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The Order Parameter in a Spin Glass

A. C. D. van Enter1 and Robert B. Griffiths2
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Abstract. Various possible precise definitions of an Edwards-Anderson type of
order parameter for an Ising model spin glass are considered, using boundary
conditions for a finite system, states of an infinite system, and a duplicate-system
approach. Several of these definitions are shown to yield identical results.

I. Introduction

It is generally believed that if spin glass ordering can be described within the
framework of equilibrium statistical mechanics, it corresponds to a non-zero value
of the Edwards-Anderson order parameter [1]

qEA = «sί>
2>, ( i)

where St is the magnetization at site /, the inner brackets refer to a thermal average,
and the outer brackets an average over an ensemble of random systems. As it stands,
this definition is ambiguous, since it will depend, in general, on the choice of
boundary conditions for finite random systems.

For a random Ising model (Sect. II) we consider some alternative definitions
(Sect. Ill) which have the virtue of being well-defined in the thermodynamic limit.
One is a "thermodynamic" definition [2], one is based on states of an infinite system,
and one on the maximization of a quantity like (1) over all possible boundary
conditions. We show (Sect. IV) that in the thermodynamic limit they are all well-
defined and equal to each other. For simplicity of exposition, the discussion is
limited to zero magnetic field, but its extension to non-zero field (Sect. V) causes no
difficulty. Yet another rather appealing definition (Sect. VI) encounters some
technical difficulties we have not resolved.

II. Spin-Glass Model

For simplicity of exposition and in order to avoid having to state a host of technical
restrictions, we l imit our discussion to a random Ising model SL — + 1 with
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dimensionless Hamiltonian (i.e., the energy divided by -kT) equal to

t (2)

Here i and) are vector locations of sites on a Bravais lattice of arbitrary (but finite)
dimensionality d, B is a magnetic field, J(i —j} = J(j — i) is an interaction of finite
range depending only on the vector connecting the sites, and for each pair i,j with
j(i —j) J= 0, τtj = τjt is a real random variable. The τij9 denoted collectively by τ, are
independently distributed for each pair ij the distribution has a finite first moment,
and depends only on i —j.

The Hamiltonian HΛ for a finite set A containing \A \ lattice sites is obtained by
restricting the sums in (2) to i and j in A. The corresponding dimensionless free
energy for the finite system,/^!), is given by

], (3)

where Tr^ is the sum over the Sf with ieA. This can be averaged over τ to yield

L = fΛι(τ)dμ(τ), (4)

where μ is the probability measure for τ. It can be shown that as A -> oo in the sense
of van Hove,/^ approaches a unique limit/[3], and that with probability onefΛ(τ)
approaches the same limit as A -> oo [4, 5, 6]. In what follows we shall restrict
ourselves to regions A which are rectangular boxes. A sequence of such boxes which
eventually contains every site of the lattice is then a van Hove sequence.

III. Order Parameters

For a given τ, that is to say, a set of τij9 there will in general be a number of
equilibrium states for the infinite system satisfying the DLR equations [7] and
(equivalently) certain variational properties [8]. In the case of non-random systems
with interactions invariant under translations (as in the usual Ising ferromagnet), the
translationally invariant equilibrium states are often thought of as pure phases.
However, non-translationally invariant states are also possible (as in anti-
ferromagnets, or the states describing interfaces in Ising ferromagnet s with d^.3).
From this point of view, "phase coexistence" or "ordering" corresponds to the
existence of more than one equilibrium state, and an order parameter should in
some sense be a measure of the extent by which different equilibrium states differ
from each other.

In what follows, we shall, to simplify the exposition, consider only the case B = 0,
and at the end of the paper indicate the appropriate modifications for B ̂  0. Our
first proposal for our order parameter corresponding to (1) is then

q= lim maxl/ t r 1 £ [pα(^)]2, (5)
Λ-> oo α ieΛ

where pΛ(A) is the average of A in the equilibrium state labeled by α. The set of
equilibrium states will, of course, depend upon τ, so that the above definition will, in
general, yield a q which depends on τ. However, as the subsequent argument will
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demonstrate, with probability 1, q does not depend on τ, nor on the choice of the van
Hove sequence. Of course the state α which leads to a maximum (there is always at
least one such state, for the set of equilibrium states is compact in the weak-*
topology) could very well depend upon Λ, and the reader may well wonder whether
the maximum (or supremum) over α could not be taken after the thermodynamic
limit Λ-+OO. We comment on this point at the end of the paper. One further remark
about this definition: if the equilibrium state is unique (as, for example, one expects it
to be at high temperatures) then pα(5ί) is zero by the spin reversal symmetry (S.
replaced by — Sf for all i) of H when B = 0, and hence q = Q.

