g must be large enough to make the slope of dFn

t/dy(q) large
enough for q in Bnr\Fn

t(B^ to prove the set An(t) has a hyperbolic structure.
LQtm = n-k and Ht = Fk

t be the map from F"(5Π) V1 to F0. Thus F" from Bn to
F0 is given by Ff

π(χ, y) = Ht(λmx, μmy). For ί = f0, Hί(0,3;1) = (x0,0) corresponds to
the nondegenerate tangency. Let

d, = \dHt/dy(0, yj\ = \dHlt/dy(09 yj\ ,

(7.3) d2 = \dHt/dx(Q,yι)\ and

y = a(x-xn(t))2 + yn(t)

be such that for x' fixed {//(x', y):(x', y)eFr

n(5n)} is C2 near {(.x, y): y = a(x-xn(t))2

+ yn(t)}. Here (xn(ί), j>w(f)) is tne point where y has the smallest value on F"(Bn).
Letting α be an arbitrarily small positive constant which is different for different
quantities, the choices which work to satisfy (7.2) are

w -m , wλ- (4 + α)
w= — - — , "=1 - = — 7Γ~λ

-
'

The choices for w and h are the same as [N4, p. 126 (l)-(4)] but the bounds for
g and g' are different and more specific. In [N4], g and g' are assumed to be
αw/l~m, where α is a small unspecified constant. Our lower bound on g makes it
clear how large it must be in order to show that An(t) has a hyperbolic structure.
This bound is important in the next section to know, for a nearby value of ί, how
much of Bn must be removed to get a hyperbolic set A'n(ί). As a final remark, the
only place the lower bound of g is used is in the proof of Lemma 7.5 which shows
there are invariant sectors in the unstable direction. The rest of this section
sketches the proof that the choices (7.4) imply (7.2).

Proof of 7.20. For x' fixed, on either side of the minimum the curve F n

t { ( x , yeBn)}
is monotone so its length is less than the sum of the change in the x value plus the
change in the y value. Since F"(x9y) = Ht(μmx9λ

my)9 to show F?(Bn) can stretch
across Bn it suffices for

(̂  - α)λmh ^ 2(w/2) + 2(h + g')
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or

Thus the value h = \v(d1 — α)~ 1λ~m in (6.4) suffices when the α for λ is different and
slightly larger than the α for g'. Π

Proof of 7.2b. To show F"(Bn) comes out the top of Bn rather than the sides, it
suffices to show that α(w/2)2 is larger than h + gf = wλ~m[_(dί-aΓ1 + 10d2(μλ)m].
Thus it suffices for

Mα"1^ -α)"1 + lQd2(μλ)ml .

Thus w = (4 + a)λ~ma~ίd~1 as in (7.4) is adequate to satisfy (7.2b). Π

Proof of 7c. We need to show for x' fixed the length of a component of
ίτ?{(^/ί^)e-B«}n-B/l is l°ng compared with the length of the gap F"{(x'y)EBn}-Bn.
The length of the gap is less than the sum of the change in its x coordinate plus the
change in its y coordinate. Thus it is less than

g' + (g'/a}112 g

The length of a component of F^{(x'9y)eBn}r^Bn is greater than the change in its
x-coordinate. Thus it is greater than

(h/ά)112 - (g'/a)112 > w1/2/Γ m/2(^ - α)~ 1/2<Γ 1/2 - (wl(W2/ΛΓ ψ2 .

