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Abstract. Asymptotic Rayleigh-Schrodinger perturbation theory for discrete
eigenvalues is developed systematically in the general degenerate case. For this
purpose we study the spectral properties of m x m—matrix functions A(κ) of a
complex variable K which have an asymptotic expansion ΣAkι£ as K -» 0. We
show that asymptotic expansions for groups of eigenvalues and for the
corresponding spectral projections of A(κ) can be obtained from the set {Ak} by
analytic perturbation theory. Special attention is given to the case where A(κ) is
Borel-summable in some sector originating from K = 0 with opening angle) π.
Here we prove that the asymptotic series describe individual eigenvalues and
eigenprojections of A(κ) which are shown to be holomorphic in S near K = 0 and
Borel summable if Af = Ak for all k. We then fit these results into the scheme of
Rayleigh-Schrodinger perturbation theory and we give some examples of
asymptotic estimates for Schrδdinger operators.

Introduction

Convergent (or analytic) perturbation theory has long been established in full
generality by Kato [9] and Baumgartel [3]. Yet, among the simplest problems of
quantum mechanics, there are cases where the perturbation series diverge and have
only an asymptotic validity: the anharmonic oscillator [10], the Stark-effect [7]
and the Zeeman-eίfect [2]. In all these examples the perturbed eigenvalues can be
constructed as the Borel-sum of their divergent asymptotic series.

These beautiful results are not quite satisfactory in one respect: they suffer from
the unnatural assumption that the unperturbed eigenvalue is non-degenerate (or, in
some cases, that its degeneracy is lifted in first order). In their accounts of asymptotic
perturbation theory Reed and Simon [10] tacitly ignore the degenerate case while
Kato ([9], Chap. 8) only discusses low order perturbations of semi-simple
eigenvalues. Our aim is to remove restrictions of this kind and to develop asymptotic
perturbation theory in the general degenerate case to any possible order.

Not surprisingly it turns out that the heart of the matter is the finite-dimensional
case. Given an m x m—matrix valued function A(κ) of a complex variable K which
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has an asymptotic expansion

N

A(k)= £ Akκ
k + o(κN) = B(κ) + o(κN)

fc=0

as K-+0, what can we say about the asymptotic behaviour of its eigenvalues and
eigenprojections ? This problem is examined in Sects. 1 and 2. We show that the
(convergent) perturbation series calculated from B(κ) are asymptotic to groups of
eigenvalues and to the corresponding spectral projections of A(κ) up to a certain
order which can be estimated in terms of ra and N. In Sect. 3 this is applied to
functions A(κ) which have an asymptotic expansion to all orders in K. Then the
eigenvalues of A(κ) fall into groups which are asymptotically degenerate to all orders
as τc-»0. These groups and the corresponding spectral projections have asymptotic
Puiseux- and Puiseux/Laurent-series which can be constructed from the set {Ak} of
the expansion coefficients by analytic perturbation theory. Of special importance to
quantum mechanics is the case where A* = Ak for all k (even when A(κ) is not defined
or not selfadjoint for real /c); then the perturbation series reduce to asymptotic
Taylor series.

In Sect. 4 we consider matrix-functions A(κ) which are Borel-summable in some
sec tor S of opening angle > π originating at K = 0. We show that the eigenvalues and
eigenprojections of A(κ) are holomorphic in S near κ = 0 and that different
eigenvalues cannot be asymptotically degenerate to all orders as /c—>0. The
asymptotic series constructed in Sect. 3 then describe individual eigenvalues and
eigenprojections of A(κ\ If A£ = Ak for all /c, we prove that the asymptotic Taylor-
series are Borel-summable to the eigenvalues and eigenprojections and that the
eigennilpotents vanish identically in S near K = 0. For Borel-summable A(κ) we thus
obtain considerably more spectral information near K = 0 than in the general
asymptotic case. This may be useful even if one is not actually interested in
calculating and summing the perturbation series.

Section 5 contains an outline of asymptotic Rayleigh-Schrodinger perturbation
theory in Hubert space for degenerate discrete eigenvalues. The first requirement is
that the eigenvalue under consideration is stable in the sense of Kato ([9], Chap. 8,
Sect. 1). This is not discussed further, but we remark that non-perturbative methods
are available to prove stability [11]. The standard reduction then leads to an
operator A(κ) acting in the finite-dimensional unperturbed spectral subspace.
Rayleigh-Schrodinger perturbation theory gives an expansion ofA(κ) in powers of
K, and the second problem is to estimate its Nth order remainder. We give some
illustrations of asymptotic estimates for Schrδdinger operators using the method of
exponential bounds. The third step is then to construct asymptotic expansions for
the eigenvalues and spectral projections of A(κ): this is where our results for the
finite-dimensional case apply.

