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Abstract. We associate a system of integrable, generalised nonlinear
Schrόdinger (NLS) equations with each Hermitian symmetric space. These
NLS equations are considered as reductions of more general systems, this time
associated with a reductive homogeneous space. The nonlinear terms are
related to the curvature and torsion tensors of the appropriate geometrical
space. The Hamiltonian structure is investigated using "r-matrix" techniques
and shown to be "canonical" for all these equations. Throughout the reduction
procedure this Hamiltonian structure does not degenerate. Each of the above
systems of equations is gauge equivalent to a generalised ferromagnet.
Reductions of the latter are discussed in terms of the corresponding NLS type
equations.

1. Introduction

In the past few years it was discovered how to generalise the Toda lattice equations
and their generalisations [1] to two dimensions. These 2 — D generalised Toda
lattices take the form of a multicomponent, Lorentz invariant, Lagrangian field
theory. To each simple Lie algebra ,̂ there corresponds one such field theory
[2-5]. The number of field components is equal to the rank of ̂ . When ^ = si (2, (C),
the single component satisfies the sine-Gordon equation.

This is just one of the "group theoretic" generalisations of the sine-Gordon
equation. Others include the chiral model and the nonlinear sigma model, each of
which can be associated with a given semi-simple Lie group. Various reductions of
these occur by restricting the field components to lie on some homogenous space.

In this paper we carry out a similar generalisation and classification of the
nonlinear Schrodinger (NLS) equation. Furthermore, to each such generalised
NLS equation we give the corresponding generalised ferromagnet.

As is well known, the system of equations
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-2 Σ <ljPfim>
7=1

(1.1)

-φmt = Pmx*-2 Σ Wm>
7 = 1

where m = l, . . . ,π can be solved exactly with the aid of an sl(π + l,C) linear
problem:

inλ

(1.2)

Furthermore, there exists a restriction p. = — qf, associated with the compact real
form su(n+1) of sl(n+ 1, C). This is the well known vector NLS equation and has
internal symmetry U(n). This generalises the original NLS equation, obtained by
putting n = l. The number of independent (complex) q's here is equal to the rank of
the algebra, as was the case for the generalised 2 — D Toda lattices. However, this is
a coincidence and will not be true in the generalisations considered below. The
potentials of the generalised Toda lattices lie within the Cartan subalgebra of ̂
whereas those of the generalised NLS equations lie within the tangent space of a
symmetric space. The vector NLS equations are associated with

SU(wH-l)

S(U(l)xU(n)Γ

Some other generalisations considered by Kulish and Sklyamin [6] are associated
with

S(U(/j)xU(<7)) '

these will be found in Sect. 3. The number of independent real fields is equal to the
dimension of the symmetric space.

These particular symmetric spaces are very special, being Hermitian. This is
necessary in order to equate pt with —qf. However, for the purposes of our
calculation, it is certain special algebraic properties of Hermitian symmetric spaces
which are important.

For each Hermitian symmetric space G/K there is a very special element A of
the Cartan subalgebra A of .̂ The Lie algebra A of K is given by I = C^(A)
= {Bεg: \_A, 5] =0} and the complex structure J is realised by ad A. This gives us
a canonical way of generalising the linear problem (1.2)

x,t))φ, (1.3)

where Q(x, i)e Tpo(G/K) = tangent space to G/K at point p0. The properties (2.6) of
a symmetric Lie algebra, together with the property / = C^(A)9 give rise to a simple
form for the recursion operator associated with (1.3). The second order flow has
cubic interaction term and the coupling coefficients are just the components of the
Riemann tensor of G/K. The equations have Hamiltonian form (3.17) given in
terms of invariant quantities associated with the symmetric space.
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Each of these generalised NLS equations is a reduction of a generalised second
order, "TV-wave" equation. The latter is associated with the homogeneous space
(no longer symmetric) G/H, where H is the toral subgroup corresponding to the
Cartan subalgebra A. Since H C K for all K defined above, the symmetric space
G/K is a subspace of the homogeneous space G/H and thus the (second order)
"TV-wave" equations can reduce to the NLS equations. There exist various
intermediate reductions. When K = H the eigenvalues of A are all distinct. As the
eigenvalues of A coallesce C (A) grows larger and the homogeneous space G/K
reduces in size. When A is its "most" degenerate, we have a symmetric space. We
refer to equations associated with symmetric spaces as NLS equations. Those
associated with the more general homogeneous spaces as TV-wave equations. This
much is no surprise.

