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Abstract. It is shown that in a relativistic quantum field theory satisfying
Wightman's axioms, there are no nontrivial field-like operators, or even bilinear
forms, associated to a two (or less)-dimensional spacelike plane in Minkowski
space. This generalizes Wightman's result that fields can not be defined as
operators at a point and stands in contrast to Borchers' result that field
operators can be associated with one-dimensional timelike planes.

1. In this note we use analyticity properties associated with the Lorentz boosts
in wedgelike spacetime regions (arising from Bisognano and Wichmann's identifi-
cation of the modular automorphism group of wedge algebras with such boosts
[1,2]) to prove that the polynomial operator algebras generated by the fields
associated with a wedge and its causal complement are "irreducible" in a quantum
field theory satisfying the Wightman axioms [3], so that, in a strong sense to be
specified below, no nontrivial (unbounded) operator (or even bilinear form) on the
physical Hubert space can be associated with a two (or less)-dimensional spacelike
plane. This latter point is a generalization of a result of Wightman [4] on the
nonexistence of nontrivial field operators at a point, and is to be seen in
contradistinction to a result of Borchers [5], that field operators can be associated
with one-dimensional timelike planes. There are, of course, examples of fields at
sharp times, i.e. associated with three-dimensional spacelike planes, e.g. the free
scalar field.

2. To begin, we establish the framework and notation necessary for the
statement and proof of the results. We assume the usual Wightman axioms,
including Poincare covariance, locality, spectrum condition and the uniqueness of
the vacuum Ω (see [3] for further details), and we admit Bose and Fermi statistics.
Let WR and WL denote the right and left wedges defined by

WR = {xeU4\x1> \x°\}9 WL = {xeR*\x1 < -|x°|},

where x° is the time coordinate. Then 0>(WR), respectively ^(WL), will signify the
*-algebra consisting of all polynomials of field operators tested with functions from

that have support in WR, respectively WL. These operators are defined on
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a common, invariant, dense domain D in the Hubert space Jίf. Let v(e1 , ί), f e R,
denote the one-parameter group of boost transformations leaving WR and VFL in-
variant. Here U(t) = U^e^ , ί)), ίe R, represents the associated strongly continuous
group of unitary operators on JΊ?9 and K1 its (unbounded) selfadjoint generator, i.e.
U(t) = e~ίtKl. In order to concisely express the locality properties (since we admit
Fermi fields), it is customary to introduce a unitary operator Z = (/ + iC/0)/(l + i),
where U0 is the unitary operator on Jtif representing a rotation of 2π about any axis.
Then one has

lA,BW = WψeD,\/Aε&(WR),VBEZ&(WL)Z*=&(WLy. (1)

Bisognano and Wichmann have shown under the above-mentioned assump-
tions (see Theorem 1 in [2]) that if Θ0 is the antiunitary TCP operator and J is the
antiunitary involution defined by J = Zί/π<90, where Un is the unitary operator
corresponding to a (spatial) rotation of π around the 1-axis, then one has

JP(WR)J=P(WLY, (2)

and the (dense) set 0>(WR)Ω9 respectively έP(WL)zΩ, is a core for the (unbounded)
selfadjoint operator eπKl

9 respectively e~πKl. Moreover, they have shown that

eπKίAΩ = JA*Ω,

~πKίBΩ = JB*Ω, Be0>(WLγ. (3)

We shall be interested in elements oί^(WR) and ^(WL}Z that are entire analytic
with respect to K± . By Lorentz covariance, one has U(t)φ\_f]U(t) ~ 1 = φ[/J, on D
(to minimize unnecessary notational complications, we pretend for the moment that
all fields transform like the scalar Bose field; details for other spins are left to the
reader), where/, (x) =f(v(e1 , t)x). Since WR and WL are invariant under v(eί , t) Vie (R,
it is clear that 0*(WR) and &(WL)Z are invariant under conjugation by U(t). Let now
&e(WR) denote the set ofallAe&(WR) for which U(t)AU(t) ~ !, on D, is the restriction
to the real axis of an entire analytic family of operators A(λ)G^>(WR), V/leC, i.e.
V^eD, A(λ)ψ is an entire analytic vector- valued function with restriction to the real
axis U(t)AU(t)~l\l/. Then for any Ae0>e(WR),

e-iλκ^AΩ = A(λ)Ω, VAeC. (4)

&e(Wj)z is defined similarly, and one has (4) for any AE^e(WLY, as well.
We note that 0>e(WR}Ω = 0>e(WL)zΩ, which can be seen as follows. For any
Ae&>e(WR)9AΩ = e?KlA(-m)Ω = JA*(iπ)Ω9 using (4) and (3). By (2),
JA*(iπ)j£&(WLY, and since JU(t) = U(t)J, one sees easily that JA*(iπ)J is an entire
analytic element. This establishes the containment c the opposite containment
follows mutatis mutandis. We then have

