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Abstract. We consider surfaces of prescribed mean curvature in a Lorentzian
manifold and show the existence of a foliation by surfaces of constant mean
curvature.

0. Introduction

Surfaces of prescribed mean curvature, that is what we mean by H-surfaces, are of
great physical importance both in the case of a proper Riemannian manifold as
well as in a Lorentzian manifold. While H-surfaces in proper Riemannian
manifolds, especially in the Euclidean space R", have been studied extensively,
little is known in the Lorentzian case, except when the manifold is the Minkowski
space. Then, there are the papers of Calabi [CA] and Cheng and Yau [CY] on the
Bernstein theorem for entire maximal surfaces, the result of Treibergs [TA] on
entire surfaces of constant mean curvature, and the paper of Bartnik and Simon
[BS] on the Dirichlet problem for surfaces with bounded mean curvature.

For non-flat Lorentz manifolds only local existence results via perturbation
arguments, or results concerning the uniqueness are known, cf. [BF1, 2; CB;
CFM; GO; MT].

In this paper we consider a connected, oriented, and time-oriented, globally
hyperbolic Lorentz manifold M of dimension (n+1).

In the first part of this paper, Sects. 1-5, we consider the Dirichlet problem for
bounded H-surfaces. Assuming in this case that M is topologically a product,

M=NxI, (0.1)

where [ is an interval and N an n-dimensional complete Riemannian manifold,
such that the metric in M is given as

ds? =y(—dt*+ gij(x)dxidxj) 0.2)
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with some positive conformal factor g, we prove the existence of a smooth surface
& of prescribed bounded mean curvature H and given boundary 0%, where the
boundary is assumed to be acausal and representable as a graph

0 ={(x, p(x) : x€0Q}, (0.3)

where QCN is a relatively compact open set with C2-boundary, and pe C*(Q) is
space-like. The solution & is then also given as the graph of a function u.

In the second part, Sects. 6 and 7, we drop the restriction (0.2) on the metric
and assume merely that M has a compact Cauchy surface. Imposing the
hypotheses of a big bang and a big crunch, i.e. assuming the existence of global
barriers, we prove the existence of smooth slices of prescribed bounded mean
curvature.

Supposing, furthermore, that M satisfies the time-like convergence condition,
we can show the existence of a foliation of M by slices of constant mean curvature.
If there are two different maximal slices, then we prove that they are totally
geodesic and strictly separated, and that there is a whole continuum of totally
geodesic slices in between. If 4, denotes this continuum, then %, can be described
as consisting of level surfaces to the “first” totally geodesic slice .75,

(60:{%0§t§80}, d(yOa*%):t (04)

The tubular neighbourhood of %, contains %, and the metric is static in %,
ds* = —dt* + g, (x)dx'dx’ (0.5)

for (x,t)e%,.

The paper is organized as follows:

In Sect. 1, we derive the Euler-Lagrange equation governing surfaces of
prescribed mean curvature.

In Sect. 2 we prove boundary estimates, while in Sect. 3 we deal with the so-
called segment condition, saying, that if the uniform limit of surfaces of uniformly
bounded mean curvatures contains a segment of a null geodesic, then this segment
has to extend to the boundary.

In Sect. 4 we prove global gradient estimates valid for general metrics. This
estimate enables us to show the existence of solutions to the Dirichlet problem in
Sect. 5, and of global slices in Sect. 6.

In Sect. 7 we treat the problem of the foliation of M by slices of constant mean
curvature.

1. The Euler Equations

In this section we consider a general time-oriented (n+ 1)-dimensional Lorentzian
manifold M with metric

ds®>=g,,dx*dx", o,f=0,1,...,n, (1.1

and signature (—, +, ..., +). In local coordinates the coordinate x° =1 is time-like,
while the space-like coordinates x' are labelled with Roman letters i, 1 <i<n.
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L . 1 o
A hypersurface & CM is said to have prescribed mean curvature — H, if it is
: . . n
space-like, 1.e. if gaﬂv“vﬁz 1, (1.2)

where v=(v*) is the future directed unit normal vector to %, and if
—divv=—Dv'=H, (1.3)

where H is a given function on M.

