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Abstract. With the use of analyticity techniques recently developed by the

authors, the ε- and —expansion type arguments are turned into a rigorous

control of the non-Gaussian fixed point of the hierarchical model renormal-
ization group. The present approach should extend beyond the hierarchical
approximation and result in mathematical theory of the critical point of
statistical mechanics or quantum field theory in three dimensions for small ε or
large N.

1. Introduction

The present paper is the first step in the study of the critical point of the classical
statistical mechanical systems with non-Gaussian long distance behaviour and of
its scaling limit. As a presumed example of such a system one may consider a
lattice model with the Gibbs state given formally by

(1)
L

where the spin variables φ^elR^, XE TLd, dμG is the Gaussian measure with mean
zero and covariance G = (Gxy) with \Gxy\~\x — y\~a for large \x — y\, α<i^, and
where, for example, ι;(φ) = fm2φ2 + Λ,(φ2)2 with m2eIR1, λ>0. The understanding
of the behavior of (1) for the critical value of m2 (where the correlation length
becomes infinite) is based on the renormalization group (RG) self-similarity idea
[1, 11,14, 15, 20]. Under RG transformations which integrate out successively the
short range degrees of freedom, a critical system should go to a fixed point. In two

situations: when ε=^d — α or when — are small, the RG transformation may be

computed perturbatively as a formal power series in ε or in closed form when

On leave from Department of Mathematical Methods of Physics, Warsaw University



192 K. Gawςdzki and A. Kupiainen

N-*co [3, 12-14, 19, 20]. The relevant fixed point turns out to be non-Gaussian.
Despite a big success of the RG ideas due mainly to the existence of

approximate computational schemes based on the ε- and —expansions, not many

of the critical point properties have been established rigorously. The present paper
constitutes a further development in the rigorous theory of the RG which, as we
hope, is a critical step towards filling this gap. We show how to control the

corrections to the leading non-trivial order in ε and — of the RG transformation

for a simplified, hierarchical model. In the case of small ε our method provides the
third proof of the convergence to a non-Gaussian fixed point, see [5-7] for the
earlier ones. The large N case seems to be new. What is more important, however,
we are quite confident that our approach extends beyond the hierarchical
approximation to (1), see [9,10], where we treat a Gaussian fixed point case. Here
we concentrate on the hierarchical model effective interactions, defering the study
of the long distance behavior of the correlations to a later publication.

The model which we deal with is a version of the one introduced by Dyson [8,
4, 7]. Let j/(x) be a function on the L x ... x L block around zero in TLd, L being an
even integer, which takes the value + 1 on a half of the spins of the block and — 1
on the other half. We put

where xk denotes the integral part of L kx. It is easy to see that \Gxy\ = 0(L αfc°),
where fe0 is the smallest integer such that χko = yko. Hence G of (2) mimics the
behavior |Gxy| ~|x — y\~a It is also easy to see that the kernel Gxy defines a positive
(but not strictly positive) operator.

The RG transformation which will be used to analyze (1) with G given by (2) is
the standard block spin transformation. Let us define the block spin field φ1 by

_!_

φ*=L2 Σ Φ* = (Cφ)y. (3)
x:xι=y

The effective Gibbs state for the field φ1 is given (again formally) by

l-Dφj3(φi-Cφ)exp[- Σv(φ,)]dμG(φ). (4)
^ [ X \

Let us notice that we may realize dμG(φ) as a product measure

provided we put
α

This follows from the relation

^i). (7)



Γ / _£
exp[ — ̂ (φ)] = const J exp — \Lάv [L 2 φ + z
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Inserting (5) and (6) to (4) we obtain

(4) = —Y dμG(t
Z

where

. (9)

Due to the hierarchical character of G the effective Gibbs measure for φ1 is of the
same form as the initial one for φ. The block spin transformation reduces to the
simple recursion (9) for the single spin potential v. This is the main simplification of
the hierarchical model as compared to the more standard one with