1. Asymptotics of Eigenvalues

With Cm we denote the m-dimensional complex Hubert space. Then L(Cm) is the
algebra of linear operators on Cm with the corresponding operator norm.
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Theorem 1.1 Let S be a complex set with OεS\S and A(κ) a function from S to L(Cm),
which has an asymptotic expansion in powers of K to some order N ^ 0 :

N

A(κ) = £ Akκ
k + C(κ) = B(κ) + C(κ\

(1.1)
κ->0

Then
(i) the Puiseux-seriesfor the eigenvalues ofB(κ) are asymptotic to the eigenvalues

of A(κ) to all orders ^ JV/m;
(ii) if A£ = Akfor k = Q...N, the Taylor- series for the eigenvalues of B(κ) are

asymptotic to the eigenvalues of A(κ) to all orders^ N.

Remarks. According to analytic perturbation theory ([3], [9]) the eigenvalues of
B(κ) form a set of cycles (b(κ) } : each cycle is a different multivalued analytic function

b(κ)= £ bkκ\ (1.2)
k = 0

k = r/p; r = 0,l,2...

in a punctured disc 0<|κ: |<<5, where p is the order of the branch point
K — 0 of b(κ\ Each cycle represents a certain number g of eigenvalues which are
equally distributed among the p branches : g is a multiple of/? and each branch of b(κ)
is an eigenvalue of B(κ] with algebraic multiplicity g/p. We call g the "weight" and p
the 'length" of the cycle b(κ).

For any n ̂  0 the "πth order eigenvalues" of B(κ) are given by the cycles

b(n\κ)= X V, (1.3)
k<n

obtained from (1.2) by dropping all terms of order >n. In this process several
"parent" cycles b(κ) may reduce to the same cycle b(n\κ\ The length p(n} of b(n\κ) is
then a common divisor of the lengths of the parents and the weight g(n} the total
weight of the parents. Each branch of b(n\κ) represents g(n)/p(n} eigenvalues of B(κ) up
to errors of order o(\κ\n). For r < n the same reduction process leads from {b(n\κ)} to
{b(r\κ}}: we indicate this relation by writing

{b<'\κ)}<{bM(κ)}. (1.4)

The precise statement of Theorem 1.1 (i) is :if n ̂  JV/m, then each branch of b(n)(κ)
also describes g(n)/p(n} eigenvalues of A(κ) up to errors of order o(\κ\n) as κ;->0 in S.

If B*(κ) = B(κ) for real K (where A(κ) need not be defined) the eigenvalues of B(κ)
are holomorphic in a disc \κ\ < (5([9], Chap. II, Theorem 1.10). Then (1.2) reduces to
the Taylor-series (p = 1) for an eigenvalue b(κ) of algebraic multiplicity g. Part (ii) of
Theorem 1.1 says that for n^N, b(n\κ] also represents a group of g(n) eigenvalues of
A(κ) up to errors of order o(\κ\n) as τc->0 in S.

The proof of Theorem 1.1 will be based on the following estimates:
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Lemma 1.2. Let A = B + C be a sum in L(Cm) and Γ a circle in the complex plane. If
|| (z — B)~1C\\ < 1 for all zeΓ, then A and B have the same number of eigenvalues
(including algebraic multiplicities) inside Γ.

Proof. L

exists for all zeΓ and the spectral projection

P(λ) = (2πiΓί$dz(z-A(λ)Γί

r

is continous in λ for \λ\ ̂  1. Therefore dimP(O) = dimP(l) D

Lemma 1.3.

| |>T 1 | |^ |detAΓ 1 MΓ- 1 (1.5)

for all AeL(Cm) with άεtA =£0.

Proof. A has a polar decomposition A = RU with U unitary and R = R* > 0. Let
r t ^r2... ̂ rm be the eigenvalues of R. Then 0<r 1 and (1.5) follows since M"1 1|
= r-\\άetA\ = r1r2...rmand \\A\\ =rm D

Using (1.5) to estimate ||(z — B)'1 \\ in Lemma 1.2 we obtain:

Lemma 1.4. Let A = B + C be a sum in L(Cm\ b1...bm the eigenvalues of B and Γ a
circle in the complex plane. If

m

l\\z-\\> l l z-BII"- 1 ||C ||
Λ = l

for all zeΓ, then A and B have the same number of eigenvalues (including algebraic
multiplicities) inside Γ.

