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Abstract. We consider surfaces of prescribed mean curvature in a Lorentzian
manifold and show the existence of a foliation by surfaces of constant mean
curvature.

0. Introduction

Surfaces of prescribed mean curvature, that is what we mean by //-surfaces, are of
great physical importance both in the case of a proper Riemannian manifold as
well as in a Lorentzian manifold. While //-surfaces in proper Riemannian
manifolds, especially in the Euclidean space JR", have been studied extensively,
little is known in the Lorentzian case, except when the manifold is the Minkowski
space. Then, there are the papers of Calabi [CA] and Cheng and Yau [CY] on the
Bernstein theorem for entire maximal surfaces, the result of Treibergs [TA] on
entire surfaces of constant mean curvature, and the paper of Bartnik and Simon
[BS] on the Dirichlet problem for surfaces with bounded mean curvature.

For non-flat Lorentz manifolds only local existence results via perturbation
arguments, or results concerning the uniqueness are known, cf. [BF1, 2; CB;
CFM GO MT].

In this paper we consider a connected, oriented, and time-oriented, globally
hyperbolic Lorentz manifold M of dimension (n+1).

In the first part of this paper, Sects. 1-5, we consider the Dirichlet problem for
bounded //-surfaces. Assuming in this case that M is topologically a product,

M = N x I , (0.1)

where / is an interval and N an rc-dimensional complete Riemannian manifold,
such that the metric in M is given as

ds2 = ιp(- dt2 + g.jWdJdx*) (0.2)
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with some positive conformal factor ψ, we prove the existence of a smooth surface
^ of prescribed bounded mean curvature H and given boundary dέf, where the
boundary is assumed to be acausal and representable as a graph

(0.3)

where ΩcN is a relatively compact open set with C2-boundary, and φeC2(Ώ) is
space-like. The solution ̂  is then also given as the graph of a function u.

In the second part, Sects. 6 and 7, we drop the restriction (0.2) on the metric
and assume merely that M has a compact Cauchy surface. Imposing the
hypotheses of a big bang and a big crunch, i.e. assuming the existence of global
barriers, we prove the existence of smooth slices of prescribed bounded mean
curvature.

Supposing, furthermore, that M satisfies the time-like convergence condition,
we can show the existence of a foliation of M by slices of constant mean curvature.
If there are two different maximal slices, then we prove that they are totally
geodesic and strictly separated, and that there is a whole continuum of totally
geodesic slices in between. If ̂ 0 denotes this continuum, then ̂ 0 can be described
as consisting of level surfaces to the "first" totally geodesic slice ̂ 0

VQ = {yt:Q^t^ε0}, d(&θ9ty = t. (0.4)

The tubular neighbourhood of ̂ 0 contains ̂ 0, and the metric is static in #0

ds2=-dt2 + gίj(x)dxidxj (0.5)

for (x,
The paper is organized as follows :
In Sect. 1, we derive the Euler-Lagrange equation governing surfaces of

prescribed mean curvature.
In Sect. 2 we prove boundary estimates, while in Sect. 3 we deal with the so-

called segment condition, saying, that if the uniform limit of surfaces of uniformly
bounded mean curvatures contains a segment of a null geodesic, then this segment
has to extend to the boundary.

In Sect. 4 we prove global gradient estimates valid for general metrics. This
estimate enables us to show the existence of solutions to the Dirichlet problem in
Sect. 5, and of global slices in Sect. 6.

In Sect. 7 we treat the problem of the foliation of M by slices of constant mean
curvature.

1. The Euler Equations

In this section we consider a general time-oriented (n+ l)-dimensional Lorentzian
manifold M with metric

ds2 = 9ocβdx«dxβ, α,j8 = 0, l , . . . ,n, (1.1)

and signature (—, -f,..., -f). In local coordinates the coordinate x° = ί is time-like,
while the space-like coordinates xl are labelled with Roman letters ί, l^i^n.
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A hypersurface ^CM is said to have prescribed mean curvature - H, if it is

space-like, i.e. if ^vV=-l, " (1.2)

where v = (vα) is the future directed unit normal vector to £f, and if

-divv=-£>αvα = #, (1.3)

where H is a given function on M.
Let us look locally at such a hypersurface. Choose in the neighbourhood of a

point (x0, ί0)ey Gaussian coordinates, i.e. choose a space-like hypersurface N, e.g.
ί = ί0, and take as the new time coordinate the arc length of the time-like geodesies
perpendicular to N and as space-coordinates the base-point of the geodesies in N.
In a Gaussian coordinate system the metric has the form

ds2 =-dt2 + g..(x9 t)dxίdxj , (1.4)

where the gt. are positive definite, and any space-like hypersurface y is locally
given as the graph of a function u