α-d

G = ( —^lattice) 2 . For the sake of concreteness we shall limit ourselves to three
dimensions. We shall also assume that L is big enough (this is not essential). Two
cases will be considered: ΛΓ=1, 0<e^| — α<ε0(L) (Sects. 2 and 3) and α = l,
N > N0(L) (Sects. 4-6). The general strategy in both cases will be to find first a
neighborhood of the approximate fixed point, preserved by the transformation (9)
except for one relevant direction, and then to show that a distance between two
successive iterations of (9) within this neighborhood shrinks at the critical point
(i.e. when we are on the stable manifold of the fixed point). Somewhat un-
expectedly in the large N case, in the proofs it is enough to control perturbatively
few terms of the Taylor expansion of v around the minimum of the approximate
fixed point and to estimate the remainders by means of the analyticity techniques.
The analyticity techniques are also employed to estimate the contributions of large
fluctuations to small φ values of vί as given by (9). For these contributions the
perturbative arguments break down. Instead we use a stability bound for v (which
carries on to vj together with a straightforward probability estimate for the
Gaussian measure. All this is elementary although in some places tedious. We
hope however, that technical estimates do not obscure the general idea to an
extent which would render it non-readable.

2. Small β Case. Invariant Neighborhood

Denoting exp [ — υ] by g we may rewrite (1.9) for d = 3, N = 1 and even v vanishing
at zero as

01(0) = J0\L 2φ + zjϊ g\L 2φ — zJ2 dv(z)/§g(z)L3dv(z), (1)

where dv(z) = (2π) 2exp[ — ̂ z2] dz. α = f — ε with small ε>0. Here 0 = 1 is ob-
viously a fixed point of (1). The linearized transformation around 0 = 1, δg^ δg',



194 K. Gaw§dzki and A. Kupiainen

, (2)

has (Hermite) polynomials of degree 2n, n = 1,2, ..., as eigenvectors with eigenval-
ues L3~α". For our choice of α, φ2 has the eigenvalue sizably bigger than 1, the
fourth order polynomial has the eigenvalue l + 0(ε)>l and the higher ones are
irrelevant and have eigenvalues sizably smaller than 1. We shall show that (1) has a
non-trivial fixed point which has just bifurcated from the trivial one at ε = 0 in the
direction of the fourth order perturbation becoming relevant at this point [5-7, 16,
19, 20]. The indication that this is what occurs can be obtained by taking
g = exp [ — Aφ4] and computing the coefficient λ 1 at φ4 in — logg^φ) to the second
order in the perturbation expansion :

λΛ = —
1 4

+\L 2φ-zdv(z)
4! dφ4

 φ = 0

Disregarding the 0(λ3) corrections we obtain the non-trivial fixed point at

λ — j^L (1 — L~α ). (4)

The critical moment in our study of (1) is the choice of the functional space of
0's and of its portion dominated by the non-trivial fixed point. Let us subtract the
quadratic part of logg(φ) by introducing

) = #(<?) exp [α<?2], (5)

with

§"(0) = 0. (6)

We shall impose the following conditions on §'s :
(a) g(φ) is an even analytic function for |Im<p|<|logε|, positive for real φ,

(b) For M<|logε|,

#(φ) = exp [-%>)] (7)

for analytic v9 and

v(φ) = λφ* + $(φ)9 (8)

where

g(0) = g"(0) = ϋίι;(0) = 0, (9)

and

ε1/4μ-l|+ sup \v\^ε114. (10)
kl<| logε |

_ α

(c) For M^|logε| and \Imφ\<L~*\logε\,

. (11)
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In the present section we shall show that our assumptions are invariant under
(1) modulo a displacement in the relevant φ2 direction.

Proposition 1. Let g satisfy (a)-(c) and let |0|^3ε2/3. Then g± also satisfies (a)-(c)
provided that L>LQ, ε<ε0(L) and κ>κ0(L).