Let us look locally at such a hypersurface. Choose in the neighbourhood of a
point (x,, f,)e ¥ Gaussian coordinates, i.e. choose a space-like hypersurface N, e.g.
t=t,, and take as the new time coordinate the arc length of the time-like geodesics
perpendicular to N and as space-coordinates the base-point of the geodesics in N.
In a Gaussian coordinate system the metric has the form

ds? = —di* + g, (x, ydx'dx’, (1.4)

where the g,; are positive definite, and any space-like hypersurface % is locally
given as the graph of a function u

S ={(x,u(x)) : xeQCN}, (1.5)
the unit normal vector v is
v=(vp, vy, .. v,) =0 (—1,Du), (1.6)
where
v=(1—¢"x,u(x)-Du-Du)~ "2, (1.7)

and where as usual we set
(g")=(g;)" " (1.8)

If we insert v in the mean curvature equation, we would get a second order partial
differential equation for u. Another more elegant way to derive this equation is to
obtain it as the Euler-Lagrange equation of a variational problem, namely,
maximize the functional

n
Jm)= [ (1=1Dn|*)! 2 glx, )" + [ [ H(x, )g(x, )"/ (1.9)
2 20
in an appropriate function class, e.g. in

K={neH"“(Q):IDn=1,nl.n=0}, (1.10)

if we are considering a variational problem of Dirichlet type, where it is to be

understood that s
IDyl*=g"(x,n)-Dy-Dy, (1.11)

and
g=g(x,n)=det(g,(x,n)). (1.12)

The corresponding Euler-Lagrange equation for a solution u with

IDu <1 (1.13)
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looks like
- g—ll/iéii (g"*-v-g"Du)+ %v-%-Diiju— %v" ! -gij~g)gcg =H=H(x,u). (1.14)
The first term is the divergence of the vector field
a=v-g"-Du (1.15)
with respect to the metric
gi(x, u(x)). (1.16)
The other terms of the left-hand side are of the form a-v, where
a=a(x,u, Du); (1.17)
i.e. we can rewrite Eq. (1.14) as
Au+a-v=—DJd(Du))+a-v=H(x,u), (1.18)

where the symbol “D,” denotes covariant differentiation with respect to the
implicity defined metric (1.16).

This is a quasilinear elliptic differential equation for u, where in contrast to the
usually given problems we know in advance that u is already Lipschitz continuous,
but where the equation only makes sense if |Du| is strictly less than one.

Hence, if we want to solve a Dirichlet problem

Au+a-v=H(x,u) in €,

(1.19)
u=¢@ on 09,
we should first prove a priori estimates of the kind
|Dul=1-6, 6>0, (1.20)

and then use some Leray-Schauder-type argument to prove the existence of a
solution.

In the case when M is equal to the Minkowski space this has recently been
achieved by Leon Simon and Robert Bartnik. For the Minkowski metric the
equation simplifies considerably:

—Dv-D'u)=H, (1.21)
where the metric g;; is now the Euclidean metric in R”".
In the general case, the presence of the v term causes some trouble, though on

the other hand, it has the advantage that the structure of the equation is invariant
under conformal transformations of the metric. Indeed, let

ds>=vyds®, ds’= —dt* +g,(x, )dx'dx’ (1.22)

be a conformal metric with some positive C*-function y. Then the equation for a
surface of prescribed mean curvature is

Au+a-v=H, (1.23)
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where n P n '
d=a— z(l—IDuIZ)a—tlogtp—§~Dilogw-D’u, (1.24)

and there the operator 4 is defined with respect to the metric (g;;(x, u)).

We shall often exploit this fact even without mentioning it explicitly. Especially
we shall always stick to the notation a(x, u, Du) instead of a(x, u, Du).

Finally, let us give some definitions.

Definition 1.1. A hypersurface & is said to be space-like if its normal vector is time-
like. If & is represented as a graph of a function u, then we also say u is space-like.
A subset ACM 1s said to be acausal, if any time-like curve or null curve
intersects 4 at most once.
A slice & C M is a space-like hypersurface which is also a closed and connected
submanifold of M.