Combining, the ratio is greater than

- α)] " 1/2 - w11 V/2[10d2q- *] 1/2 ^ w1/2r m/2[αrfj " 1/22

Since μA < 1, this ratio can be made as large as desired for large n. The argument in
[N4, pp. 134-136] shows this estimate implies the stable thickness τs(Λn(t)) is as
large as desired for large n. Π

Proof of 7.2d. To show Λn(t) has a hyperbolic structure, it is sufficient to find
invariant unstable sectors S(z)CTzM for z in Fn

t(B^)r\Bn which are invariant and
expanded by DF*n(z) for large fc, \DF*"(z)v\>v for v in S(z). Unfortunately the
vectors in the unstable sectors are not expanded for fc=l, but there is a power
j = k(z)n depending on the point z which expands vectors. By a compactness
argument there is one power kn which works for all points in Λn(t) proving the
existence of an expanding invariant subbundle. The existence of the stable bundle
is similar and even slightly easier because μ<λ~1.

The first step is to define the sectors S(z). For z = (x,y) in Fn

t(B^r\Bn and
z_1=F~n(z\ the slope oϊ(dFn

t/dy}(z_J is about 2a(x-xn(t)). Define ξ(z), ξ + (z), and
η>l by

ξ(z) = 2a(x-xn(t))9
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The sectors are defined by

Thus for v in S(z) the slope of v lies between η~1ξ(z) and ηξ(z). This allows for
either positive or negative slope depending on the sign of ξ(z), i.e. the sign of
x-xn(t).

7.5. Lemma. The sectors are invariant under DFn

t, i.e. if z and F"(z) are in
BnnFΐ(Bnl then DF?(z)S(z)CS(F?(z)).

Proof. If t; = (ι;1,ι;2)eS(z), then (vf

ί9v
f

2) = DF^(z)(v19υ2) = (μmv19λ
mυ2) is nearly

vertical :

\vyv\\ = \λmV2/μm

Vl\ >(λμ~ TT 1| + (z)

>(λμ~ 'ΓίΓ I2(agγl2^(λμ- l)mη~ I

which is arbitrarily large for large n because λμ~1>ί. Then v" = (v"ί,v2)
= DFΐ(z)(vί9υ2) = DHt(F?(z))(υ'ί9v'ί) has slope about ξ(F"(z)) which is between
η-1ξ(F^(z)} and ηξ(Fn

t(z)\ Thus υ" lies in S(Fn

t(z)\ This proves Lemma 7.5. D
Next we show for z bounded away from the bend at the bottom, the vectors

in S(z) are immediately expanded.

7.6. Lemma. // z = (x9y) is in Bn with y — yn(t) = yh and v is in S(z\ then \\DF"(z)υ\\
\\. If y^l/12, then \\DFn

t(z)v\\ > \\v\\.

Proof. Let v" = DFn

t(z)v. Then

For 7^1/12, 4y1/2η~1(l-u)>l by the choice of η. This proves (7.6). Π

Even for the larger gap g allowed in [N4], it is not possible for all points in Bn

to have y — yn(t)^h/12. For z with y — yn(t)^h/129 the derivative DFn

t(z] contracts
vectors in S(z), but the next few iterates z — F"j(z) for l^j^k have y. — yn(t) ^ /z/2,
and so DFn

t(z^ expands vectors in S(Zj). Claim 7.7 below shows that the total effect
of DF"(k+1\z) = DF"(zk)...DF^(zί)DF"(z) is to expand vectors in S(z). More precisely
let y0 be the value of y on the bottom of Bn and H1 = {zeBn :y — y0^h/2}. For
z = (x,y) with y-y0^h/8, let k = k(z) be the integer such that F"j(z)εHl for ί^j

7.7. Lemma. // y — y0^/z/12, then for k = k(z) as above and v in S(z)
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Proof. Let z = (x, y) be in Bn with y — yQ = yh. To estimate the number of iterates z
stays in Hί9 fc(z), we need to show zί=(xί,y1) = F"(z) is very near the top of Bn.
Also we need to compare the maximal and minimal stretches of vectors in S(ζ) for
ζ in HΓ