What is, perhaps, a surprise is that the Hamiltonian structure survives this
reduction. Hamiltonian structures often degenerate on reduction. This is best seen
in terms of the associated classical r-matrix [7,8], The appropriate r-matrix is
given in Sect. 4 in terms of the Cartan-Weyl basis of .̂ For each ^ there is one
r-matrix which corresponds to the TV-wave equation for K = H and all its
reductions. It will be seen in Sect. 3 that for any homogeneous space (symmetric or
otherwise)

Q= Σ (<feΛ + p*e_Λ)9
aeθ +

where θ+ is the subset of Φ + , the positive roots, for which α(^)φO. From Eq. (4.3)
corresponding to the TV-wave equation we see that the Poisson bracket satisfies
{qa(x),pβ(y)}=oί(A)δaβδ(x — y), which is consistent with qa = p*~Q whenever
a(A) = 0. Thus we have two different principles of reduction which lead to the same
results and are thus mutually consistent.

Another well known feature of the NLS equations is its relationship with the
Heisenberg ferromagnet [9]. Corresponding to each r-matrix (one for each ^) we
present a generalised, isotropic ferromagnet which is an isospectral deformation
of:

where S is given by (4.8). The matrix S has / independent Casmir invariants tr Sl+ 1

(ί = 1, ...,/), where / = rank^. These are invariant under isospectral deformations of
(1.4), so can each beheld constant. For^ = su(2) this corresponds to setting S2 = l.
The resulting "magnet" is gauge equivalent to the above TV-wave equation
associated with #. In the magnet co-ordinates, the reduction procedure is not so
transparent. Nevertheless, to each reduction of the TV- wave equation, discussed in
Sects. 3 and 4, there is a corresponding reduced magnet. In particular, each
generalised NLS equation is gauge equivalent to a particular magnet.

Section 2 is devoted to some mathematical preliminaries concerning Lie
algebras and homogeneous and symmetric spaces. In Sect. 3 we discuss the linear
eigenvalue problem (1.3) associated with an arbitrary Hermitian symmetric space.
We derive the recursion operator and the second order flow. We then give the full
list [10] of Hermitian symmetric spaces and present some lower dimensional
examples explicitly. Section 4 reviews some facts about the r-matrix and the
classical Yang-Baxter equations and their relationship to Hamiltonian structure.
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We present some generalised ferromagnets and show their relationship to the NLS
equations of Sect. 3. Some speculations about developments and generalisations of
the results of the present paper are discussed in the conclusions.

2. Mathematical Preliminaries

In this section we state a number of relevant facts concerning simple Lie algebras,
homogeneous and symmetric spaces. Irreducible symmetric spaces are classified in
terms of simple Lie algebras, so we have no need of anything more general in this
paper. We give the barest of details. The full theory can be found in [10-12].

2Λ. Simple Lie Algebras; Cartan-Weyl Basis. In terms of the Cartan-Weyl basis a
complex, simple Lie algebra ^ has the following commutation relations [10, 11]

(i) IΛΛ ] = 0, V/z.,/z.e^,

(ii) [h9ea]=u(h)ea, Wie/ f , αeΦ,

z = l

Nytβeγ + β,

0, y + βφΦ.

It will be necessary to explain some of the terms :
(a) a is the Cartan subalgebra, which is the maximal abelian subalgebra of

diagonalisable elements of #. a has basis {/zj! and dyι are the components of
[ey,e^y~]eά with respect to this basis. The number / is the rank of the albegra.

(b) α : ^->(C are linear functionals, called roots, on a and their values on given
hεά are the eigenvalues of the matrix ad/i. The corresponding eigenvectors, ea, are
called root vectors.

(c) The coefficients N Λ f β are the most complicated part of these commutation
relations. They satisfy various identities which we use later in the paper:

N^β = -N,tβ, #.,, = #,._._„ = #_„_„,.. (2.2)

2.2. Homogeneous and Symmetric Spaces. A homogeneous space of a Lie group G is
any differentiable manifold M on which G acts transitively (V/?1,p26M,
3geG/g pί =p2). The subgroup of G which leaves a given point p0eM fixed, is
called the isotropy group at p0 and is defined by:

It is a theorem that each such M can be identified with a coset space G/K for some
subgroup K and that this K plays the role of isotropy group of some point. There
are many topological and differential geometric subtleties, but we have no need of
them in this paper. We are only interested in the decompositions of the
corresponding Lie algebras.