Proof of Theorem LI. For convenience we describe the eigenvalues of B(κ) by m
single- valued functions b±(κ) . . . bm(κ) over some simply connected region (e.g. 0 < | K \
< (5, 0 < arg K ̂  π). We fix n in 0 ̂  n ̂  N/m. Then

bh(κ) = bM(κ)+o(\κ\«), (1.6)

where b(^(κ) are the nih order eigenvalues. If b(^(κ)=b(n)(κ), we say that h ~k. If
h^kit follows from (1.3) that

\bM(κ)-W(κ)\^β\κ\" (1.7)

for some β > 0 and small K. Let Γκ be the circle with center b("\κ) and radius 2R \ K |w,
where R is chosen in 0 < R < β/4. For | K \ sufficiently small we see from (1.6) and (1 .7)
that bh(κ) is inside or outside Γκ for h ~ 1 or h ̂  1 and has distance > R\κ\" from Γκ

in both cases. Since nm ̂  N, it follows from (1.1) that

m

Yl\z-bh(κ)\ZRm\κΓ>\\z-B(κ)\r-1\\C(κ)\\



Degenerate Asymptotic Perturbation Theory 223

for small κe8 and all zeΓκ. By Lemma 1 .4 A(κ] and B(κ] then have the same number
of eigenvalues inside Γκ. Repeating this argument we locate all eigenvalues of A(κ)
within circles of radius 2.R | K \n around the nth order eigenvalues b(£\κ}, provided that
I K I is sufficiently small (depending on R). Part (i) of the theorem now follows since R
may be chosen arbitrarily small.

To prove part (ii) we recall that in this case B(κ) has a spectral representation

with holomorphic eigenvalues bh(κ) and eigenprojections Ph(κ) in a disc | κ\ < δ ([9],
Chap. II, Theorem 1.10). Hence there is a constant y such that

h

Using this bound instead of (1.5) we obtain the following variant of Lemma 1.4: if

m i n | z - 6 J > y | | C | | (1.8)
h

for all zeΓ, then A and B have the same number of eigenvalues inside Γ. The proof of
part (i) is modified accordingly: we fix n in 0 ̂  n ̂  N, and find

τmn\z-bh(κ)\^R\κ\">γ\\C(κ)\\
h

for small κe8 and all zeΓκ. By (1.8) A(κ) and B(κ) then have the same number of
eigenvalues inside Γκ D

2. Asymptotics of Spectral Projections

We assume that A(κ) satisfies the hypothesis of Theorem 1.1. For n ̂  N/m and a
given cycle b(n)(κ) we call

PB(κ) = (2πiΓί $ dz(z - B^))"1 and

the spectral projections of B(κ) and A(κ) corresponding to the common nth order
eigenvalues b(n)(κ). Here Γκ is any one of the circles of radius 2R\κ\n constructed in
the proof of Theorem 1.1 around the p(n} values of b(n\κ\ Therefore PB(κ] and PA(κ)
are p(n)- valued functions, defined for small κe€ (K =f= 0) and small /ce<S, respectively.

As a result of analytic perturbation theory ([9], Chap. II, Theorem 1.8) PB(κ) is
analytic in a punctured disc 0 < \κ\ < δ with a branch point of order p(n} at K = 0.
This branch point may be an algebraic pole of order rg n(m — 1) so that PB(κ) has a
convergent Puiseux/Laurent-series

k

. — r/M v —= r/p(n\ r = 5,5+1,..., (2.1)
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where s is a possibly negative integer ^ — n(m — l)p(n\ In fact s < 0 always occurs
when p(π)> 1 ([9], Chap. II, Theorem 1.9).

In the special case of Theorem 1.1 (ii) it suffices to choose
n^N. Then || PB(κ) \\ = 1 for real K which implies 5^0 and therefore p(n) = 1. In this
case (2.1) reduces to a Taylor-series.

Theorem 2.1. Suppose that A(κ) satisfies the hypothesis of Theorem LL Let PB(κ)
and PA(κ) be the spectral projections ofB(κ) and A(κ) corresponding to a common nih

order eigenvalue, where n ̂  N/m in general and n^N in the special case A* = Ak

(k = O...N). Then
(i) the Puiseux Laurent-series of PB(κ) is asymptotic to PA(κ) to all orders

^N-n(2m-l);
(ii) if A% = Ak for k = 0 . . . N,. the Taylor-series of PB (K) is asymptotic to PA (K) to

all orders ^ N — n.