The partial derivative \dF"/dy\^(l+a)d^m. The slope of the image F?(Bn) is
always less than the slope at the top, s,

because g'/h is small. Let ytop be the value of y on the top of Bn. Then

because y ̂  1/12 < 1/8. Thus z1 is in H1 and J>top — 3Ί is proportional to yh.
Let lmax and Am a xbe the maximal and minimal stretch of vectors in S(ζ) for ζ

in H1. Similarly let ξmax and ξ maxbe the maximal and minimal value of ξ + (ζ) for ζ
in Hv Then

and

Then

and

By the coice of η, λmίn^(λ^x)21/4 and A*,ln^^21/4 because fc(z)^l (Zl is in HJ.
Using the fact zt is a distance at most γh(l +α)d1λ

m down the strip F"(Bn) and
that f (" stretches lengths along F^(Bn) at most λmax, it follws that the value k = k(z)
satisfies

Ay4(l + ocMmax^ ft/2,

^
and

ALx

Thus for i; in S(z) and y- 3;π(ί) = ̂ ^ ft/12

by the choice of η. This completes the proof of (7.7).
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7.8. Proposition. For g as given in (7.4), the maximal invariant set in Bn for F",
Λn(t\ has a hyperbolic structure.

Proof. The sector S(z) is mapped inside the sector S(F"(z)) by Lemma 7.5.
Therefore there is an invariant bundle Eu

z for z in Λn(t). By Lemmas 7.6 and 7.7, the
vectors υ in Eu

z are eventually expanded. Since this is true for each z in Λn(t\ there
are C>0 and λu>l such that for υ in Eu

z and j^O, \\DFn

t\z)v\\ ^Cλi\\υ\\. (This
follows because all the Lyapunov characteristic exponents are positive.)

To show there is a contracting bundle, let S*(z) be the complementary sector to
S(z). It is overflowing by DF"(z) and so is invariant under DF~n(z) :DF~n(z)S*(z)
CS*(F~π(z)). Therefore there is an invariant bundle Es

z for z in Λn(t). By the
hypothesis that μλ< 1, it follows that det(DF"(z))< 1. Since DF"(z) is expanding on
the invariant bundle £", it has to be contracting on the complementary invariant
bundle Es. This completes the proof of Proposition 7.8 and (7.2d). Π

7.9. Remark. If the gap g is smaller than allowed in (7.4) and is so small that a
vector υ in a narrow sector S(z) near the bottom of Bn has an image v" which is
horizontal near the top of Bn, then DF^(z^) would contract v" again. Therefore for
such a small gap, the maximal invariant set is probably not hyperbolic.

8. Thick Stable Manifolds and Tangencies: Proof of Theorem D

Proposition 7.1 proves that there are values ί = ί* when F" has a hyperbolic basic
set Λn(t*)CBn with τs(Λn(t*}) arbitrarily large. There are also other values ί = ίn,
where Wu(Pt,Ft) has a nondegenerate tangency with Ws(Pt,Ft). The following
result shows that there are parameter values where both phenomena occur
simultaneously. Since being a wild hyperbolic set is open, Theorem D follows.

8.1. Proposition. For large enough n, there exists £ = ί** for which (a) F" has a
hyperbolic basic set Λ'n(t**)CBn, (b) Ft has a hyperbolic basic set
Λ(#*)DΛ;(ί**)u{Pt}. (c) τs(Λ(t**)τu(Λ(t?*))>!, and (d) Λ(t**) has a persistent
tangency of Ws(Λ(t**}) and Wu(Λ(t**\ i.e. Λ(t**) is a mid hyperbolic set.

Proof. The idea of the proof is to pull back the parameter value from ί* to t = t**
so that F"(Bn) does not come out the bottom of Bn and there is a near tangency of
Ws(pn) and Wu(pt), where pn = pn(t) is a hyperbolic fixed point of F" in Bn. Done
correctly, pn is still contained in a (smaller) hyperbolic basic set Λ'n(t) with τs(A'n(t))
^AΛn(tn))-ε. _

Before this is done we need a preliminary step. It is seen by the work of
Silnikov that there is a parameter value t=tί near ί0 such that Wu(Pt, Ft) has some
point of transverse intersection with Ws(Pt, Ft) and other points where there is a
nondegenerate tangency. See [HG], [GS] or [N4]. See Fig. lib. Thus we can
assume that Pt is already an element of a hyperbolic set A1(ί1).