We also remark that in the following sections we deal with bounded mean
curvature functions H, where we often have to consider compositions of the form
H(x, u) with continuous functions u. In order that these composite functions are
measurable in x, we therefore have to assume that H is a Borel function. Thus, H
bounded always means that we pick a Borel function in the equivalence class
defined by H.

2. Boundary Estimates
Suppose M =N x I with metric ds* given by
ds® =yp(—dt* + g, (x)dx'dx), (2.1)

and let u be a solution to the Dirichlet problem (1.19), (1.23).

For simplicity, we shall assume that I=IR, and that y remains smooth and
positive on compact subsets of M. This has the advantage that a space-like surface
& is a priori bounded, if 0 is compact. If we would allow I to be a general
interval, then we would have to impose further conditions to assume this. Our aim
is to prove a priori estimates for [Du| at the boundary.

Theorem 2.1. Let QCN be relatively compact with 0Qe C?, and let pe C*(Q) be
space-like with
[Dpl=1-0, 6>0, (2.2)

uniformly in Q, such that graph @|,q is acausal. Let ue H*?(Q), p> n, be a solution of
the boundary value problem (1.19), (1.23) with bounded H. Then

Dul£1-6, (2.3)
on 0Q, where ©, depends on ©, 08, |¢|, ,, |H|, and on the metric.

Proof. We first observe that according to the remarks at the end of Sect. 1 we may
assume that the quasi-linear differential operator A is defined with respect to the
metric (g;;(x)). The lower order terms then look different, but we do not change the
notation. We also note that in view of the assumptions u, Du and hence a(x, u, Du)
are uniformly bounded in Q.
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Let x,€0Q be an arbitrary but fixed boundary point. We shall show that there
is a neighbourhood U of x, and two functions 6%, 6~ € C*(QnU), such that

AS™ +a-v(6T)SHZA8  +a-v(d™) 2.4
in QnU, and
6 Zugét in AQNU), (2.5)
6™ (xg)=ulxo)=0"(x,),
and

[D6”|, |D6TIS1—6,. (2.7)

Here, the factor a in (2.4) is evaluated at (x, u, Du). The maximum principle will
then yield that (2.5) holds throughout @nU, and therefore we shall get

IDulxp)|<1—6,. (2.8)

To define 6%, let £e N be a point outside Q but near x,, and label the coordinates
so that £=0. Let |x| be the geodesic distance, and choose £ so that the ball B(0) is
geodesically convex for some R>|x,|. We then define 6™ through

[x]

0r () =0(x)+ [ L4+~ 12, (2.9)

|xol

where $(O)=o- ™ (2.10)
with positive constants o, 4 to be determined later: A is considered to be large
depending on |x,| and H, and o is chosen to be small depending on ¢, 02, and 4.

If o tends to zero, then 6% represents the upper light cone with base point
(X0, @(x,)). For positive & and x+0 we have

IDS™ [=(1+7)" "2, (2.11)
and
(6 F)=y A1 +9) V2. (2.12)
Furthermore, e C%(B(0)\{0}), and
DSt =(1—7)"2-D,x], (2.13)
DD =(1+y)""Y?*DD x| = 5(1+7)"¥*-2-y-D|x| D |x|. (2.14)
Taking into account that |D[x||=1, and
AS* = —0(6)46" —v3(87)- DS DS -DIDIS” (2.15)
we conclude
AT =(1+y) Y2 (42— 4|x))-v, (2.16)
where
A== (2.17)

Ix|
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and where r stands for bounded curvature terms: in Riemannian normal
coordinates with center in £=0,

r=—gIiDlx]| . (2.18)
Thus, we derive
Ad*+a-v(d")ZH in QnBRO0), (2.19)

if 2 is chosen appropriately and « is small enough, a<o,(4); we note that this
estimate is uniform in o for such a.