The preceding definition makes use of states of the infinite system, but for a given
Λ only makes use of the properties of these states restricted to sites in A. A closely
related definition is as follows. For a given finite A, let A be the sites of A together
with all sites) outside A such that J(i —j)=£Q for some site i in A. As the interactions
have finite range, A will be finite. Let ρΛ be the Gibbs distribution for the Si9 IE A,
given that the "boundary spins" Spj mA\A, denoted collectively by μ, have specified
values:

(6)

where note that the denominator is a sum over St with i in A, not A.
We now define

q= lim max |/l Γ1 £ [p^μ^ )]2' (7)
Λ -> oo μ /e/t

where the maximization is now over all possible choices of spin variables in the
boundary of Λ Once again, the definition depends on τ, but, as in the case of q, we
shall show that with probability 1 a unique value is obtained, independent of the van
Hove sequence, which is equal to q.

The thermodynamic definition1 is as follows. We construct two identical
systems with the same τ and a coupling between corresponding sites so that the total
Hamiltonian is

H'(λ, τ) = H ( 1 )(τ) ® 1 + 1 ® Ή(2)(τ) + Λ£ S\ί]S[2\ (8)
i

with H(l) obtained by replacing St and S} in (2) by S<° and S f . We may think of the
duplicates as lying on top of each other, so that any finite box A contains the same set
of sites for each. Replacing HΛ by H'Λ in (3) and dividing the right side by 2 yields an
fΛ(λ, τ) which is identical to the previous/^τ) when λ = 0, and has a thermodynamic
limit (with probability \)f(λ) equal to/when λ = 0.

We now define the order parameter qp by

<?P = 2/'(0 + ), (9)

where/' denotes df/dλ, and 0 + the limit of this derivative as λ goes to zero through
positive values. As f ( λ ) is convex, this limit exists, and is independent of τ with
probability 1.

1 This order parameter, with a clear statement of the necessary limits, is defined in Eq. (17) of ref. [2]
where it is ascribed to [17]. Similar ideas will be found in [18], Eq. ( l ib) ; [19], Eq. (B8); and [20]
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IV. Equality of Order Parameters

We shall now show that q, q, and qp are all equal. The first step is to establish that

The first inequality follows from the fact that an equilibrium state of an infinite
system restricted to a finite set A, as used in (5), is a convex combination of the pΛfμ,
and hence the right side of (5) for a given A (and τ) cannot exceed the right side of (7)
for the same A (and τ) [7]. The second inequality is the result of a very general
argument by which a thermodynamic derivative in a classical system (commuting
variables) places an upper bound on a probability distribution as A -> oo [9]. If the
magnetization in ref. [9] (note that the free energy employed in that paper is concave)
is replaced by Σ S\1}S\2) in the duplicate system, and for a finite A each of the
duplicate systems has the same boundary condition, namely the one maximizing the
right side of (7), the argument in [9] can be applied to show that q^qp.

The second and less trivial step is to show that

qp^q (11)

To prove this, we introduce the following notation. For p any state of the duplicate
system, let

/?» = MΓ1χp(Sί1 )s}2 )), (12)
ieΛ

and for a given λ and τ let

QΛ(ίτ)=maxRΛ(p(λ,τ)\ (13)
pU,τ)

where ρ(λ, τ) is any equilibrium state corresponding to H\λ, τ). The following result
is proved in App. A:

Lemma. There is an upper semi-continuous function q(λ) such that

q(λ)= lira lQΛ(λ,τ)dμ(τ) (14)
Λ — » oo

for every van Hove sequence of rectangular boxes A. For a fixed A the integral is not
less than q(λ). In addition, for a given λ it is the case that for almost all τ,

q(λ)= lim QA(λ,τ) (15)
Λ ~> oo

for any van Hove sequence.