Take T such that Tτu(Aί(tJ)>4. The thickness varies continuously for C2

changes of Ff, [N4, Proposition 6.2], so there is an interval / about t1 such that for
t in /, Tτu(Λl(t)}>2. By the results of Sect. 7, for large enough n there is a ί* in /
and another hyperbolic set for F", An(t*)CBn9 with τs(Λn(t*))>T. There is a fixed
point of Fn

t in Λn(t*)9 pn(t*). Take t = ί** with ίx < ί** < ίn such that F?(Bn) does not
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<\

α) b)

Fig. 10 a. The image F"(Bn] is shown with Bn for f — f**: b The position of the stable and unstable
manifolds for pn are shown for t = t**

α) b)

Fig. lla and b. The stable and unstable manifolds for Pt are shown. The extra pieces of the stable
manifold are labelled S. a ί = ί0; b t = t1

Fig. 12. "A" labels the overlap of y^Ws(Λ'n(t**)) and yn W%4;,(£**)) which is of size about wd2μ
m/4. The

width "C" between pieces of Wu(pn(t**)) is about wd2μ
m

come all the way out the bottom of Bn and in fact Wu(pn(t), F") comes above but
within wd2μ

m/4 of a tangency with Ws(pn(t\ F"). See Fig. 12. Note the first tangency
of Ws(pn(s\F?) and Wu(pn(s\Fs") occurs for t**<s<tn, when there are still other
points of transverse intersection of Wu(pn(s\ F") and Ws(pn(s\ F"). We show below
that there is a new smaller hyperbolic set for F" with ί = ί?*, Λ'(t**), withj r t n ~ /ίv n '*

(8.2b) the Cantor set fo stable and unstable manifolds for Λ'n(t**) overlap near
the bottom of Fn

t(Bn) for ί = ί**,

and

.2c) the stable and unstable manifolds of Λ'n(t**) and
transversally.

intersect
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α ) b )

Fig. 13. (a) The shaded region is B(- J); (b) The shaded region is B(J)

Fig. 14. U~ is F~"(17)

Using (8.2c), [N4, Lemma 8] proves there is a larger hyperbolic set A(t**)D Λ^t**)

u4,(ίπ**). Then τs(/l(ίr))τV(C*))^^(ίr))^(^ι(C*))>l
To use the thickness to show there is a persistent tangency, we need a C1 curve

y on which the minima of Wu relative to Ws occurs. Thus y is a curve of potential
tangencies. If the manifolds W\Λ(t**)) could be extended to a C2 foliation, the
existence of y would be easy: we could take C2 coordinates such that these
manifolds were straight horizontal lines and look at the minima of Ws(Λ(t**}} in
these coordinates. The argument [N4, Lemma 9 and pp. 119-120] modifies this
argument so it works with only a foliation whith C1 tangent vectors. The sketch of
this proof is as follows. The Cantor set of unstable manifolds, W\Λ(t**}} can be
extended near qn [a point on Ws(pn) near the minimum of W(p^ see Fig. 12] to a
foliation 3FU with C1 tangent vectors. Similarly Ws(Λ(t**)) can be extended near qn

to ^s. The foliations ^u and ̂ s will have nondegenerate tangencies and so
intersect along a C1 curve y. It then follows that for a small enough curve y,
around qn, τ(Ws(Λ(t^)}r^y^τ(Wu(Λ(t^}}(^y^>l, since the thickness can be mea-
sured along any C1 curve. Therefore these two Cantor sets intersect and
Ws(Λ(t**)) has a persistent tangency with Wu(Λ(t**}} proving (8. Id).