Proof. Choosing κe8 sufficiently small, we have ||(z — B(κ))~lC(κ)\\ < 1/2 for all
zeΓκ, and therefore

\\(z-A(κ)Γ1-(z-B(κ)Γί\\<2\\(z-B(κ)Γ1\\2\\C(κ)\\. (2.2)

As in the proof of Theorem 1.1 we use the estimates

Γ*, (2.3)

with q = mnin case (i) and q = n in case (ii). Since Γκ has length ~ | K |n, we obtain from
(1.1), (2.2), (2.3),

\\PA(κ)-PB(κ)\\=o(\κ\N)\κΓ2« D

Remark. The estimates given in Theorems 1.1 and 2.1 can easily be improved if
more than (1.7) is known about the splitting of nth order eigenvalues.

3. Asymptotic Series

Theorem 3.1. Let She a complex set with QeS\S, and A(κ) a function from S to L(Cm)
which has an asymptotic power-series

00

A(κ)~ΣAkκ
k (k integer] (3.1)

fc = 0

for τc->0. Then A(κ) has the following spectral properties for small K:
(i) the eigenvalues form a set of cycles {a(κ)}: each cycle is given by a different

formal Puίseus-series

a(κ): £ akκ\ k = r/p, r = 0, 1, 2... , p = lim p(n\ (3.2)
k = 0 n^co

where p(n) is the number of branches of the finite part

α<">(κ)= £<vc*. (3-3)
k^ n

Each cycle has a weight g = integer multiple of p, and each branch of a(κ) is an
asymptotic series for a group of g/p eigenvalues of A(κ) which are degenerate to all
orders in τc;
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(ii) the spectral projections ofA(κ) corresponding to these p groups form a p-valued
function P(κ) which has an asymptotic Puiseux/ Laurent- series

00

P(κ)~ £ Pkκ\ k = r/p9 r = s ,s+l,s + 2..., (3.4)
k=s/p

where s is a possibly negative integer (s < 0 always occurs when p > 1);
(iii) if A% = Ak for all k, then the series (3.2) and (3.4) reduce to Taylor-series

(p- 1,5 = 0);
(iv) the finite parts of (3.2) and (3.4) are obtained from the finite parts

kAκk

by analytic perturbation theory as described in the proof.

Proof. Let [a(n\κ)} be the nth order eigenvalues of A(N\κ) for N ̂  nm. By Theorem
1.1 they are independent of N and therefore satisfy {a(r\κ)} < (a(n)(κ)} if r < n, in the
sense of (1 .4). Hence there exists v < oo such that for n ̂  v the number of cycles a(n\κ) as
well as the length p(n} = p and the weight g(n) = g of each cycle are independent of n.
Then each a(n\κ) is the finite part of a different cycle (3.2) with length p and weight g.
For n ̂  v the nth order eigenvalues a(n}(κ) are separated by distances > β\κ\v for some
β > 0, and by Theorem 1 . 1 each branch of a(n\κ) describes a group of g/p eigenvalues
of A(κ) up to errors of order o(\κ\n). Since n is arbitrarily large it follows that two
eigenvalues in the same group have a distance vanishing faster than any power of K
as K -» 0. This proves (i).

To prove (ii) we note that P(κ) are the spectral projections of A(κ) corresponding
to the vth order eigenvalues a(v)(κ) which A(κ) has in common with A(N\κ) for N ^ vm.
Let P(N\κ) be the corresponding spectral projections of AN(κ). By Theorem 2.1 we
obtain the expansion (3.4) to any desired order n by choosing N _ n + v(2w — 1 ) and
expanding P(N\κ) to all orders ^ n. This proves (ii) and (iv). Part (iii) is then evident
from the second parts of Theorems 1.1 and 2.1 D

Remarks. The essence of Theorem 3.1 is that the eigenvalues of A(κ) fall into groups
whose diameter in the complex plane vanishes faster than any power of K: and which
are separated by distances > β\κ\v for some β > 0 and v < oo. These groups and the
corresponding spectral projections have asymptotic expansions to all orders in K
which are obtained from the expansion of A(κ) by analytic perturbation theory.

In the following section we introduce a class of families A(κ) for which different
eigenvalues cannot be degenerate to all orders in K. Then the series (3.2) and (3.4) are
asymptotic to the individual eigenvalues and eigenprojections of A(κ).

4. Borel-summability

Definitions

(i) Throughout this section S is a fixed sector S = {fceC|0<|κ;|, α < a r g τ c <
α + β} with opening angle β in π < β < 2π. For any δ > 0, we define Sδ = {κeS\
\κ\<δ}.