Let # and / be the Lie algebras of G and K respectively, and let m be the vector
space complement of / in .̂ Then

?=£®m, [/,/]C/, (2.3)

and m is identified with the tangent space TpoM of M = G/K at point p0. At the
moment we have [X,/]C/, but know nothing of [/, m] and [̂ , m].
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When g satisfies the more stringent conditions:

then G/K is called a reductive homogeneous space. These spaces possess canoni-
cally defined connections with curvature and torsion. Evaluated at fixed point p0,
the curvature and torsion tensors are given purely in terms of the Lie bracket
operation on m\

(R(x, γ)z)po = - [[x, y],, z], x,γ9zem,

where subscript / and m refer to the components of [X, y] in those vector
subspaces.

When satisfies the conditions1:

(2.6)
[/, wϊ\ C #n , [*?£, ̂ ] C / ,

then g, is called a symmetric algebra and G/K is a symmetric space. For these
spaces the above mentioned canonical connection is derived from a metric, which
is itself given by the restriction of the Killing form to <m. This connection is torsion
free. Evaluated at fixed point p0, the curvature tensor is given as in (2.5):

= - [[*, Y], Z] , X, y, Ze^ , (2.7)

where we now automatically have pf , y] e /.

The components Rl

jkl and T^ of the curvature and torsion tensors with
respect to a basis X. of TpoM are defined by:

R&vXίϊXj = Ri

jk^ί , -ΠXfXJ = TyΓ; . (2.8)

For a symmetric space, the corresponding metric is given by the Killing form:

0(2f, y) = tr aάX ad 7, ^ . = g(X»X) . (2.9)

Tensorial indices are lowered and raised in the usual way by means of the metric
tensor and its inverse.

For spaces of constant curvature, the Riemann curvature tensor is related to
the metric tensor in a simple way:

RijU = K(δt

llgfl-δt

lgjJ, (2.10)

where K is the constant Gaussian curvature.
We are particularly interested in those homogeneous and symmetric spaces

which have a complex structure. This is a linear endomorphism J\m-^m
satisfying J2= — 1. The vector subspace m must have even real dimension.
Hermitian symmetric spaces are very special. For this paper, the most useful
properties are algebraic:

i) 3^e^ such that/- C (A} = {Be^\ [_B,A\=Q].

1 Helgason demands that / be compact. This corresponds to the metric being positive definite
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ii) For a particular scaling of A, J = adA.
(2 n)

iii) 3 a subset θ+ CΦ+ of the positive root system such that
m = spa.n{e±a}xeθ+ and %(A) is constant on θ+ .

iv) Following from (iii) [βα,^]=0 if α,βeθ + or u,βeθ~ .

3. NLS and N-Wave Equations
We choose an element A of the Cartan subalgebra a of s?:Ae$C^. If A is regular,
Cg(A) = ά. Otherwise Cg(A)^ά. Let £ = Cg(A) and m, be the complementary vector
subspace of / in ^:^ = /©^. As in (2.3), m is identified with the tangent space
Tpo(G/K) of the homogeneous space G/K. In this paper we use representations in
which all elements of $ are diagonalised. Because of the construction, this
homogeneous space is automatically reductive.

Consider the linear equations

t = P(x,t 9λ)φ,

where Q(x,t)εm and P(x, f)e^. We may decompose P in terms of (2.3):

P(x, t ; λ ) = Pk(χ, t',λ) + Pm(x, t',λ). (3.2)

The integrability conditions of (3.1) are:

J, (3.3)

where we have used [,4, PJ = 0, since / = C (A). We treat first the simplest case,
which is the symmetric space.

3.1. NLS Equations Associated with Symmetric Spaces. In this case ^ satisfies (2.6)
and the integrability conditions (3.3) decouple to give:

j,
^ = [β,-PJ

Note that in general the second of these equations would contain a term λ\_A, PJ.
However, in our case we can immediately integrate the second equation:

Pk = d'^Q,PJ, (3.5)

so that the first equation takes the form:

Qt = (d-SidQ'd-'1'adQ-λadA)Pm9 (3.6)

where (adX)Y=[_X, Y]. Notice that the recursion operator appears on the right

(δ-adρ δ~ 1 adβ)Pm

0')-(ad^)Pm

0'-1), 7 = 1, . . . ,JV + 1, if P- f P(j}λj .
j = o

(3.7)

Since ad ,4 is nonsingular on m, we can solve for Pm

(j~ υ at each step. At each step
Pk

(j) is obtained by integration and the process terminates with the Nth order
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flow:

Qt = (d-aάQ d-1 aάQ)Pm

(0}. (3.8)

The second order flow is particularly easy to construct2.