&e(WR)0>e(WLYΩ = &e(WLγ&e(WR)Ω = &e(WR)Ω. (5)

We next wish to show briefly that 0>e(WR)Ω and 0>e(WLYΩ are dense in jf.
Let gp(t) = (plπ)V2e-<*\ p>0, so that on D, J U^φinU^Γ1 gp(t)dt = φ[/],
where fp(x)= lft(x)gp(t)dte^(U4\ as is easily seen. φ[f]e0>(WR) implies

<00> an<^ U(t)φίf]U(t)~ i has an extension to an entire
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analytic family of operators in £P(WR) given by <p[(p/π)1/2J/sexp{ — p(s2 — 2sλ
+ λ2)}ds~],λeC. Since g p(i)dt -> δ(t)dt weakly as measures as p-+oo, and since, as
*-»0, ||(φ[/J - <p[/])!/ΊI ->0 for any/e^([R4) and ^e/>, the claim follows.

3. We can now come to the core of our argument.

Theorem 1. Let C be a bilinear form on $ x δ, where $ = 0>e(WR)Ω, such that
| | C Ω | | < o o and | |C*Ω| |<oo. Then (Aφ, Cψy = <</>,C4*ιA>, Mφ^eS and
MAe&e(WR)v&e(WL)z, implies C=cIJor some ceC.

Proof. A bilinear form X can be decomposed into symmetric and antisymmetric
parts (X = Xs + Xa, where Xs(a)=(X + (-)X*)/2) and into J-invariant and
-antiinvariant parts (X = X{ + Xai,Xi(ai} = (X + (-)JXJ)/2). Then C can be decom-
posed uniquely into four pieces C = CSι/ + Cs αί -I- Cβ f f + Cflιβί, using the obvious
notation. Since ^>

e(WR)^^>

e(WL)z is invariant under the *-operation and under
conjugation by J (by (2) and JU(λ)J = U(λ) [2]), if C satisfies the hypothesis, then so
does each of the elements of this decomposition. We consider first Csi.

Let Ae0>e(WR) and Be^e(WL)z be symmetric. Then, by assumption, for any
/U'eC,

, CStiB(λ')Ωy = <X(A)B(A')aC*^> = <B^)Ω, C5fI^μ)Ω>, (6)

which we shall call Fsi(λ,λ'). Since C* fΩ6Jf and ^ and 5 are entire analytic
elements, (6) is separately entire analytic in λ and λ\ and therefore, by Hartogs'
theorem, jointly entire. From (4) and (6) we conclude

FSίi(λ,λ') = ̂ e-^^BΩ,C^e-ίλ^AΩy^λ,λ'eC. (7)

Restriction to the diagonal λ = λ' defines a bounded holomorphic function/s ti(λ) in
[R x [0,π], and by (7) the restriction to 1m λ = π is equal to

f S t i ( t + iπ) = <e-

= < JB(ί)Ω, C8tiJA(t)Ωy = <B(ί)Ω, CSii^(ί)Ω> =/Sfί(ί), (8)

using (3) and the fact that CSti is J-invariant and symmetric. We may thus extend
f5fί(λ) to a bounded, periodic, entire function, which by Liouville's theorem must be a
constant. Thus, the restriction/^^f) is independent of ί, and since vv-lim U(t) = PΩ,

r-> oo

the projection onto the vacuum [6], we have

(9)

using (6) and ||C5>I Ω|| <oo.
Up to (8) the calculation is independent of the particular choice Cs t. And in (8) a

simple calculation yields the same equality for Cβjβf and/(ί -f iπ) = —/(ί) for C .
and Cβ f /. We conclude that (9) holds for general C satisfying the hypothesis of the
theorem. Taking A = /, we have for any such C

=<Ω,(B1+ϊB2)Ω><Ω,CΩ>,

for all symmetric Bί and 52 in 0>e(WL}z, so that CΩA.BΩ for all Bε0>e(WL)z, such
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that BΩ.LΩ. Thus, CΩ = cΩ, for some ceC, which implies

VAe0>e(WR\Be&e(WLγ. The conclusion then follows. D

Remark. The assumption || CΩ \\ < oo may look unnecessarily strong at first glance.
However, consider a free scalar field φ and define φ(0) as a form limit of <ι/f, φ(gp)φy
for ψ,φ(ΞD and {#p} converging to a ^-function. Then < t/(ί)^, φ(0)U(t)φy is indeed
independent of ί, but <Ω, φ(0)Ω> = 0, and the form is certainly not identically zero.

4. Theorem 1 indicates that the set of operators gP(WR)^j&(WL)z is in a very
strong sense irreducible, as is, therefore, &(yWR) ^j&(yWL)z, for any element y of the
restricted Poincare group &\ , where γ W signifies the image of the region W under

the map on Minkowski space represented by γ. The intersection J = WR n WL is the
two-dimensional spacelike plane {xe(R4 |x0 = x1 =0}, and the set {yJ^\ye0>\}
contains all two-dimensional spacelike planes in Minkowski space. The points in yj
are all spacelike separated from those in yWRvγWL, so that in local quantum field
theory one would expect field objects to commute (or anticommute) with those in
0*(yWR)v0*(yWL). Theorem 1 would then entail their triviality. We shall now state
and prove a strong form of this intuition.