Proof. Notice that (a) for gγ follows easily as the integral of (1) converges
absolutely uniformly in φ by virtue of the bounds of (b) and (c) for g. The main
contribution to g^φ) comes from the integration over |z| <<5 |logε| in (1) with small
positive δ. Let χ be the characteristic function of this region. Take

α

M<L7(l-<S)|logε| first. Define

g1M(φ) = ί g [L * φ + z g

= exp [ - L3 ~ *aψ2 - L3 ~

where

χ(z)dv(z)/ $g(z)L3χ(z)dv(z)

] J exp [ - L3az2 - 6L3 -«λφ2z2 - L3λz4

2φ-

(12)

(13)

Since gf1Af(φ) = l + 0(β2/3|logε|2), gf1M(φ) = exp[-ϋ13f(φ)] for a function v1M ana-
α

lytic for \φ\ <L2(l — <5)|logε|, provided that ε is small. The v1M will be analyzed by
perturbation expansion (with a remainder). With the use of identity

for

) , (15)

we may write

1 = 0

d_
dt ί = 0

ίd2^
2dt2

( = 0

at

- L3w(φ, z)] χ(z)dv(z) + log f exp [ - L3az2 - L3λz4 - £3g(z)] χ(z)dv(z)

- L3Az4 - L3 w(φ, z)] χ(z)dv(z)

+ log ί exp [ - L3αz2 - L3λz4 - L30(z)] χ(z)dv(z) ,

where

• χ(z) d v(z)/normalization

(16)

( 1 7)
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and < — ... — >r

r denotes the truncated expectation. Decomposing [see (5) and

(8)]

we obtain from (16)

1 d2

2dφ:

(18)

(19)

o tJ 18 T6~3ct/ 72 72\τ\Λ— 15.L {Z ,Z ?0\
dφ'

1 d4

log*, (20)

/ O l < p = 0 o Ψ i 2ψ 2 dφ
<z2>0 λφ

6 - 2 α / / z 2 . z 2 \ Γ _ / Z 2. Z 2\Γ | _ U2φ4

dφ

with

• χ(z)dv(z)/l exp [ - L3αz2 - L3Az4]

First let us estimate \λίM — λ\. We shall do it step-wise.

(21)

(22)

|L3 - 2αl - 36L6 - 2αl2 -1| = |L3 ~ 2α/l - 36L6 ~ 2α/l2 - L3 ~ 2αl+ 36L6 ~ 2«I2|

^ sup |L3"2α-72L6-2α(I+θ(A-l))||A-I|
0 < Θ < 1

^ (|L3 - 2α - 72L6 ~ 2αl| + 0(ε3/2))μ -1|

(23)

where we have used the fact that λ is a fixed point of (3) and relations (4) and (10).
Next

since λ = 0(ε) and <z2; z2>J|<p = 0 receives the main contribution from the per-
turbation in a. Similarly, using also the Cauchy estimates for derivatives of the
analytic function, we obtain

3L3-α (25)
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and

ί__P_

4! dφ4

Gathering of (23)-(26) gives

Next we estimate sup |S1M|.
M<|logε |

2\ _ _ / 2 \

197

(26)

(27)

^0(ε|logε|2)sup|ί;|,(28)

(29)

(30)

To estimate the last (and the main) term of (21), notice that for

(31)' )J sup \υ\,
M<|logε|

and consequently |logX| satisfies the same bound.
Now for |φ|<|logε|, using the Cauchy estimates, we obtain

2Ψ dφ:

1
:, = 3(2/c)!

oo L-ak

\9\
2k

dφ2

41 ^ dφ'

logX

: SUp

M<Lf(l-<5) | logε |

|φ |<| logε |

^ SUP
kl< | logε |

sup |g1M|^f sup |g| + 0(ε3|logβ|6).
|φ|<| logε| |<p|<|logε|

(32)

(33)

(34)