(1.5)

the unit normal vector v is

v = (vQ9v19...9vn) = υ (-l9Du)9 (1.6)

where

v = (l-gij(x,u(x) Diu DjuΓ112, (1-7)

and where as usual we set

(gίj)=(gίJΓ
1 (1.8)

If we insert v in the mean curvature equation, we would get a second order partial
differential equation for u. Another more elegant way to derive this equation is to
obtain it as the Euler-Lagrange equation of a variational problem, namely,
maximize the functional

J(η)= $(ί-\Dη\2)1/2 g(X,η)1/2+$]H(X,t)g(x,t)ίl2 (1.9)
Ω ΩO

in an appropriate function class, e.g. in

φ}9 (1.10)

if we are considering a variational problem of Dirichlet type, where it is to be
understood that

\Dη\2 = gi\x9η) Diη Djη9 (1.11)

and
g = g(x,η) = det(gij{x9η)). (1.12)

The corresponding Euler-Lagrange equation for a solution u with

\Du\<ί (1.13)
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looks like

The first term is the divergence of the vector field

a^v gV DjU (1.15)

with respect to the metric

0i/x, "(*))• (1.16)

The other terms of the left-hand side are of the form a-v, where

a = a(x,u,Du); (1.17)

i.e. we can rewrite Eq. (1.14) as

=-Di(aί(Du)) + a v = H(x9u), (1.18)

where the symbol "D " denotes covariant differentiation with respect to the
implicity defined metric (1.16).

This is a quasilinear elliptic differential equation for u, where in contrast to the
usually given problems we know in advance that u is already Lipschitz continuous,
but where the equation only makes sense if \Du\ is strictly less than one.

Hence, if we want to solve a Dirichlet problem

Au + a v = H(x,u) in Ω,

u = φ on dΩ ,

we should first prove a priori estimates of the kind

(1.20)

and then use some Leray-Schauder-type argument to prove the existence of a
solution.

In the case when M is equal to the Minkowski space this has recently been
achieved by Leon Simon and Robert Bartnik. For the Minkowski metric the
equation simplifies considerably :

-Di(v Dίu) = H, (1.21)

where the metric g. is now the Euclidean metric in IRΛ
In the general case, the presence of the v term causes some trouble, though on

the other hand, it has the advantage that the structure of the equation is invariant
under conformal transformations of the metric. Indeed, let

ds2 = ιpds2, ds2 = -dt2 + gtj(x9 ήdx^ (1.22)

be a conformal metric with some positive C°° -function ψ. Then the equation for a
surface of prescribed mean curvature is

Au + a v = H9 (1.23)
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where n d n
a = a--(\-\Du\2}-\vgy-- Dί\o%ιp Dίu, (1.24)

and there the operator A is defined with respect to the metric (0fJ (x, M)).
We shall often exploit this fact even without mentioning it explicitly. Especially

we shall always stick to the notation α(x, M, DM) instead of α(x, M, DM).
Finally, let us give some definitions.

Definition i.l. A hypersurface ̂  is said to be space-like if its normal vector is time-
like. If £f is represented as a graph of a function M, then we also say u is space-like.

A subset AcM is said to be acausal, if any time-like curve or null curve
intersects ,4 at most once.

A slice <9*CM is a space-like hypersurface which is also a closed and connected
submanifold of M.

We also remark that in the following sections we deal with bounded mean
curvature functions H, where we often have to consider compositions of the form
H(x, u) with continuous functions M. In order that these composite functions are
measurable in x, we therefore have to assume that H is a Borel function. Thus, H
bounded always means that we pick a Borel function in the equivalence class
defined by H.

2. Boundary Estimates

Suppose M = N x / with metric ds2 given by

ds2 = ψ(- dt2 + g^dtfdx*) , (2. 1)

and let M be a solution to the Dirichlet problem (1.19), (1.23).
For simplicity, we shall assume that / = 1R, and that ψ remains smooth and

positive on compact subsets of M. This has the advantage that a space-like surface
^ is a priori bounded, if d^ is compact. If we would allow / to be a general
interval, then we would have to impose further conditions to assume this. Our aim
is to prove a priori estimates for |Du| at the boundary.