Given any open set (9 c [R4 containing a set K = y0 ̂ > Toe^+ , let 2(0) denote the
set of all operators C defined, along with its adjoint, on the domain U(yQ)S satisfying

,Vφ,ψeU(γ0)£, (10)

where Θ' denotes the interior of the causal complement of Θ and £P(0') is the
polynomial algebra generated by the field operators with support in Φ'. Clearly 2P((S)

c: 2(0). Let further 2(0) denote the closure of 2(0) in a topology chosen so that each

element in 2(0) satisfies (10) and || QΩ \\ < oo, || Q * Ω \\ < oo, VQe j2($). It is clear that
topologies weaker than the Wightman topology may be admitted. Let, further-
more, &(K) denote the set of all open 0 c R4 containing K = yQJ such that
0' = yί WRuy2WL, for some y

Corollary 1. For any K = y0S,y0€0>\., as above, f) 2(0) = {C/}.

Proof. Let Ce f| 2(0). Then (10) holds for all Ae (J 0>((9f)z. Since (J 0' =

y0 WR uy0 WL and since the Poincare transformations act continuously on
Wightman continuity entails that (10) holds in fact for all Ae^(y0 WR)zu0>(y0 WL)Z.
For the sake of convenience, we rewrite this as:

{Aφ,c^y = ̂ cA^y^AE^e(wR)z^^e(wL)\\/φ^E^ (ii)
where C = U(γ0) ~lCU(yQ). Equation (11) clearly holds for C* and C/0C(70, as well
as ECE, where E = UπΘ0 (note ^e(WR)z^j^e(WL)z is invariant under conjugation
by E). Therefore, it holds for each of the elements in the decomposition of C into
pieces with ± parity under each of these three operations, as do the domain
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requirements. To minimize notation we assume C invariant under conjugation by E;
the proof of the other case shall be clear. Writing 2X± = (X ± U0XUQ), and noting
that ZX_ Z* = ίU0X_ = - IX _ l/0, and ZX+ Z* = X+,WQ have for any φ9ψe<£9

9 (12)

Y9 (13)

WLΓ, (14)

where e.g. ̂ e(WR)+ denotes the set {X+ \Xe0>e(WR)}. Equation (12) and Theorem 1
yield at once the triviality of C+. We show that (13) and (14), along with trivial
modifications in the proof of Theorem 1, yield the triviality of C_ , therefore of C.

Let Ae^e(WR) and Be^e(WL)2 be symmetric and decompose them into their
even and odd parts under t/0, which remain symmetric and entire analytic. By (13)
one has

Since | | C _ j S Ω | | < ao,Fs(λ9λ')is an entire analytic function in C2. Restricting to the
diagonal λ = λ' in (U x [ — π,0])2, and taking the restriction to Imλ = — π, we have
from (3)

fs(t - in) = < J(A + (t) + A_ (f))Ω,e_tSJ(β+(ί) + β_(ί))Ω>

Since J < ZE and C_ s is invariant under conjugation by E (since C is, and all the
operations commute), we have JC_ > S J = ZC_ > S Z* = iU0C_ίS. Therefore,

which equals — ifs(ί), where we have used (13) and (14). Thus, we can apply the
argument of Theorem 1 tofs(λ)4 to show/s(ί) independent of ί. A similar calculation
yields the same result for each of the elements in C's decomposition, and the
argument presented earlier completes the proof. D

The same triviality result would follow for any region K in [R4 that can be embedded
in a two-dimensional spacelike plane.

5. Let us finally remark that completely analogous results can be obtained if the
field algebras 0>(W) are replaced by von Neumann algebras 9l(W) in a Haag-Araki
theory of local observables supplemented by the requirement that the modular
automorphism group of 9ί( W) equals (7(ί), ίe (R. Such algebras can be obtained from
a Wightman field theory satisfying an additional assumption (see [1,2]). The
nonexistence of bounded or unbounded field objects on a two-dimensional
spacelike plane partly extends results of [7], where only sets K with compact closure
and bounded operators are considered. (See also [8] for another treatment of certain
K with compact closure.) We point out, however, that as long as one can associate
operators or forms with the local structure in the sense that, for example, there is a
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sequence Pnε£Ps((9n\ with &n the causal complement of WL>nvWR and WL>n an

increasing sequence of left wedges with (J WL n = WL, such that s-lim PnΩ = φ—
n

which defines a form in a natural way—then triviality of this form can also be shown
by using the argument in the proof of Theorem 2.2 in [9]. The virtue of the proof
presented here is precisely that the operator or form in question need not be
associated with the local structure in this sense.
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