[ΛPm

(2)]=0 => Pm

(2) = 0, since C,(A) = *. (3.9)

The integration (3.5) implies that Pk

(2} is a constant element of I. We choose

Pk

(2} = A. (3.10)

Such a constant arises at each integration. However, all subsequent ones just
correspond to the addition of lower order flows, so we set them to zero:

[^m

(1)] = [̂ β] = Diβ] => Pm

(1) = β and Pfe

(1) = 0. (3.11)

Remark. Had we chosen Pk

{2) to be anything other than a multiple of A, Pm

(1)

would have been different from Q and [β,Pm

(1)] would not have been an exact
derivative. As a result, our equation would have been nonlocal.

For the next step we use some details of the root space decomposition (2.1) of
g. We use the specific properties (2.11) of those symmetric algebras associated with
Hermitian symmetric spaces. Recall that there exists a subset θ+ of the positive
roots Φ+ such that:

Be^ ^ B= £ (B«ea + B~«e_^
αeθ +

and that a(A) is a nonzero constant on θ+; set a(A) = a Vαeθ + .
Returning to our calculation : set

β= Σ (<fea + j f e _ Λ ) 9 (3.12)
oceθ +

so that Pm

(1)

x = DiPm

(0)] ensures

Pm

(0} = - Σ teV.-PV-J, P^--1- Σ (fp'lA,*-,]. (3-13)
a aeθ+ aa,βeθ +

We have used the property \_ea, eβ~\ =0 Vα, βεθ+ . We can now read off the equation
from:

Qt=Pm

m

x-lQ,Pk

(0)l (3-14)
First note that either u + β — y is not a root or oc + β — yeθ+ Voc,β,yeθ+ since
(u + β — γ)(A) = a. This allows us to decouple (3.14) somewhat:

Σ

?"»«-.+ Σ

β,y,δeθ+ Π 1 5)

These equations can be decoupled even further if we use the definition (2.7) of the

2 Most of this calculation is identical to the first few iterations for general N
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Riemann curvature tensor. We use the components (2.8) with respect to the basis

(3.16)

β,y,δeO +

These equations have Hamiltonian form.

with H=-goc_βq
a

xp
β

x + ̂ gε_aR
ε

βγ_δ paqβqγpδ. The summation convention has
been used here. To derive (3.16) from (3.17) it is necessary to use some of the
algebraic symmetries of the Riemann tensors.

Remark. The term R_aβy_δp*qβqypδ appearing in the Hamiltonian is just the
sectional curvature in the 2 — D surface spanned by the vectors pα and qa.

Since in the corresponding Hermitian symmetric space the Riemann tensor has
the property:

we can set pa= ±(qa)* with a — i. The minus and plus signs correspond to the
compact and noncompact real forms respectively.

3.2. The Classification and Examples. On p. 518 of Helgason's book [10] there is
a table of symmetric spaces. Directly beneath this table those spaces which are
Hermitian are listed. We now give the linear problem and associated NLS
equations for lower dimensional examples of these spaces. It is an exercise for the
reader to calculate the matrix P from the formulae of Sect. 3.1.

A III
• S(U(p)xU(β))

This example is relatively well known and includes the case of the vector NLS (1.1).
The linear problem is an equation in the Lie algebra su(p + #), which is the
compact real form associated with the root space Ap+q_1. When p = q = 2wQ have:

Iφ^ fiiλ 0
0

1=1-Φ3 -βί *
φ

0

(3.19)

The choice of A makes <x,(A) = i in the top right hand block. The first two
components of the second order flow are:

»3, 2<-^4. There areThe second two are generated from (3.20) by the interchange l«
then the four complex conjugate equations.
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Remark. The choice of compact real form su(p + q) corresponds to setting
pα=r — gα*. The noncompact real form su(p,q) corresponds to pα = gα*.