Theorem 2.1. Let ΩcN be relatively compact with dΩeC2, and let φeC2(Ω) be
space-like with

\Dφ\^l-θ, #>0, (2.2)

uniformly in Ω, such that graph φ\dΩ is acausal. Let ueH2'p(Ω), p> n, be a solution of
the boundary value problem (1.19), (1.23) with bounded H. Then

\Du\^l-Θ0 (2.3)

on dΩ, where Θ0 depends on (9, dΩ, | | < p | | 2 , o o > II^IL' and on tne metric.

Proof. We first observe that according to the remarks at the end of Sect. 1 we may
assume that the quasi-linear differential operator A is defined with respect to the
metric (g^x)). The lower order terms then look different, but we do not change the
notation. We also note that in view of the assumptions M, DM and hence α(x, M, DM)
are uniformly bounded in Ω.
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Let x0εdΩ be an arbitrary but fixed boundary point. We shall show that there
is a neighbourhood U of x0 and two functions δ + , δ~eC2(ΩnU), such that

Aδ~ + a v(δ-)^H^Aδ + +a-v(δ+} (2.4)

in £2nL7, and ~
δ~^u^δ+ in δ(Ωn[7), (2.5)

δ-(x0) = w(x0) = δ + (x0), (2.6)

and

\Dδ~ , \Dδ + \^l-Θ0. (2.7)

Here, the factor a in (2.4) is evaluated at (x, w, Dt/). The maximum principle will
then yield that (2.5) holds throughout Ωr\U, and therefore we shall get

\Du(x0)\^l-Θ0. (2.8)

To define δ + , let ξeN be a point outside Ω but near x0, and label the coordinates
so that ξ = 0. Let |χ| be the geodesic distance, and choose ξ so that the ball BR(0) is
geodesically convex for some R>\x0\. We then define δ+ through

δ + (x) = φ(x0)+ J (l+y)- 1 / 2, (2.9)
l*ol

where λfy(ί) = α eλί (2.10)

with positive constants α, A to be determined later: λ is considered to be large
depending on |χ0| and H, and α is chosen to be small depending on φ, dΩ, and λ.

If α tends to zero, then δ+ represents the upper light cone with base point
(x0,φ(x0)). For positive α and x φ O we have

112, (2.11)

and

υ(δ+) = γ-ll2(ί+γ)112. (2.12)

Furthermore, (5 + eC2(5^(0)\{0}), and

^^(l-yΓ^ ΰiM, (2.13)

DiDjδ+^l + yΓ^DpjM-^l + yΓ^ λ y DiWDjW. (2.14)

Taking into account that |D|x|| = l, and

Aδ+ = -v(δ + )Aδ+-υ3(δ+) Dίδ
 + Djδ

+ DίDjδ+, (2.15)

we conclude

Aδ+=(l+γΓίl2 W2-Δ\x\) υ, (2.16)

where

-Δ\x\=-^+r, (2.17)
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and where r stands for bounded curvature terms: in Riemannian normal
coordinates with center in ξ — 0,

r=-g^Γ^Dk\x\. (2.18)

Thus, we derive

Aδ++a v(δ + )^H in ΩnBR(Q), (2.19)

if λ is chosen appropriately and α is small enough, α^α0(A); we note that this
estimate is uniform in α for such α.

Clearly (2.6) is valid for δ + , so that we merely have to check (2.5) for U = BR(ty.
In Lemma 2.3 below we shall show that in any neighbourhood of x0 we can find ξ
such that

φ(x)^δ + (x), VxeaΩnβ^O), (2.20)

if we choose α appropriately, always improving the estimates by choosing α small.
Taking (2.20) for granted for the moment, the final estimate

u^δ+ in d(ΩnBR(ty} (2.21)

with follow from

Lemma 2.2. Let ̂  = graph u be a surface of bounded mean curvature H, and let d^
be acausal Let (x, u(x))ε&>9 and let \x\ be the distance function with respect to the
metric (g^x)) and with base point x. Then, to any number R>Q, there exists
ε = ε(R,\\H\\009d&) such that

u(x) + £ ̂  u(x) 4- |x| , Vx e Ωn dBR(x) . (2.22)

Proof. Suppose that the lemma were not true. Then we would conclude that ίf
would contain a segment of a null geodesic. By the results of Sect. 3 below, we
would then deduce that this null geodesic segment is maximal, i.e. it would extend
to the boundary d£f, which is impossible since d£f is supposed to be acausal.