Clearly (2.6) is valid for 67, so that we merely have to check (2.5) for U = Bg(0).
In Lemma 2.3 below we shall show that in any neighbourhood of x, we can find &
such that

P(X)<867(x), VxedQnBRO), (2.20)

if we choose o appropriately, always improving the estimates by choosing o small.
Taking (2.20) for granted for the moment, the final estimate

usdé® in QN Bg0)) (2.21)

with follow from

Lemma 2.2. Let ¥ = graphu be a surface of bounded mean curvature H, and let 0.5
be acausal. Let (X, u(X))e 7, and let |x| be the distance function with respect to the
metric (g;(x)) and with base point X. Then, to any number R>0, there exists
e=¢e(R,||H| ,0%) such that

u(x)+FeSu(X)+ x|, VxeQNOBg(X). (2.22)

Proof. Suppose that the lemma were not true. Then we would conclude that &
would contain a segment of a null geodesic. By the results of Sect. 3 below, we
would then deduce that this null geodesic segment is maximal, i.e. it would extend
to the boundary 0%, which is impossible since 0 is supposed to be acausal.

The fact that ¢ only depends on R and ||H|| , is due to the observation that the
results in Sect. 3 also apply to uniform limits of surfaces of uniformly bounded
mean curvature, l.e. to surfaces which are not necessarily space-like.

It remains to define the lower barrier 6. We set

[x]

0" () =0lxo)— | A+y~"2, (2.23)

B

while choosing &, A, and o as before, and it turns out that the estimates are identical
with the appropriate change in sign.
To complete the proof of Theorem 2.1 we claim

Lemma 2.3. Let x,€0Q. Then in any neighbourhood of x, we can find & not
belonging to Q, such that
T=e=6" in 0QNBg(&), (2.24)

if a is chosen sufficiently small.



530 C. Gerhardt

Proof. We only prove the estimate for 6. The proof is similar to the proof of [ BS;
Proposition 3.1]. Let x,€ 02, and choose a Riemannian normal coordinate system
in N around x, such that the tangent plane at 0Q in x,=0 is given by x"=0, that
the inward unit normal vector of Q in x, is equal to (v;)=(0, ...,0, 1), and that the
tangential derivative of ¢ in x, is given by

D,p(0)=r-6,;,, 1=isn—1, (2.25)
where

0=sr=1-0. (2.26)

We now want to find a sequence éséﬁ, converging to x, =0, such that, if we
define 6™ with base point in &,

D67 (0)=D,p0), 1=<isn—1, (2.27)
holds.
From the definition of 6 we deduce that
D& *(0)=(1 +ae’*) =12 Dl¢ |, (2.28)
where
DI¢,|=— é—l (2.29)
and hence (2.27) says
¢

—(1+a-eHl)"12. 22 = Pig(0), (2.30)

1€l

where |£,] is the usual Euclidean norm since the coordinate system is normal.
In view of (2.25) the following definition for £, seems appropriate:

£,=¢,0,...,0,—1), (2.31)
where b is such that
—(L+oeMeh) 12 (1452 V2=, (2.32)
The set of the possible b’s is uniformly bounded if we choose a so small that
AlEy+1/2 @
r-(1+oe*'se) §1—5, (2.33)
The (&,) will therefore converge to x,=0 and will lie outside Q if ¢ is tending to
Zero.

Consider now some fixed £ =¢, and choose Riemannian normal coordinates in
E. Then

ij iy.J
DIDIST =(1+7)" V2. {‘i = x—)-}} +c, (2.34)
IxI - Ix]
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where ¢ is a bounded tensor if o is small, and hence

R L L 239)
for any vector field ().
Let
B=4(1+bHV2.07 1. (2.36)
Then it follows from the assumption 6Qe C? that
<i, x_x°>2§1—9 (2.37)
Ix|” x — x, 2
for all xe 0Q with
Ix—xol=¢ B, (2.38)
if ¢ is small. For such x, we deduce from (2.35)
DD -(x'—xp) (x' —x}) = {E—Q-W A c} Jx—xol?. (2.39)
(L+9)7" Ix]

For small ¢ this quadratic form is therefore larger as the corresponding quadratic
form derived from ¢, hence

Px)S67(x), VxedQ, |x—x,|Zep. (2.40)

For |x—x,|>e¢-f we argue as follows: for small & we obtain
+ + o
3*(9=0" (e 2 1= 2] i~ xo) 21~ O,

®
b= xol = 2+ [xol 2(1 = O) bx — ol 2 @(x) = @(xo) . (2:41)

in view of the definition of f§, where we assume R to be small enough so that ¢ has
an extension into By(¢) satisfying the same conditions. The last inequality in (2.41)
is then justified.