We are left with bounding the contributions to g^φ) for |<p|<|logε| from the
integration over |z| ϊ;c>|logε|, disregarded so far. These should be damped by small

provided that L>L0. Inequalities (28)-(30) and (32) give

sup |g1M|^f
|φ|<|logε| |<p|

Summarizing, (27), (33), and (10) yield
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dv-probability (~ε°(|logε|)) of such z. Indeed. From (1) and (12) we have

) —z

L3

• [1+ f 0(z)L Y(

where

Since by (a)-(c),

(35)

(36)

± zjl < 2, say, for any z and

g(L

if χ(z)φO (ε small), we immediately obtain for the correction vic = a^2 — t;

sup I
|φ|<|logε|

1M'

(37)

Taking into account the region |z|^<5|logε| gives rise to corrections of infinite
order in ε. Thus (b) for g^ follows from (34).

We still have to show that the large field estimate of (c) holds for gv Let us take
φ with

_
and \lmφ\<L 2|logε|.

We may rewrite (1) as

2φ-z z2]ίίv(z). (38)

_

Consider |z|<fL~y |Re(p| first. If L~>±z ^|logε| then by (c)

2 Reφ±z

If L 2φ±z <|logε| then, since

and

(39)

fL 2(l-L-«)1/2|logε|

2φ±zl|<L~α |logε|, L 2φ + z still has a small argument (L is big, ε is
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small). Hence by virtue of (b),

, , _ , - - ^4

2φ±z) +υ[L~

- Y -2 Reφ±zj + κ\L 2 Reφ±zj , (40)

and (39) holds too. Now

J g\L 2φ + z) g\L 2-z) exp[-L3αz2](iv(z)

|<i-L"2 \Reφ\

^ exp [ - ^I(L3 - 2α(Re φ)4 + L3 -ακ(Re φ)2)] J exp [ - L3αz2]dv(z)

•Jexp[-L3αz2]dv(z). (41)

For |z|^^L"α/2|Reφ|, either for + or for - sign, |Re(L"α/2φ±z)|^|L~α/2 |Reφ| so
that (39) holds. Thus

/ _«. UL3 / _ o ^ UL3

J g\L 2φ + z) g\L 2φ~z) exp[-L3αz2]Jv(z)

^ 2iL3 exp [ - i(f)4L3 - 2αI(Re φ)4 - |(|)2L3 ~αl?c(Re φ)2]ε°(|logε|)

^β0(|logβ|)eχp|-_lj^

•Jexp[-L3αz2]Jv(z) (42)

and is a small correction to the bound (41).
As far as the exp[(α1 — L3~αα)φ2] factor of (38) is concerned, we notice that, by

virtue of (19) and (37),

|α1-L3-αα|^0(ε). (43)

Finally, by (b) and (c),

J g(z)L3dv(z) ^ exp [ - 0(ε)] J exp [ - L3αz2] dv(z) . (44)

Substituting (41)-(44) to (38) we obtain

• exp [ - il((Re φ)4 + κ(Re φ)2)] ̂  exp[- J I((Re φ)4 + κ(Re φ)2)] , (45)

for κ>κQ(L\ This demonstrates (c) for gl and completes Proof of
Proposition 1. Π

3. Small ε Case. Contractive Properties of the RG Recursion

Proposition 1 shows that the region of g specified by (a)-(c) is invariant under the
transformation (1), provided that \a\ ^3ε2/3. Unfortunately this assumption on the
coefficient a at the quadratic term of — logg is not stable under (1). As (2.43) shows,
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the main contribution to aί is L3~αα, in agreement with our analysis of the
linearized RG transformation around g = 1 :φ2 is a relevant perturbation. We shall
however show that for one (critical) value of a for each initial §, the assumptions of
Proposition 1 for a are stable under the iteration of (2.1). One also stays in the
region specified by (a)-(c). Moreover, for the critical choice of a the distance
between subsequent iterates of (2.1) keeps shrinking, resulting in the convergence
to a non-Gaussian fixed point.