When p = \ we are dealing with the usual vector NLS equation and the
symmetric space is just complex projective space CPg. Since this is a space of
constant curvature K, we use (2.10) to obtain:

(3.21)

and its complex conjugate. The metric is given by the Killing form (2.9) restricted
to the symmetric space. However, the Killing form is proportional to the trace
form in the fundamental representation. With respect to the root vector basis
(which is not a co-ordinate basis) the metric is thus proportional to δβ> _ γ, which
gives the usual form of (3.21).

Sp(w)
C.L

υ(n)
The compact group Sp(n) [sometimes called USp(2rc)] of 2n x 2n matrices which
are both symplectic and unitary is associated with the root space Cn. For the
simplest of these n = 2:

(3.22)

Notice that this is a reduction of (3.19), with q4 = q2 The NLS equations for this
case are given by (3.20) with the same reduction. In general:

'\iλ 0

0 \iλ

-q*

— q^
-1*2

-q*

4ί

42

-\iλ

0

12 \

43

0

Sp(n)
C

U(n) "S(U(n)xU(n)) '

and corresponds to each of the off-diagonal blocks being symmetric. The
noncompact real form Sp(n, R) corresponds to the choice p. = q*.

D.ΠI. *> .̂

The orthogonal algebra so(2n) is the compact real form associated with the
root space Dn. The general case is exemplified by the D4 linear problem.

/Φλ
Φ2
Φ3

Φ '4

φ

Φ6

Φ ,
\Φsl

l\iλ 0 0 0

' 0 \iλ 0 0

0 0 ±iλ 0

0 0 0 \iλ

0 q* q* q*

-q* 0 q* q*

-q* -q* 0 q*

\-q*6 -q*s -4l o

0 qί q3 q6 \

~1ι 0 q2 qs

-q3 -q2 0 q4

-16 -4s -44 0

-\iλ 0 0 0

0 -\iλ 0 0

0 0 -\\λ 0

0 0 0 -%iλ]

/Φλ

Φ2

φ3

Φ4

Φs

Φ6

07w
(3.23)
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There are three basic equations:

ι Σ <
7*4

2 Σ <
7*6

3 Σ <
7 * 5

-q2q6),

(3.24)

Another three are obtained by making the interchanges l<-»4, 2<-»6, 3<->5. The
system is completed by complex conjugation. This is another reduction of the
A III case:

SO(2n) SU(2rc)

U(n) S(U(n)xU(n))'

this time corresponding to each of the off-diagonal blocks being anti-symmetric.
Notice that q4 = q5=q6=0 is a consistent reduction. This corresponds to

taking the subsystem D3 of D4. Furthermore, this reduction is identical to the
3-component vector NLS equation. This corresponds to the isomorphism D3 = A3,
leading to

SO (6)^ SU(4)

ΊJ(3)""S(U(l)xU(3))'

BD.I.
SO(p)

±(q+ί} or D±(q

This symmetric space is only Hermitian when p = 2. In general so (p) + so (q) has
no centre. When p = 2 the so (2) subalgebra is the centre. Depending upon whether
q is odd or even this symmetric space is associated with either B±
The simplest nontrivial example is associated with D3. Even though
SO(2) xSO(4)^S(U(l) xU(3)). Indeed, this example has four independent com-
ponents qh not just three. The eigenvalue problem is possibly best understood in
terms of the skew symmetric matrix representations [10]. However, the present
calculation is more easily performed in the representation given by Humphreys
[11]. The eigenvalue problem is:

(3.25)

lφl\Φ2

ll
Φ5\ΦJ

1 iλ qί q2

-q* 0 0

-9*2 ° 0

0 q* q*

-q* 0 0

\-«ί o o

0 q3 qλ

-q4 0 0

-iλ q* q*

-q, 0 0

-q2 0 O/

IΦ1\
Φ2

Φl

Φs

\ΦJ

There are two basic equations:

1 Σ ^A *-
j*3

2 Σ W*-
7*4

(3.26)
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Two more equations are obtained by the interchange l<->3, 2<->4. There are then
the complex conjugates of these four.

Exceptional Algebras. All the examples so far given have been associated with the
classical Lie algebras. There are two Hermitian symmetric spaces EIΠ and EVII,
associated with the exceptional E-series. They possess respectively 16 and 27
independent complex potentials, qt, which would satisfy a corresponding system of
generalised NLS equations. We do not present these examples explicitly.