(ii) /eJ5m means: there exist δ > 0, C, σ such that / is a holomorphic function
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from Sδ to L(Cm), which has an asymptotic power-series

00

/M ~ Σ fk*k (k integer)
k = 0

satisfying
\\fN(κ)\\£CσNN\ (4.1)

for all κeSδ and all JVeZ + , where fN(κ) is given by

(iii) Let feBm. Then /* - / means that /* = fk for all k.

Remarks. The functions /e#m are called "Borel-summable" since they can be
reconstructed uniquely from the expansion coefficients {fk} (see e.g. [10], Theorem
XII. 21). In particular /(/c) = 0 if feBm and/ fc = 0 for all k. We also note that
f + geBm

Theorem 4.1. If AeBm, then there exist constants ε > 0, β > 0, 0 ̂  rc< oo such that
(i) on S£9 the eigenvalues of A(κ) and the corresponding eigenprojections are given

by holomorphic functions a^(κ)...as(κ) and P1(?c)...Ps(κ:), respectively,
(ii) \ah(κ)-ak(κ}\>β\κ\n (4.2)

for all pairs h^=k and all κeSε.

Remark. It follows from (ii) that for AeBm the asymptotic series given by Theorem
3.1 refer to individual eigenvalues and eigenprojections.

Proof of Theorem 4.1. Since A(κ) is holomorphic in Sδ the number s of different
eigenvalues of A(κ) is constant in Sδ unless K is an exceptional point where this
number is < s. These points cannot accumulate in Sδ. In any simply connected
subdomain of Sδ containing no exceptional point, the eigenvalues and eigenprojec-
tions of A(κ) are given by holomorphic functions a^(κ)...as(κ) and Pι(κ)...Ps(κ\
respectively. In particular each eigenvalue ah(κ) has constant multiplicity
gh = άimPh(κ). For a proof of these statements we refer to [9], Chap. II, Sect. 1.

To prove (i) it therefore suffices to show that exceptional points cannot
accumulate at K = 0. On Cm® Cm we define

F(κ) = A(κ) ® 1 - \®A(κ).

The eigenvalues of F(κ) are the differences of the eigenvalues oϊA(κ). In particular,
zero is an eigenvalues of F(κ) with algebraic multiplicity

q = 9ι + 02 + ' ' + 9Ϊ

for nonexceptional K. Thus F(κ) has a characteristic polynomial

P(z,ιc) = z« lVfc(Φfe with
Jc=0

fQ(κ) J= 0 for nonexceptional K. (4.3)
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If K is exceptional, then zero is an eigenvalue of F(κ) with algebraic multiplicity >g,
hence

fQ(κ) = 0 for exceptional K. (4.4)

Next we note that fQeBl since /0 is a polynomial of matrix-elements of A(κ\ Now
suppose that κn—>0 is a sequence of exceptional points. Then f0(κn) =0 by (4.4),
which implies that f0 has vanishing expansion coefficients. Since feB1, it follows
that fQ(κ) = 0 for all κeSδ, in contradiction to (4.3). This proves (i).

To prove (ii) suppose that for some pair h ̂  fc, d(/c) = ah(κ) — ak(κ) vanishes faster
than any power of K as K -> 0. By part (i) of the proof we know that d(κ)^=0 for small
K, so that d(κ) is a zero of z~qP(z9 K):

m2 — q

/„(*)=- Σ /*(«)%)*•
Λ = l

This shows that/0(/c) vanishes faster than any power of K as τc-»0. Since fo^B1, it
follows again that /0(κ) =0 in Sί? in contradiction to (4.3) Π

Theorem 4.2. Suppose that AεBm and A* ~ A. Then the eigenvalues and eίgenproj-
ectίons ofA(κ) are Borel-summable and the eigennilpotents vanish identically for small
K.

Remark. Since the sector Sδ has opening angle > π, it always contains a piece of the
real axis. We emphasize two points : Sδ need not be symmetric with respect to the real
axis, and A* ~ A does not mean that A(κ) is necessarily selfadjoint for real K.

The proof of Theorem 4.2 is prepared by the following two lemmas :

Lemma 4.3. Suppose that feBm and that fό 1 exists. Let g(κ) = /(κ)~ *. ThengεB™.
In particular g satisfies the asymptotic estimate

\\gN(κ)\\^C(l+C2fσNN\ (4.5)

in any sector Sδ where

\\g(κ)\\£C and (4.6)

\\fN(κ)\\£CσNNL (4.7)

Proof. Inequalities (4.6) and (4.7) hold in some Sδ since f(κ)~ 1 exists if || f(κ) —f0\\ <
|| / ~ * || ~ 1 . Then g(κ) = f(κ) " : is holomorphic in Sδ so that it remains to derive (4.5)
from (4.6), (4.7). For N ̂  1 all terms of order ^ N in the identity