The fact that ε only depends on R and H H H ^ is due to the observation that the
results in Sect. 3 also apply to uniform limits of surfaces of uniformly bounded
mean curvature, i.e. to surfaces which are not necessarily space-like.

It remains to define the lower barrier δ~. We set

δ-(x) = φ(x0)- J ( l+yΓ 1 / 2 , (2.23)
l*ol

while choosing ξ, λ, and α as before, and it turns out that the estimates are identical
with the appropriate change in sign.

To complete the proof of Theorem 2.1 we claim

Lemma 2.3. Let xGεdΩ. Then in any neighbourhood of x0 we can find ξ not
belonging to Ω, such that

δ~^φ^δ+ in dΩ^BR(ξ), (2.24)

if α is chosen sufficiently small.
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Proof. We only prove the estimate for δ + . The proof is similar to the proof of [BS;
Proposition 3.1]. Let x0edΩ, and choose a Riemannian normal coordinate system
in N around x0 such that the tangent plane at δΩ in x0 =0 is given by xn = 0, that
the inward unit normal vector of dΩ in x0 is equal to (v.) = (0, . . ., 0, 1), and that the
tangential derivative of φ in x0 is given by

, (2.25)

where

O^r^l-Θ. (2.26)

We now want to find a sequence ξεφΩ9 converging to x0 = 0, such that, if we
define δ+ with base point in ξε,

1, (2.27)

holds.
From the definition of δ+ we deduce that

(2.28)

where

£>|g=_A (2.29)

and hence (2.27) says

(2.30)

where \ξε\ is the usual Euclidean norm since the coordinate system is normal.
In view of (2.25) the following definition for ξε seems appropriate :

ξe = ε(6,0,...,0,-l), (2.31)

where b is such that

e l Γ 1 / 2 - f c (H-fe2)"1/2 = r. (2.32)

The set of the possible b's is uniformly bounded if we choose α so small that

(2.33)

The (ξε) will therefore converge to x0 = 0 and will lie outside Ω if ε is tending to
zero.

Consider now some fixed ξ = ξε and choose Riemannian normal coordinates in
ξ. Then

ίj l j

(*J, (2.34)
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where clj is a bounded tensor if α is small, and hence

531

for any vector field (ηl).
Let

Then it follows from the assumption dΩeC2 that

2

(2.35)

(2.36)

(137)

(2-38)

(2.39)

For small ε this quadratic form is therefore larger as the corresponding quadratic
form derived from φ, hence

|x-x0|^ε /?. (2.40)

for all xedΩ with

if ε is small. For such x, we deduce from (2.35)

For x — x0 |>ε /? we argue as follows: for small α we obtain

) , (2.41)

in view of the definition of/?, where we assume ,R to be small enough so that φ has
an extension into BR(ξ) satisfying the same conditions. The last inequality in (2.41)
is then justified.

3. The Segment Condition

Let ̂  = graph ut over a domain Ω be a sequence of surfaces of uniformly bounded
mean curvatures Hε converging locally to a surface £f = graph M, i.e.

(3.1)

on compact subsets, then we have

Theorem 3.1. // ίf contains a segment of a null geodesic, then this segment has to be
maximal, i.e. it extends to the boundary of £f.
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Proof. The proof is a modification of the arguments given in [BS; Theorem 3.2].
Let ί$^= {(x, u(x) : xεΩ} and suppose the statement were false. Then, we could find
x0e£2, R>0, and xίεBR(x0) such that BR(x0) would be geodesically convex,
BR(x0)cΩ, (3.1) would hold in BR(x0), and if we would introduce a Riemannian
normal coordinate system in x0 and set

(3.2)

then we could arrange that

ttfoHuixoHHxo-xJ, -i^f^l (3.3)

and
(3.4)

where | | denotes the geodesic distance function, and where we point out that
because of (3.1)

Let χ be defined through

Then χeC2(BR(x0)\{x0}) and

χ(x)<u(x) for \χ-x0\ = \Xo-Xl\. (3.7)