The quantity q(0) is identical with q as defined in (5). The reason is that when
λ = 0, the extremal equilibrium states of the duplicate system are products pa ®pβ of
equilibrium states of the two non-interacting pieces. Thus the lemma implies that for
almost all τ the limit in (5) exists and is independent of the van Hove sequence.

To prove (1 1), we use the variational principle [8, 1 1] which states that if p is any
state of the infinite system with Hamiltonian H,

, (16)
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where fΛ is defined by (3) and FΛ is the free energy per site calculated in the state p
restricted to A. In addition, if p is an equilibrium state for //,

fΛ£FΛ(p,H) + 2\\WΛ\\/\Λ\ (17)

(see the appendix of [ 1 0] ), where WΛ is the sum of all terms in H connecting the sites
inside A with the sites outside, and || WΛ \\ is the maximum value of this quantity.
Although it is not noted explicitly in these equations, the reader should remember
that H, WΛ,fΛ, and the equilibrium states depend on τ.

Now let us assume that p(λ,τ) is an equilibrium state for the duplicate system
with λ > 0. Inserting it in (1 7) with H equal to H*(λ, τ) and in (1 6)2 with H equal to
#'(0,1), and subtracting one equation from the other, we obtain

^~1[Λατ)-/yl(0,τ)]^JR>aτ)) + 2 | |^ | |/ |vl . (18)

As this inequality holds for any p(λ,τ), we can replace jR^ by QΛ(λ,τ). Upon
integrating both sides over the probability distribution μ(τ) and taking the limit A
-> oo , we obtain

where the first inequality follows from the convexity off(λ). We now take the limit as
λ goes to zero through positive values and note that q(λ) is upper semi-continuous in
order to get (11). This completes the proof. (Note that the fact that q is "squeezed"
between q and qp implies that (7) cannot depend on the van Hove sequence.)

V. Non-zero Magnetic Field

When the external magnetic field B is not zero, (5), (7), and (9) define quantities which
will in general not be zero even when the equilibrium state is unique. To obtain an
order parameter which is zero when the equilibrium state is unique, one can define

1=%Ά+-q-\ (20)

where (5) is now the definition of q + , and

q_ = lim minMΓ 1 χPα(5>^). (21)
Λ-»oo Λ,β ieΛ

Similarly, q is defined in analogy with (20), letting (7) define q+ and letting

q_ = lim mi
Λ-* oo μ,

Finally, the new definition of qp is

q_ = lim minMΓ 1 £ p^SJp^SJ. (22)
Λ-* oo μ,v ieΛ

$P = [/'(0+)-/'(0_)]. (23)

The method employed above can then be used to show that q, q, and qp are again
equal; in fact, the " + " contributions are equal to each other, and likewise the " — "
contributions are equal.

2 When using (16) and (17) for the duplicate system,/^ should be replaced by 2fA and || WΛ \\ multiplied by 2
because the region Λ has 2\Λ\ sites
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VI. An Alternative Definition of the Order Parameter

Finally, let us comment on interchanging the maximum with the thermodynamic
limit in (5). It would certainly be appealing to define (for B = Q; analogous
considerations apply with B =/= 0) a quantity

4 = max lim MΓ 1 Σ [pα(^)]2 (24)
Λ-

as the order parameter, especially if one could show that q were equal to q.
Obviously q cannot be larger than q, but one can imagine a state of affairs in which it
would actually be smaller. Suppose there were an infinite number of equilibrium
states, and that for each of these RΛ were to approach q, or a smaller number, as
A -> oo. It could still be the case that for any finite A one could choose a particular state
giving an RΛ significantly larger than q, provided the equilibrium states employed in
(5) and (24) were inhomogeneous on arbitrarily large length scales. It seems difficult
to rule out this possibility a priori.