3. The Segment Condition

Let %, =graphu, over a domain  be a sequence of surfaces of uniformly bounded
mean curvatures H, converging locally to a surface ¥ =graphu, ie.

u,3u (3.1)

on compact subsets, then we have

Theorem 3.1. If & contains a segment of a null geodesic, then this segment has to be
maximal, i.e. it extends to the boundary of &.
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Proof. The proof is a modification of the arguments given in [ BS; Theorem 3.2].
Let .= {(x,u(x) : xe 2} and suppose the statement were false. Then, we could find
Xo€Q, R>0, and x,€Bg(x,) such that Bg(x,) would be geodesically convex,
Bp(x,)CQ, (3.1) would hold in Bg(x,), and if we would introduce a Riemannian
normal coordinate system in x, and set

X, =Xo+t(x; —Xx,), —1=5t=1, (3.2)
then we could arrange that
ulx)=u(xp)+t-xo—x,l, —3=5t<1 (3.3)

and
ulx)>ulxg)+t-|xg—x,, t=—1, (3.4)

where || denotes the geodesic distance function, and where we point out that
because of (3.1)

[Du/<1in Q. (3.5)

Let x be defined through
x(x)=u(xq) =[x —x,!. (3.6)

Then ye C*(Bg(x,)\ {x,}) and
1(x)<u(x) for |x—x,l=|xo—x,I. (3.7)

Indeed, if equality would hold in (3.7) for some x, then
u(x)=ulxq) —Ix—xol =ulx,;)—Ix; = x| — X — x| (3.8)
in view of (3.3), and hence
[x—=Xol +1xg— X, S x—x,], (3.9)
i.e. x4, x and x, would lie on a common geodesic, in other words
X=Xy, Of X=X_,, (3.10)

but both cases are excluded by (3.3) and (3.4).
Let B, be the geodesic ball with center in x, and radius [x,—x,|. Since 0B, is
compact, we conclude from (3.1) and (3.7)

r(x)<ulx), VxedB,, (3.11)
if ¢ is small, and hence that

0 (x)<ufx), VxedB,,
where

|x —xo|

o W=ulxo)— (1+y>-“2+§(1+y)'“2—g, (3.12)

provided the constant a involved with y is small enough; here, we have set

0=glxo—x4l. (3.13)
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Moreover, the estimate (3.12) holds tr1v1a11y on 0B,(x,), since u, is space-like, so
0~ is a good candidate for a lower barrier in G= BO\B (%0)- Indeed from the
results in Sect. 2 we deduce that

0 (¥)Zulx), VxeG, (3.14)
if « and / are chosen appropriately, independent of ¢; hence
0 ()=ulx), VxeG. (3.15)

Specifying x=x_,,, we deduce from (3.3)

20
(1+y)~ 12— j1+y )" Y220, (3.16)
0

Qe R

a contradiction.

4. Global Estimates

In this section we consider a surface & of prescribed mean curvature H given as a
graph of a function u defined in an open, relatively compact set QCN, where
M =N x I, and the metric ds? is given in the general form

ds?* =p(—dt* +g,;(x, )dx'dx’). 4.1)
We assume that u is bounded
m,Sus=m,, (4.2)

that the metric (g;;) is uniformly elliptic and of class C?in Qx[—m,, m,], thaty is
of class C?, and that H is uniformly bounded.
Let v be defined as in Sect. 1 through

=(1—|Du|*)~ "2, (4.3)

We are going to prove that v is uniformly bounded in Q with a fixed a priori
estimate, provided v|,, is bounded, including the case 0Q=4.

Theorem 4.1. Let u be a solution of Eq. (1.23) with bounded H, and suppose that v is
bounded on 0Q by a constant k,. Then, under the assumptions stated above, we have

Sl;)p v é k = k(k07 “H“ 00’ m17 m27 |Q" 1/—’, (glj)) > (44)

where

Q= ;) I/ g(x, u). (4.5)

Proof. We prove a priori estimates, so we assume that ve L*(Q) and that u is thus a
solution of a uniformly elliptic equation. In view of our assumptions of the metric
and of H we conclude

ue H>?(Q),V1<p< oo, (4.6)

i.e. v is of class H!-?(Q) for any finite p.