. , Λ = O
must cancel:

N-l N-l

0= Σ fN-k(κ)9k+f(κ)9N(κ)> { Q- dN(κ)= -9(κ) Σ fN-k(κ)9k> (4 8)
k=0 k=Q

which for κ -^0 gives the recursion for gN. By (4.6), (4.7),

I I ^ M H ^ C 2 Σ \\9k\\^'k(N-k)\ (4.9)



228 W. Hunziker and C. A. Fillet

for N ^1, while for N = 0

I l0o(κ)l l = \\9(κ)\\^C. (4.10)

From (4.8)-(4.10) and using (N -k)lkl^(N-l)\(l^k^N- 1), one confirms by
induction that for N ^ 1

\\gN(κ)\\ ^ c(°2 + C4 + - + C2N)σNNl D

Lemma 4.4. Suppose that AeBm. Let a be an eigenvalue ofA0 and Π(κ) the spectral
projection ofA(κ)for the a-group (i.e. the group of eigenvalues ah(κ) -+aasκ^>0). Then
ΠeBm.

Proof. Analyticity of Π(κ] in Sε follows from Theorem 4.1. For a fixed circle Γ
around a we expand

by expanding R(z,κ} = (z — A(κ)}~^ in powers of K. Since R(z, K) is uniformly
bounded for all zeΓ and small K, it follows from Lemma 4.3 that

\\RN(z,κ)\\ ^ const σ"JV!

for some δ(Γ) > 0 and all (z, κ)εΓ x Sδ. Hence || ΠN(κ) \\ ̂  const σNN ! Π

Proof of Theorem 4.2. We consider a single eigenvalue

N-l

a(κ}= £ akκ
k + aN(κ) KN (4.11)

fc=0

of A(κ) and the corresponding eigenprojection P(κ) which are both holomorphic in
Sε (Theorem 4.1) and have asymptotic Taylor-series with real and symmetric
coefficients, respectively (Theorem 3.1). By (4.2) the other eigenvalues of A(κ) have
distances > β \ κ \ n from a(κ) with β > 0 and integer n ̂  0. We may assume that

by adding to A(κ) a suitable polynomial multiple of the identity. Let Π^K) be the
spectral projection for the 1 -group of A(κ) and

Then κA1(κ)GBm by Lemma 4.4 and

κ->0

since A* = A0. It follows that A1 e£m and that Af ~ Aί9 since 77f - n± by Theorem
2.1.

Any eigenvalue b^(κ) ^ 0 of A^(K) defines an eigenvalue b(κ) = 1 +κb1(κ) oΐA(κ)
with the same eigenprojection. Conversely, a^(κ) as defined by (4.1 1) is an eigenvalue
of the 1 -group of A±(κ) since a1 = l. Repeating this argument we arrive at

a(κ) = \+κ + κ2 + - + κn + κn+lan+i(κ), (4.12)
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where an+ί(κ) is an eigenvalue of the 1-group of

Πn+l(κ) = spectral projection for the
1 -group of An(κ\

which satisfies An+1eBm and A*+ί ~An+ί. Any eigenvalue bn + 1(κ)=/=0 of An+1(κ)
defines an eigenvalue

b(κ) = 1 + K + κ2 + - + κn + κn+1bn+ί(κ) (4.13)

of 4(κ) with the same eigenprojection. From (4.2), (4.12), (4.13), it follows that
a(κ) = b(κ) for all κeSε. Therefore an + ί(κ) is the only eigenvalue φ 0 of An+ί(κ) and
P(κ) is the spectral projection for the 1-group ofAn+1(κ). This proves PeBm (Lemma
4.4). Also,

αn+ι(κ) = (dim PMΓ1 trace (Λπ+1(κ:)),

which shows that an+ίeB1 and therefore αeB1.
The eigennilpotent D(κ) = (A(κ) — a(κ))P(κ) satisfies

D*~D. (4.14)

From D(κ)m = D™ + o(κ) we see that D™ = 0, hence D0 = 0 since D* = D0. Therefore
D^K) = κ~1D(κ) also satisfies (4.14). Proceeding in this way we conclude that D(κ)
has vanishing expansion coefficients. Since DeBm, it follows that D(κ) = 0 for all

D

5. Rayleigh-Schrόdinger Perturbation Theory

Here we describe briefly how our results for the finite-dimensional case fit into the
scheme of RS-perturbation theory in Hubert space. Essentially we follow [10], but
we also include some ideas which have since been developed in connection with the
Zeeman- and Stark-effect ([2], [7]). No formal proofs will be given.