3.3. N-Wave Hierarchies and Reductive Homogeneous Spaces. In Sects. (3.1) and
(3.2) we dealt with symmetric spaces. These were particularly simple because of the
condition [^,^]C/ of (2.6). One interpretation of this condition is that a
symmetric space is a reductive homogeneous space on which the canonical
connection has zero torsion. In this section we deal with reductive homogeneous
spaces which have non-zero torsion. Equation (3.3) decouples to give:

M ,

Pta = [β,PJt.
Here, as indicated, [β, Pm] has components both in / and in ̂ . We construct the
second order flow. The first part of the calculation is the same as before:

p ( 2 ) _ Q p ( 2 ) _ / j p (D_0 P W - f t
rm ~ u > rk ~Ά > rm -\L* rk ~ u >

(J.Zδj

O= y (aΛe + vae } P (0)= y _ (aa e -v* e }\£ V ί ί t ; ι / ' - ' ' ? λ W " - / '

A new feature is that a(A) is no longer constant on θ+ . However, it is constant on
blocks within the representation, depending upon the degeneracy of A. Thus θ+

can be written as the union of a number of subsets θ^ on each of which a(A) takes
a constant value a(A) = aj9 Vaeθf.

It is only at the next step of the calculation that the property \_<m,m\r\<m
nonempty plays a role. For instance, we no longer have [eα,e0]=0, Vα,/?e$+.
However, we do have [eα, e^]^ = 0 for a,βeθ+. We wish to calculate [β, Pm

{0)] :

p (θ)η__

' ^ A ) * a(A) * «> -»

+ Σ -fi-firtJ.W]- Σ -βLpy^-^-^ (3.29)
a,βeθ^ P(Λ) a,βeθ+ P(Λ)

The only part of this expression which can have a component in / is [βΛ,e_β~\. We
have the following :

which means oί,βeθj+ for the same j. Otherwise [_ea,e_β\k = Q. When
=z\_ea,e_\k, its coefficient is an exact derivative, so that

Σ -*yi>e, *-,]*. (3.30)
,/»e«; aj
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Thus, corresponding to (3.15) we have:

- Σ
α,tfe0 + P(Λ)

(3.31a)

and

- "'-- . ΛVC -.[ -,«JJ

- Σ (3.

Using the definitions (2.5) of the curvature and torsion tensors, these equations can
be further decoupled to give :

™+ Σ

- Σ

Σ ;
β + y =
β,yeθ +

(3.32a)

Σ (3.32b)

Remark. It follows from N_β^_γ=-Nβ>1>
that = - T _ y

and

These equations are more complicated than (3.16), reducing to the latter when
the torsion TΞΞ(). Notice that the torsion terms are not cubically nonlinear, but
quadratic with derivatives.

When A is regular (distinct eigenvalues) /=ά, the Cartan subalgebra of ̂ . As
the eigenvalues of A coallesce, A grows larger and the homogeneous space smaller.
When A reaches its "most degenerate" state, the homogeneous space is symmetric.
This coallescing of eigenvalues gives rise to a sequence of reductions :
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K1CK2CG => G/K2CG/Ki. (3.33)

We do not discuss the examples of these equations in detail. The reduction
procedure is best visualised in terms of:

SU(n)

S(U(W l)x ... xU(nJ)

We give a simple example:

3-Wave Hierarchy

SU(3)

Σ H / = "

S(U(l)xU(l)xU(l))

The linear problem is an equation in SU(3):

/*,
\Φ2

\Φ3

The second order flow is :

A'a^ ς f j q2\ φ

= -4* io,2λ q3 φ

\-4* -4* ^3^ ^

. «ixx . /2«!«ί , q2q*2 «3«? \
Z# l f — 1 #i

a,-a2

 1 \a 1

42χx , / 4
Z^2ί — ' ^2

/
V x T f — OΛΛ; L ^ |

— /

1 1
-a2 a,-a3 a2-aj

π π π π^ /7 n π^ \
^/ 1 jt 1 u2^/2 jL 3^ιS

1

2

3

^2^1

q, ql

a,-a2

, 4Ϊ42x

(3.34)

+

together with the complex conjugates.
The reduction corresponding to:

SU(3)

x U(2))
C

SU(3)

(3.35)

(3.36)

is purely algebraic in terms of (3.34). We merely set a2 = a3 = —^a1 and q3=Q. In
terms of the differential equations (3.35) the limiting procedure must be taken into
account.

