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An Adiabatic Theorem Applicable to the Stark Effect
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Abstract. We prove an adiabatic theorem applicable to an atom evolving in a
slowly varying electric field. This yields an operational estimate of the tunneling
rate even for systems where complex scaling techniques are not applicable.

1. Introduction

The discovery of the spectral theorem by Stone and von Neumann in 1930 provided
an extremely powerful tool for early quantum mechanics, and enabled a deep
investigation both of bound states and of scattering theory to be initiated. At the
computational level these have been well understood for many years, and their
theoretical analysis is now largely complete. On the other hand the study of
metastable states (resonances) has made much slower progress, and it is only with
the introduction in the last decade of ideas known collectively as complex scaling
([1, 2, 4, 5, 12, 13] and references there in) that real insight has been achieved.

A standard application of complex scaling is to the Stark effect [4, 5, 13] for the
hydrogen atom, with Hamiltonian

Although this operator is known to have no bound states for E =/= 0, complex scaling
leads to the discovery of a complex eigenvalue λE whose associated eigenfunction φE

is not square-integrable. The real part of λE is often identified as the perturbed energy
level of the hydrogen atom, while the imaginary part, which is exponentially small, is
identified as the decay or tunneling rate.

One way of trying to justify these identifications operationally would be to
consider the evolution of the ground state of the hydrogen atom if the external field is
switched on adiabatically. Thus one examines the form of the solution of ψ'(t) =
— iHE(t)ι//(t) if £(0) = 0, and E(t) varies very slowly. The adiabatic theorem of Kato
[6] is not applicable here because HE has no bound states for E =f= 0. The obvious
guess that ψ(t) should be near to the resonance eigenfunction φE(t) up to a phase is
clearly also impossible if one measures nearness in L2 norm. We do not attempt to
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prove such an approximation for some other appropriate norm, but point out that
one might enquire about the operational significance of any other norm which is
used.

We next comment that the idea of obtaining a metastable state by switching on
the field slowly enough is not entirely correct. The difficulty is that tunneling allows
the perturbed ground state to dissipate very slowly. Thus the rate of increase of the
field strength must be small enough to avoid impulsive reactions, but large enough
to render tunneling effects unimportant. This feature of having to keep between two
very different time scales is typical of metastable phenomena, and is what makes
their rigorous analysis so fascinating.

The basic ingredient of our approach is the construction of a particular family of
states φE and scalars λE such that

(i) || 0£ || = 1 all E,

(ii) £-»</>£ and E^λE are smooth functions of £,

(iii) \\HEφE-λEφE\\ ^ε(E),

where ε(E) -» 0 rapidly as E -» 0.

These requirements are closely related to ideas of spectral concentration [3, 7, 1 1].
In the standard adiabatic theorem [6] one takes φE and λE to be an eigenstate and
corresponding eigenvalue o f H E , so that ε(E) = 0, and one uses perturbation theory
to prove (ii).

In the case of the Stark effect one could define φE to be a truncation of the
resonance eigenfunction to a region near the origin [4, p. 870], and then define λE to
be the real part of the resonance eigenvalue. Although the particular truncation
chosen is not crucial within certain limits, the lack of any canonical choice makes it
difficult to establish a precise connection between the decay rate and the imaginary
part of the resonance eigenvalue [4, p. 857]. We shall in fact make a slightly different
choice of φE, which should have similar numerical properties.

Although we shall for simplicity write down our entire theory for the hydrogen
atom, we do not see any difficulty in extending our method to multi-electron systems
with several fixed nuclei. One can certainly replace the Coulomb potential V(x) =
— 2/\x\ by an arbitrary V<=L2 + (L°°)ε with no essential difficulties. Such potentials
may not have any of the dilation properties needed for complex scaling, so that there
is no obvious possibility in general of defining φE as a truncation of a resonance
eigenfunction. In spite of this we are able to obtain a lower bound on the decay rate
which is of the same general form as that given by the Oppenheimer formula [4].
Our main result is Theorem 12, but its application to adiabatic problems is more
easily seen in Corollary 13.

2. The Modified Hamiltonian

Our concern will be to study the solution of the time-dependent evolution equation

(1)
\χ\
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in L2([R3), when E(t) is a slowly varying, twice continuously differentiable, bounded
function with £(0) = 0, and when ι//(0) equals the ground state eigenfunction φ0 of
the zero field hydrogen atom. Because the time-dependent part of (1) is rather
singular we shall however consider a truncated version of this problem. Namely we
define ψ(t) to be the solution of

ι / / ' ( t ) = - i ( H 0 + E ( t ) V ) ψ ( t )

= -ϊHmψ(t\ (2)

where

and

(X) N sign (x3) if | x 3 | > J V ,

and N is a very large constant.
One can argue [ 1 1, p. 46] that (2) is just as relevant physically for the description

of the Stark effect as is (1). We have, however, only made the truncation to simplify
domain considerations. It will be seen that our estimates are all independent of N
provided N is large enough, so that one might take the limit N -> oo at the end of all
the calculations of this paper. This would require one first to prove that the solution
ψN(t) of (2) converges to the solution ^(ί) of (1), which we regard as a separate
problem. We shall not mention again the JV-dependence ofψ(t). We quote from [9;
10, p. 290] the theorem which ensures the existence of a solution of (2).