Let A(κ) be a family of closed operators on a Hubert space jtf, defined for K in
some complex set S9θ, and R(z,κ) = (z — A(κ)}~1 its resolvent. We define

A = {zeC|for small κeS,R(z,κ) exists and is

bounded uniformly in K}.

A discrete eigenvalue λoΐAΌ= A(Q) with eigenprojection jP0 is said to be stable with
respect to the family A(κ) if

(i) (z |0< |z-/ ί |<ε}<=zί (5.1)

for some ε > 0, and

(ii) l im| |P(fc)-P 0 | | =0 for (5.2)
κ-»0

1 $dzR(z, κ\ (5.3)
r

where Γ is a circle of radius < ε around λ.
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Generally speaking, λ will be stable under mild continuity conditions for A(κ) as
K -»0, provided that λ is separated from the essential spectrum of A(κ) for small
/c[l 1]. Here P(κ) is the spectral projection for the A-group λh(κ) = λ + Δλh(κ\ where
Δλh(κ) are the eigenvalues of ΔA(κ) = P(κ)(A(κ) - λ)P(κ) considered as an operator
on M(κ) = Ran P(κ). For small K this can be transformed into an equivalent
eigenvalue problem in the space M0 = Ran P0 by any linear map S(κ) from M(κ)
onto M0. A possible choice is shown in Fig. 1:

Here we consider

D1/2 D 1/2

Fig. 1.

(κ) = P0P(κ)P0
(5.4)

as an operator on M0. By (5.2) we have || D(κ) - 1 1| < 1 for small K so that D'1 and
p-ι/2 are wejj define^ Then the operator

S(κ)=D(κΓ1/2P0P(κ)

from M(κ) to M0 has the inverse

and the eigenvalue problem for ΔA(κ) is equivalent to the eigenvalue problem for

E(κ) = S(κ) JΛ(jc)S(ιcΓ * (5.5)

= D(κΓ 1/2 N(κ)D(κΓ1/2, where

N(κ) = P0P(κ)(A(κ) - λ)P(κ)P0 (5.6)

is again operating on M0. The eigenprojections and eigennilpotents of E(κ) and A(κ)
are also related by the similarity transformation (5.5). A more judicious but less
explicit choice of S(κ) is given by Kato ([9], Chap. II, Sect. 4). RS-perturbation
theory provides expansions oϊE(κ) and S(κ] for the case A(κ) = AQ+κV. From the
iterated resolvent equation

R = κkR0(VR0)
k + κNR(VR0)

N

and (5.3), (5.4), we find, for example,

N-l

D(κ}= £ Dkκ
k + DN(κ)κN, with

(5.7)
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and Dk = Dk(Q). A similar expansion holds for N(κ), with an extra factor (z—λ) in the
integral (5.7). Computing the expansion of E(κ) from (5.6), we are then confronted
with a problem of finite-dimensional asymptotic perturbation theory. In quantum
mechanics we are mainly (but not exclusively) concerned with selfadjoint problems:
A% = A0 and F* = K formally. Due to our choice of S(κ) the expansion coefficients of
D(κ\ N(κ) and E(κ) will then be symmetric. This explains the particular attention
given to this case in Sects. 1-4.

We now turn to asymptotic estimates. For a stable eigenvalue R(z, K) is
uniformly bounded for zeΓ and small K by (5.1). From (5.7) we then see that || DN(κ) ||
is bounded by a constant times

CN^sup\\(VR0(z)fPQ\\9 (5.8)
zeΓ

in which K and the full resolvent jR(z, K) no longer appear. The same bound occurs in
the expansion of N(κ). If VR0(z) is bounded for some z we are back to analytic
perturbation theory: stability is then automatic and the RS-series have a strictly
positive radius of convergence.

Asymptotic perturbation theory deals with cases where VR0 is unbounded: then
CN < oo can only hold due to special properties of Ran P0. We illustrate some of the
possibilities with the example of the anharmonic oscillator

A(κ) = p2 + x2 + κV(x) (5.9)

on 3? — L2(R"), where V(x) is a real and locally square-integrable function on Rv. If
V(x) is bounded from below, A(κ) has a purely discrete spectrum for K in the sector

S = {κ;|-π + ε<argκ;<π-ε} (ε>0), (5.10)

and any eigenvalue λ of A0 = p2 + x2 is stable with respect to the family A(κ), κe8
[11]. Moreover, A(κ) is an analytic family in S\{0}. The eigenfunctions of A0 are of
the form /f(x)exp(— x2/2), with H(x) a polynomial, so that

||βαχ2P0|| <oo for α<l/2.