4. Hamiltonian Structure and r-Matrix for NLS Equations

In Sect. 3 we discussed NLS equations associated with various Hermitian
symmetric spaces. We also considered a more general class of equation associated
with reductive Lie algebras. We discussed various reductions of the above systems.
An interesting feature is that the Hamiltonian structures of the above systems
survive reduction. In this section we discuss this aspect in detail. We find the
r-matrix approach most convenient for our purposes. We first consider the general
framework of the r-matrix, and then discuss some associated generalised fer-
romagnets. Finally, we return to our NLS equations.
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The r-Matrix. One aim of the inverse scattering method is to realise a transfor-
mation from the "field" variables to new ones, in terms of which the nonlinear
evolution equation (NLEE) takes a simpler form. Such variables are defined by
entries of the monodromy matrix

Tfa λ) = L(x, λ)T^ λ) , 7J( - /, λ)= 1) , Tt(X) = 7J(/, λ) . (4.1)

It was noticed in [7, 8] that the classical r-matrix permits us to write down the
Poisson brackets of the entries of 7](Λ,) in compact form :

{τ (λ) <g> τ (v)} = [rμ-v),ημ)®η(v)], (4.2)

where the left hand side is an n2 x n2 matrix of Poisson brackets {Tab(λ\ Tcd(v)} of
different entries of n x n matrices 7](λ) and 7](v). It is important that we can
calculate r(λ) from the equation :

{ L(x, A) ® L(y, v)} = [r(λ - v), L(x, λ)®/ + J® L(x, v)]<5(x - y) , (4.3)

where we use only the matrix L(x, y) and the Poisson brackets of its coefficient
functions. We would like to underline also that with a given r-matrix it is always
possible to construct a corresponding linear problem, the Hamiltonian structure
of its coefficient functions and, as a result, integrable NLEE's.

To prove these statements we recall some results from [7, 8]. At first we obtain
an equation for the r-matrix only. If we consider the Jacobi identity for the Poisson
brackets of entries of three monodromy matrices T(λ)9 T(v), and T(μ), then using
(4.2) we see that a sufficient condition for the Jacobi identity to be valid is the
following equation for the r-matrix :

This is the classical Yang-Baxter equation. It is written in the tensor product of
three spaces V1®V2®V3, and indices of the r-matrix show in which two of the
three spaces this matrix is nontrivial. Equation (4.4), just as the Lax (integrability)
equations, depends only upon the structure constants of the corresponding
algebra ,̂ so is independent of representation. We can write down its solutions as
linear combinations of the tensor products of basic elements of the algebra ^ :

Kλ)=Σωβ/^K(V2) (4.5)
*,β

In this expression ωaβ(λ) are complex-valued functions of λ, ea

(1} and eβ

(2} are
independent generators of two copies of the same algebra ,̂ satisfying the
commutation relations

^a\e^=δabC:βe"y, a,b=l,2. (4.6)

The r-matrix corresponding to two dimensional Toda lattices was calculated in
[8, 13]. Here we are interested in a limiting case of this, which has the form:

=τ Σ WJ+ Σ*α®*-« > / = rank^. (4.7)
1 αeΦ
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This r-matrix corresponds to the simple Lie algebra ̂  and the notation is that used
in Sect. 2.

Magnets. Using this r-matrίx we can construct the linear problem corresponding
to a magnet NLEE which is a Lie algebra ̂  generalisation of the SU(2) continuous
Heisenberg Ferromagnet [9].

Let us substitute in place of /i/2), ea

(2] in (4.7) the functions Sfo), Sa(x). Then we
obtain the matrix S and a linear problem :

(4.8)

Let us define Poisson brackets of the functions Sa (a — i, α) using the structure
constants of the Lie algebra ̂

[Sa(x)9 Sb(y)} = Ca

c

bSc(x)δ(x - y) . (4.9)

As a result the linear problem (4.8) will satisfy (4.3) with r-matrix (4.7) and

L(λ)= -S(x). To prove this, it is enough to notice that (4.3) in this case is nothing
A

but (4.4) in which the last commutator is replaced by the Poisson bracket.
The NLEE corresponding to the second order flow of (4.8) is the following:

dtS = ίS,Sxx}. (4.10)

Hence, the quantities ̂ n = trSm+ l,m= 1, ..., rank^ are independent of t. Moreover,
the ^m are mutually in involution and commute with all other variables Sa(x) :

{̂ ,,Sβ} = {5ς,^}=0. (4.11)

These quantities are global invariants with respect to isospectral deformations of
(4.8). Fixing their values we define an orbit on which the Poisson bracket (4.9) is
nondegenerate. For the general set of {^n}

rιank^, the functional dimension of the
orbit is dim^ — rank^. We would like to consider some reductions where the
Casimirs !fm are not all independent. However, in terms of the matrix S(x) such
reductions are very complicated. It is much simpler to consider the eigenvalues of
the matrix S(x) and to relate reductions of S(x) to the coalescing of eigenvalues.
We consider the case when all £fn are independent of x.