In addition, the definition (24) suffers from a host of technical difficulties. The
thermodynamic limit could fail to exist, or it could depend on the van Hove
sequence considered. This difficulty can be "cured" by the somewhat awkward
device of taking the lim sup for each van Hove sequence and the supremum of these
over all van Hove sequences (compare [12]). The resulting limit may or may not be a
continuous function of the state α in the weak- * topology; hence the maximum over
α should be replaced by the supremum. There remains a possible dependence upon τ.
It is not hard to show that q(τ) will be invariant under translations of τ, and hence
one might hope to use the ergodic theorem (see [13]) to show that q is constant
almost everywhere. However, this argument requires that q be a measurable
function of τ—and while we think this is likely to be true, we do not have a proof.

Appendix A. Proof of Lemma

Let A1 be a particular rectangular box and let A be any larger box which can be
exactly covered by A1 and its translates, labelled AJ9 arranged so that no two of these
have any sites in common. It then follows from the definition (12) that

1 A*» — Σ^>), (Ai)
nj=ι

and thus, from (13), that

QΛ(λ9τ)^- £ QΛ(λ,τ)9 (A2)
H J = ! J

and therefore, assuming the integrals exist,

\QΛ(λ,τ)dμ(τ)^. §QΛ{(λ,τ)dμ(τ), (A3)

where we have used the fact that the measure μ(τ) is invariant under translations of
the lattice, which implies that the integral of QΛ is independent oϊj. The existence of
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the integrals, given that μ is a probability measure and QΛ is bounded, is assured if
QΛ is a measurable function of τ (see Appendix B).

The inequality (A3), and the fact that QΛ ̂  — 1 shows that q(λ) in (14) can be
obtained as the limit of a van Hove sequence in which the larger boxes can be exactly
covered by copies of the smaller boxes. But if the coverage is not exact, the error is
easily bounded, due to the fact that p(S\1)S\2)) always lies between — 1 and + 1 , and
this can be used, in a series of classical arguments [1 1, 14, 1 5], to show that the limit
is independent of the van Hove sequence.

To establish (15), define

q(λ,τ) = limsupQΛ(λ,τ) (A4)
/!-> oo

for a particular van Hove sequence. It is easy to show that if t is a translation of the
lattice, i.e.,

(tτ):j = τi+k,j+k (A5)

for some k in the Bravais lattice, then

(A6)

(one way to think about this is to leave τ fixed and translate the A). But then, by the
ergodic property [13], q(λ,τ) is constant for almost all τ; integration over τ then
shows that it is the same as q(λ).

To show that q(λ) is upper semi-continuous, we first show that QΛ(λ,τ) has this
property for a fixed A and τ. Indeed, assume that there were a sequence λj tending to
λ0 such that for some ε > 0,

QΛ(λj9τ)^QA(λ0,τ) + ε. (A7)

Then from the ρj which maximize (13) we could pick a subsequence converging
(weak-*) to a state p0 which is an equilibrium state for A0, and evidently

£>o)^βΛ,τ) + 8, (A8)

which contradicts the definition (13). Thus QΛ(λ,τ) is upper semicontinuous in λ.
Consequently the integral in (14) for a fixed A is upper semi-continuous in λ. The
corresponding property for q(λ) is a consequence of (1 4) and the fact that the integral
for a fixed A is not less than q(λ).

Appendix B. Measurability of QΛ(λ9 τ)

Let λ and A be fixed, and let M be some set of sites which includes Λ. Then it is the
case that

= lim max^(pMfμ(Λτ)), (B.I)

where the maximum is over the set of boundary conditions for the region M, and the
limit is over a van Hove sequence. To see that this is correct, note that any
equilibrium state of the infinite system restricted to Λ is a convex combination of the
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PM,μ states restricted to A, so the lim inf of the right side of (B.I) cannot be less than
the left side. On the other hand, if the lim sup were larger than the left side, we could
find a subsequence of the van Hove sequence such that the corresponding sequence
of states pM>μ converged to a state (necessarily an equilibrium state) as M-»oo
yielding a value for RΛ larger than QΛ—which is obviously impossible.

For a given M, pM>μ is a continuous function of a finite number o f τ i j 9 those with i
andy in M, and is independent of the other τ f j . Thus it is a continuous function of τ, as
is the maximum over μ oϊRΛ on the right side of (B. \). Thus QΛ is a pointwise limit of
continuous functions, and hence [16] measurable.
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