Proposition 1. // E(t) is twice continuously differentiable and Qi is the domain of H0,
then there is a family Ut of unitary operators on L2([R3) such that ifψ(t) = Utι//(0), where

&, then ψ(t)e@for allt^O and ψ'(ί) = - iHE(t}\jj(t\
We shall compare ψ(t) with the ground state of a Hamiltonian

where E = E(t) and the external field is modified so as to prevent the possibility of
tunneling. If

then the smallest tunneling length as t varies is δ \ so W should coincide with V in
the region where |x| = o(δ~ 1). We shall in fact put

ί
x3 if x3 ^ 1/8(5,

1
— sιgnx3 if |x 3 |> 1/8(5.
od

We also put A = V — W, and note for later use that

\\Ae-nQ^\\^β-ie-H**. (3)
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The rest of this section is of a technical nature and may be omitted at a first
reading. We wish to obtain estimates of various quantities involving the ground
state energy λE and the ground state eigenfunction φE oϊKE. The point will be to find
the dependence of these quantities upon δ, uniformly for all E in the interval [ — <5, <5].
We assume this restriction upon E throughout.

Lemma 2. We have

where the ground state eigenvalue λE is non-degenerate and satisfies — f ^ λE ^ — 1.

Proof. It is a standard fact that

so the lemma follows by combining standard variational estimates with the bound
|| E W || ^ % and the identity < Wφ0, φ0 > = 0.

It is well known that the ground state wave function φE is non-degenerate and
strictly positive, and we always normalize it by \\φE\\ = 1. Perturbation theory
shows that φE and λE are real analytic functions of E. We shall make frequent use of
the formula

PE = \ΦEy<ΦE\=^y(z-KEΓ1dz, (4)

where y is any closed contour containing [ — f , — 1] and not meeting [ — f , oo).

Lemma 3. We have

\\ΦΈ\\ί \\P'E\\, \\ΦE\\^ \\Pil

Proof. Since (φ'E,φE~) = 0 and P'E= \φ'Ey<,φE\ + \φEy(Φ'E\, we see that
I I ΦΈ\\ = \\PΈΦE\\^\\P'E\\ Secondly

PE = \ΦEy<ΦE\+l\ΦΈy<ΦΈ\ + I

Therefore φ'E = P'EφE-\<.P'EφE,φE'yφE, so

Lemma 4. We have



Adiabatic Theorem 333

Proof. Use of the resolvent identities enables one to obtain

from (4). Deforming γ into the contour γ(t) = - f -f it, we see from Lemma 2 that

\\(y(t)- KEΓl\\^(t2 + &Γ112

for all ί. Thus

which yields the bound on || φ^ || by Lemma 3. The bound on || φ'E \\ is obtained
similarly from the identity

Finally

which implies (5).
We next define the reduced resolvent operator SE by

SE=(λE-KEΓ1(l-PE).

Lemma 5. We have \\ SE \\ ̂  2, || S'E \\ ̂  6/δ.

Proof. The first estimate is a consequence of Lemma 2 and the spectral theorem. For
the second we use the alternative definition

SE=iϊ(z-J EΓί(z-KEΓldZ, (7)

where γ is the circle (z:|z + 1 1 = |) so that

ί |(z- J K £ )- 1 | |^4 (8)
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for all z on y and all \E\ ̂  δ. Differentiating (7) we obtain

~

Using (8) and the estimate \λ'E\ = \<WφE,φEy\^ \\ W\\ = — yields
oό

1 1

2π'%δ'
1 .„ 1

= 6/δ.

Our next task is to prove the exponential decay of certain wave-functions. While
this could be done by JWKB methods, we prefer to use an idea of O'Connor [8; 11,
p. 196]. The crucial idea is to investigate the spectral properties of the operator

for small complex β, noting that KE β is unitarily equivalent in an obvious manner to
KE if β is purely imaginary.

Lemma 6. There exists an absolute constant c such that if — δ ̂  E ̂  δ and \β\^
and z lies on the circle y = {z: z + 1 1 = f}, then \\ (z - KEίβ)~l \\ ̂  ψ.

Proof. We write

= l+D (say).

Now \\EW\\^± and ||(z -H^'1 \\ ̂ f for all z on y, so \\EW(z -//oΓ1 \\ ̂ j.
If \β\g>%, then

dXτ

(z-H0y

for some absolute constant c^ and all z on y. Putting

•= mm -,— - ,
5 6c

(9)
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cbc3

so I I D || ̂  j. This implies that

so

Lemma 7. If -δ^E^δ and \β\ ̂  c, then

(10)

Proo/. By following the method of O'Connor's lemma [11, p. 196] we deduce from
(4) that

2 π / y

which may be estimated using Lemma 6 to yield (10). The other bounds follow from
the formulae

and

Lemma 8. //

then || β|| =1 and

3/2

provided -δ^E^δ and -±^β^±.
Proof. Since φ0(x) = π~i/2e~lx{, we see that

/4\3/2

for all x, provided -j^β^j. The result follows by using (5) and the positivity of

ΦE
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Lemma 9. If -δ^E^δ andc is defined by (9) then

\\e±cQ*φE\\^4, \\e±cQψE\\^6/δ.