We thus write S(x) in the form S(x) = g~1(x)Ag(x), where A is a constant
diagonal matrix. This relation does not define g(x) uniquely, since g can be
multiplied on the left by any element of the centraliser of A. We can thus choose
g(x) so that :

0*0" 1 = Σ (4αeα + Pαe_α)eRange(ad^), (4.12)
αeθ +

where we have used the notation of Sect. 2 and 3. Once again we have a reductive
homogeneous space G/K, where K = {BeG:BAB~1 =A}. Thus, in the notation
of (2.3), gxg~1Em Θ+ is the set of positive roots which are nonzero when evaluated
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on A. Defining φ = gf and using (4.8) we obtain the equation I !->>-):
\ N

-H- φ(x, λ) = (λA + β(x))0(x, λ) 9 (4. 1 3)
ox

where Q(x}= Σ (qaea + pae_ΰ). This is exactly the equation discussed in Sect. 3.
αeθ +

The above is just the gauge transformation between the generalised ferromagnets
of this section and the generalised NLS equations of Sect. 3.

NLS Equations. After this transformation it is easy to see that the linear problem
(4.13) satisfies Eq. (4.3) with the same r-matrix (4.7). If we define Poisson brackets
of coefficient functions :

{q«(x),pβ(y)}=*(A)δaβδ(x-y). (4.14)

Let us consider, for example, in the right hand side of Eq. (4.3) the term which
does not contain coefficient functions qa, pa, with L given by (4.13),

o \ / j i <-> i ' L t α^-^
Λ ~ V \i = 1 αeφ / 7

= — Σ ίΣαία(^ι))^α®^-α~ ~~ Σ a( ̂ ea®e-σ.' (^ 15)
αeφ \ i αeφ

But this expression coincides with the left hand side of (4.3):

(y,A)}=ί Σ ((feaJrPβe-a® Σ (^/? + £^e-β)l
lαeθ+ > βeθ+ }

= δ(x — y) Σ α(^)(e

α®e-α~"e-α®O (4.16)

To prove the cancellation of other terms we have to use the special properties of
the Cartan-Weyl basis (2.2); in particular NΛίβ = N_Λ_βiΛ. This is a straightforward
calculation.

We can see that Eq. (4.14)-(4.16) are consistent with respect to a degeneration
of the element A in A. For regular A, all α(^)φO (i.e. CJίA)=ά) so that all <f ,pαφO.
For a degenerate element (some eigenvalues coincide) we have a(A) = 0 for some
roots. For Eqs. (4.15) and (4.16) to be consistent, we must have qa = pa = 0 for all
such α. As a result the subset θ+ of roots is smaller than Φ+ and we reduce our
system to a smaller number of components.

We have thus shown that for the various reductions discussed in Sect. 3 the
given Poisson bracket does not degenerate.

5. Conclusions

It is very natural to continue the research of this paper in several directions: first,
there is the definition of action angle-variables and proof of complete inίegrability
of these systems. The difficulty of this problem is evident; the systems are
multicomponent but only possess "one series" of local integrals. For the vector

NLS the case of-————— a procedure has been proposed in [14]. Second, it
\ SU(n) /
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would be interesting to quantise these equations in the framework of the quantum
inverse scattering method [7, 8]. From these considerations we would be able to
calculate the quantum K-matrix, which describes the commutation relations of the
quantum scattering data. We underline that the ^-matrix, contrary to its classical
limit r, depends upon the representation.

There are also various questions of a more geometric and algebraic flavour.
The NLS equations presented here were defined in the tangent space of the
corresponding symmetric space, but no mention was made of the role of the actual
symmetric space. In this paper reduction was achieved by taking a nested sequence
of coset spaces (3.33). This approach is not limited to the systems of equations
found in this paper. However, we cannot expect the Hamiltonian structure to be so
well behaved in a more general context.

Finally, to each NLS equation presented here there corresponds a DNLS
equation, isospectral to :

(5.1)

As usual, the Hamiltonian structure is not canonical in this case.
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