Indeed, if equality would hold in (3.7) for some x, then

M(X) = M(X O )- |X-X O | = M(X I )- |X I -X O | - |X-X O | (3.8)

in view of (3.3), and hence

i.e. x0, x and x^ would lie on a common geodesic, in other words

X = x19 or x = x _ 1 9 (3.10)

but both cases are excluded by (3.3) and (3.4).
Let B0 be the geodesic ball with center in x0 and radius |x0 —xj. Since dB0 is

compact, we conclude from (3.1) and (3.7)

χ(x)<M ε(x),

if 8 is small, and hence that

(Γ(x)<wε(x),
where

|x-xo| Q
ίl2-Q, (3.12)

0 0

provided the constant α involved with y is small enough here, we have set

ρ = ίlχ0-*ιl (3 13)
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Moreover, the estimate (3.12) holds trivially on dBρ(x0), since uε is space-like, so
δ~ is a good candidate for a lower barrier in G = B0\Bρ(x0). Indeed, from the
results in Sect. 2 we deduce that

)^uε(x), V x e G , (3.14)

if α and λ are chosen appropriately, independent of ε hence

<Γ(x)^w(x), V x e G . (3.15)

Specifying χ = χ _ 1 / 2 J we deduce from (3.3)

] ( ί + yΓll2-Q^]\l+yΓll2-2ρ9 (3.16)
o o

a contradiction.

4. Global Estimates

In this section we consider a surface ̂  of prescribed mean curvature H given as a
graph of a function w defined in an open, relatively compact set ΩcN, where
M — N x /, and the metric ds2 is given in the general form

ds2 = ψ(-dt2 + 0./X, t)dxldxj) . (4.1)

We assume that M is bounded

(4.2)

that the metric (gtj) is uniformly elliptic and of class C2 in Ω x [ — m1 ? m2], that tp is
of class C2, and that H is uniformly bounded.

Let v be defined as in Sect. 1 through

u = (l-|0wlT1 / 2 (4.3)

We are going to prove that v is uniformly bounded in Ω with a fixed α pπoπ
estimate, provided υ\dΩ is bounded, including the case dΩ = &.

Theorem 4.1. Lef ube a solution of Eq. (1.23) vviί/z bounded H, and suppose that v is
bounded on dΩ by a constant fe0. Then, under the assumptions stated above, we have

lψ,(gij)), (4.4)

where
(4.5)

Proof. We prove a priori estimates, so we assume that VELCO(Ω) and that u is thus a
solution of a uniformly elliptic equation. In view of our assumptions of the metric
and of H we conclude

, (4.6)

i.e. υ is of class H1>P(Ω) for any finite p.
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To obtain a differential equation satisfied by v, we differentiate Eq. (1.23)
covariantly with respect to the differential operator

υDku Dk (4.7)

to conclude

+ υ - aijDjDku - DtDku + υ2 - R , --k-

+ v2~'\Du\2 + v2~DiDku Dku = vDku DkH, (4.8)
du dp1 l k k

where

j^v-gV + v^-tfuiyu. (4.9)

The Ricci tensor and the covariant differentiations are calculated with respect to
the implicitly defined metric (g^x.u)), and the right-hand side of (4.8) is to be
understood as a weak derivative of H = H(x, u\

We note for the subsequent considerations the estimates

(4.10)

aίjDjDku DiDku ̂  v - DlDku - DtDku = v - \D2u\2 , (4. 1 1)

and

\RtjD
lu Dju\ ^ c(l + \D2u\) , (4. 12)

where c depends on the C2-norm of the metric (g^x, £))•
Estimating all non-positive terms on the left-hand side of (4.8) in the coarsest

way, and using (4,11) and (4.12), we deduce

- D.(v~2aiJDjV) + |<Dtt, Dv}\2 + \v2 - \D2u\ ^c v2 + vDkuDkH , (4. 13)

where c depends on the first derivatives of a and on the second derivatives of

(<M*,0).
Moreover, looking at the differentiated form of (1.23)

-v-Au-(Du,Dvy + a-v = H, (4.14)

and using

\D2u\2^-\Au\2, (4.15)
n

we finally obtain from (4.13) the crucial inequality

-Di(v-2aίjDjv} + (l + 2ε) \(Du,Dvy\2 + ε v2\D2u\2^C'V2 + H2 + υDku DkH

for some positive constant ε.
Our first observation is that this relation immediately yields an estimate for the

L°°-norm of v in terms of fe0 and a smaller ZΛnorm oft;, e.g. we may use the Moser
iteration technique or Stampacchia's method.