Fix ί= ί**, which is chosen as above. We end this section by showing there is a
hyperbolic basic set Λ'n(t) for F" satisfying (8.2a-c). This clarifies the last paragraph
of the proof of [N4, Lemma 7] on p. 138.

Let B(-J)= and ) = Π F"W The set B(J) is made up of
7 = 0 j = 0

"vertical" strips of width about wdJ

2μ
mJ and B( — J) of "horizontal" strips of width

about wCλ~m~mJ. See Fig. 13.
The idea is to remove the part of Bn near the bottom where the slope of dFn

t/dy
is less than δn, where δn = 2[awd2μ

m/4~]ll2η~l. If any part of a component of
B( — J}r\B(J] is removed, then the whole component should be removed. Let the

j
set removed be denoted by £7, and let B'n = Bn- U. Let B'(J)= f) F?j(B'n), B'(-J)
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-j

= Π F?(Bnl and B'( -J,J) = B'( - J)nβ'(J). Then B'n( - J, J) is made up of boxes.
j = o

In B'n( — J, J), dFJdy has slope greater than δn. Therefore the maximal invariant set

in B'n, Λ'n(t}= p) F?(B'n) = Q F?jB'n(-J,J), has a hyperbolic structure by the proof
j j

of Proposition 7.8. [Note the tangencies in F?(U) are also removed.] For J large
enough, the height of the hook of a strip in B(J) below the intersection with B'n is
less than g'= wWd2μ

m = hWd2(dί — a)(μλ)m. The length left in B'n is approximately
as before. Therefore the argument as before shows that τs(A'n(t)>T, condition
(8.2a). The Cantor sets of stable and unstable manifolds overlap because pn(t) is in
Λ'n(t) and the choice of t**, condition (8.2b).

Condition (8.2c) follows by looking at F" on Wu(pn). Each iterate extends a
local unstable manifold further up until it crosses Ws(Pt) transversally. See Figs. 6,
11, and 12. Similarly the manifolds Ws(pn) cut across Wu(Pt) which cups around
A'n(t%*). See Fig. 6 and [N4, p. 134]. This completes the proof of (8.2), Proposition
8.1, and Theorem D.

8.3. Remark. For maps of the real line, f(x\ [or their corresponding graphs F(x, y)
= (37, /(y))] it is also possible to create hyperbolic sets with τs as large as desired.
However for maps of the interval τ" = 0, so the product τsτu = 0 is never greater
than one. Therefore it is impossible to create persistent tangencies for maps of the
interval. See [V] for a discussion of the comparison of maps of the interval and
maps of the plane.

9. Infinitely Many Sinks: Theorem E

By the assumptions of the theorem, there is an interval of parameter values J such
that for each t in J there is a nondegenerate tangency of Ws(A(t)9Ft) and
Wu(A(t\Ft). Because A(t) is a hyperbolic set with a dense orbit, the manifolds
Ws(Pt9Ft) and W"(Pf,Ff) are dense in W\A(t\Ft] and Wu(A(t\Ft\ respectively.
Because Ws(A(t\ Ft) and W*(A(t\ Ft) have a tangency for each t in J and because
this tangency changes location by assumption (iv) in the definition of nonde-
generate creation of homoclinic intersection, it follows that there is a dense set of
parameter values J'CJ such that for t in J' the manifolds Ws(Pt,Ft) and Wu(Pt,Ft]
have nondegenerate tangencies. By Proposition 3.3 and the argument of Sect. 5,
the set J 1C J with at least one sink is dense. It is also open. Since J/nJ1 is dense,
repeating the argument proves that the set J2 with at least two sinks is dense and
open. By induction, the set Jk with at least fc sinks is dense and open. Therefore
j^ = P) { J k : k = i ? 2,...} is a residual subset of J in the sense of Baire category. For
t in J^, Ft has infinitely many sinks.
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