Proof.

e±c^PEe+c^Ω = e+c^φE(φE,e

±c^Ωy,

so

\\e±cQ*φE\\^(φE,e±c&Ωy-1\\e±c^PEe + c^\\
^2.2 = 4

by Lemmas 7 and 8. Secondly

e

so

* 2 2* 6/ί.

3. The Main Theorems

In the last section we proved that various operator-valued functions of E were norm
differentiable, and obtained bounds on their derivatives in terms of δ under the
assumption that — δ ̂  E ̂  δ. In this section we use these bounds to show that if ψ(t)
is the solution of (2) and Θ(t) is defined by

t
0(ί)=P£<sA (11)

0

then \\ψ(t) — e~imφE(t}\\ remains small for very long times ί, provided E(t) varies
slowly.

Lemma 10. IfF(η,t) is defined by

F(η,t) = (φm,eίβ«Utηy (12)

for allη in the set <^ = {>jeDom(^):j |f/| | ^ 1), then

\\ψ(t) - e-w^φEW\\ = sup{|Ffo,t) - F(f,,0)| :

Proof. We first observe that

\mί)-e~m)ΦE(t)\\ = llΦo-e-'
= \\ξ(t)-ξ(0)\\
= sup{|<ξ(ί)Λ

where ξ(t) = e~ίβ(t)U*φE(tγ The estimate follows by observing that F(η,t) = < ξ(t),η > .
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We may differentiate freely at various places in lemmas below because all the
operators H0, HE, KE, KEtβ have the same domain 2, and this domain is invariant
under Ut by Proposition 1. Other operator derivatives exist by the arguments of
Sect. 2, and we shall therefore concentrate on the bounds rather than the validity of
every step below.

Lemma I I . If

then

and

\G(η,t)\£\E'(t)\/2δ,

-(F(η,t)-G(η,t))
Ot

E( dt
(E'(t)SE(t}φ'E(t))

(13)

(14)

Proof. The estimate (13) follows immediately from Lemmas 4 and 5. Also

- KφE(t),(λE(t) -

But the identity <,φ'E,φE~y = 0 implies that (1 - PE)φ'E = φ'E, so

-(F(η,t)-G(η,t))

^ \\E(t)AφE(t}\\ + ^(E'(t)SE(t)φ'E(t)) +

δ

~ c

d

dt £(ί) l

\\E'(t)E(t)ASmφ'm

δ

by (3)
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We can now put all our estimates together into the main theorem of the paper.

Theorem 12. There exists an absolute constant c such that

o e

e-ίθ^φm\\^~e-^όt + ̂

+ i J \E"(s)/δ \ds + 2$ \E'(S)/δ\2ds + -e-«8* j \E'(s)/δ \ds
o o c Q

(15)

for all t ̂  0.

Proof. We first estimate the three terms on the right-hand side of (14). Since

Lemma 9 establishes that the first term is dominated by (8δ/c)e~c/8δ. Differentiating
the interior of the second term, Lemmas 4 and 5 establish that it is dominated by

2\E'(t)\2/δ2.

Finally the third term is dominated by

-\E'(t)\e-«BS\\e^SE(t}e-^\\
C

= —|E'(ί)|e-«/8*
c

by Lemmas 7 and 9. Therefore

|F(f;,ί) - F(η,0)\ ί \G(η,t) - G(η,0)\ + J—(F(η,s)-G(η9s)) ds

t Γ8^
^ \E'(t)\/2δ + \E'(0)\/2δ + J -e~cl*d + \E"(s)\βδ

oL c

962\E'(s)\2/δ2+
c

\E'(s)\e-c/sδ Ids,

which is equivalent to (15).
The first term on the right-hand side of (15) bounds the tunneling rate. Its

magnitude increases indefinitely with t and does not depend on how rapidly E(t)
varies but only on the maximum value δ which \E(t)\ takes. The other terms on the
right-hand side of (15) bound the impulsive reactions of the system, and are
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diminished by making E(i) vary slowly. In order to make the interpretation of
Theorem 12 clearer we consider a simple special case.

Corollary 13. IfE(t) = δB(εt)9 where 0 ̂  B(s) ̂  1 ifs^l and B(s) =1 ifs>l, then

8δ /8δ) (16)

for all t ̂  ε"1, where b depends upon B alone.
Note that in order for both terms on the right-hand side of (16) to be small when

ί = ε~1 we must have (8δ/c)e~c/8δ <ζε <| 1, confirming the general comments we
made in the introduction. The first term on the right-hand side of (16) yields a lower
bound on the tunneling rate which is of the same general form as that given by
Oppenheimer's formula [4]. The constant c/8 in the exponential is of course too
small, but it can be considerably increased by more careful estimation at each state,
or by the application of more precise JWKB bounds to replace Lemmas 7 and 9.
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