A simple technique introduced by Combes and Thomas [4] allows us to derive such
exponential bounds without explicit knowledge of the eigenfunctions:

Let λ be a discrete eigenvalue of AQ = p2 + W(x) with eigenprojection p0, /(x) a
smooth real function on Rv which is bounded from below, and

Af = efA0e~f = (p + iVf)2 + W(x). (5.11)

Then the resolvents of Af and AQ are related by

*-%(*) = R0(z)<Γ' (5.12)

for all z in the intersection of the two resolvent sets. Therefore Af and A0 have the
same (discrete) spectrum in the complement of σess (Af) u σess (A0) with corresponding
eigenprojections related by

p - f p — p p-fe rf — r0e .

Since Ran e~ f is dense and dim P0 < oo, it follows that Ran P0 is in the domain oϊef

9



232 W. Hunziker and C. A. Fillet

i.e.

| |^P0 | |<oo. (5.13)

There exists a variety of methods to control σess(Af) ([10], Sects. XIII. 4-5; [6];
[11]) and thus to derive exponential bounds ([10], Sect. XIII. 11 [15]). Suppose
now that λ φσess(Asf) for all s in 0 ̂  s ̂  1. From (5.8), (5.12) and (5.13), we then obtain

CN = sup || Ve-"NRflNVe- "NR2flN...Ve--"NRffe
fP0 \\ < oo, (5.14)

zeΓ

if the function V(xfe~f(x} is bounded. Choosing f(x) = αx2 in the example A0 =
p2 + x2, we find

Af = p2 + x2(l - 4α2) + 2ia(px + xp\

which has purely discrete spectrum for 0 :g α < 1/2. Therefore, if λ is any eigenvalue
oϊAQ9 the RS-series for the family (5.9) are asymptotic in the sector (5.10) to order N
as long as F(x)Nexp( —αx2) is bounded for some α < 1/2.

The model example for Borel-summability is (5.9) with V(x) = x4 ([10], Sect. XII.
4). With the choice of/(x) given above x2Rsf is bounded uniformly for zeΓ and
0 ̂  s ̂  1 so that

CN < const (sup x2 e~aχ2)NNN< CσNNl (5.15)
X

for suitable C and σ. Since A(κ) is an analytic family in S\{0}, P(κ) and E(κ) are
holomorphic in some Sδ = {κeS\Q < \κ\ < δ}. Therefore E(κ) is Borel-summable and
also satisfies E*(τc) = E(κ) for small real K > 0. Theorems 4.1 and 4.2 then describe the
spectral properties of E(κ) and of ΔA(κ) = S(κ)~1E(κ)S(κ).

A fundamentally different situation arises when V(x) in (5.9) is not bounded
below, as in the example

F(x) = x 2 XiX 2 (5.16)

for v ̂  2. Since the expansion coefficients of E(κ] still exist and are symmetric, and
since the estimate (5.15) remains unchanged, we might at first take Borel-
summability for granted. In fact there is already a problem with the definition ofA(κ)
for real K ^= 0 as a self adjoint operator. This is avoided by restricting K to a smaller
sector

S = {K 10 < ε < arg K < π - ε}.

Then A(κ) is again an analytic family in S\{0} with purely discrete spectrum and all
eigenvalues of A0 are stable with respect to A(κ) [11], However, Borel-summability
does not follow since S has now opening angle < π. What is needed first is an analytic
extension oΐE(κ) to a larger sector with opening angle > π where the RS-series is still
asymptotic with an estimate of type (5.15). For special perturbations like (5.16) this
can be achieved using the scaling properties of A(κ) under complex dilations x -» μx,
μeC ([!]; [10], Sect. XIII. 10). The extended function E(κ) is then defined but no
longer symmetric for small real K. However, since the expansion coefficients of E(κ)
are symmetric, Theorems 4.1 and 4.2 still apply. For real K the eigenvalues of E(κ)
have imaginary parts vanishing faster than any power of K as K -» 0. Presumably this
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phenomenon has an interpretation in terms of unstable states associated with the ill-
defined Hamiltonian A(κ) for real K ̂  0. Whatever this picture may be, the
mathematical objects which we calculate by summing the RS-series (in a sector
symmetric with respect to the imaginary axis) are clearly defined. A better
understood example of this kind is the Stark-effect ([7], [8]).

Due to our results for the finite-dimensional case, restrictions on the degeneracy
of the unperturbed problem are no longer necessary. In this respect asymptotic
perturbation theory is now developed to the same level as analytic perturbation
theory.
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