Our strategy of finding the critical value of a borrows from [4, 5]. We shall
restrict the admissible values of α gradually from one iteration of (2.1) to the other
so that finally the critical a (corresponding to the critical value of the temperature)
is chosen. Introduce

)"U. (1)

Taking (b, λ) instead of (a, λ) approximately diagonalizes, as we shall see, the RG
transformation (2.1) restricted to (exp of) the subspace of the even fourth order
polynomials.

Let us start from g0 satisfying (a)-(c) and with \a0\ ^ε2/3. By gn we shall denote
the subsequent iterates of (2.1). Notice that, by virtue of (2.43), (2.20), and (2.37),

= (L3 -" - I)h0 + 0(ε) (b, - b0) + 0(ε7/4) . (2)

From (2) it follows that there exists a closed interval / 0 C[ — ε2/3,ε2/3] such that
b1 —b0 sweeps [ — ε5/3, ε5/3], say, if a0 sweeps /0. Below we list properties of gn's to
be proven by induction. In the light of the preceding discussion, it should be clear
that g0 and gί satisfy (AQ)-(C0). We use the notation Afn=fn+ ί —fn for any object
indexed by n.

(An). For O^k^n one can choose a closed interval / Λ C[ — ε2/3,ε2/3], Ik+1 clk,
such that bk sweeps (1— ε)k[ε5/3,ε5/3] as α0 runs through Ik.

(Bn). For a0εln,

ε1/4|zUJ + sup μgj^2(l-ε)"ε7/4. (3)
M<|logε|

(Cn). For a0εln, |<p|^|logε|, and |Imφ|<L 2|logε|

(4)

Notice that from (An) it follows that for α0e/n, |αfc|^3ε2/3 for
Indeed. This holds for k = 0. If moreover it does for 0 ̂  k ̂  / ̂  n, then gl satisfies the
assumptions of Proposition 1. Consequently, by Proposition 1 and its proof, \λl+ί\
gθ(ε) and |α/+1|^0(ε2/3). Now, by (1),

\<*l+1\£\bl+1-b0\ + \a0\ + 0(ε)£ Σ (l-β)V/3 + ε2/3 + O(ε)^3ε2/3. (5)
k = 0

As a result we infer that the assumptions of Proposition 1 are satisfied for gn+1 if
(An) holds.
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Proposition 2. Let L > L0, ε < ε0(L), κ>κ0(L). Then (An)-(Cn) imply (An+1)-(Cn+1).
α

/ Consider small <p, |φ|<L2(l — (5)|logε|, first. We have

-L*an+ίz
2-L*-2«λn+1φ

4-6L*-«λn+1φ
2z2-L*λn+1z

4

iv(z)+^hn+ί(φ,z)χ±(z)dv(z)']

• [J exp [ - L3~aanφ
2 - L*anz

2 -L*~ 2«λnφ
4 - 6L3 ~ *λnφ

2z2 - L3λnz
4

— L3wn(φ, z)]χ(z)dv(z) -f j hn(φ, z)χ±(z)ίίv(z)] ~ α const, (6)

where / -^ HL3 I -- \^L'
hn(φ,z) = gn\L 2φ + z] gn(L 2φ-z) . (7)

The main contribution to (6) comes again from the integration over small z.
Dropping the terms with χ1 together with the overall ^-independent constant,
omitting the subscript "n" and replacing the "n+1" one by the prime, we obtain
the following expression for the main contribution to (6),

}~]yχ, (8)

with Δc'M being φ-independent and

• χ(z)dv(z)/normalization . (9)

Notice that by (AnHCn)

\L3Aaz2 + 6L3 -*Aλφ2z2 + L3Aλz4 + Δw(φ9 z)| ̂  0((1 - ε)"ε3/2|logε|4) . (10)

HenCC |-log<exp[-L3zlαz2- ... -L3Jw(φ,z)]X

-<L3zlαz2+ ... +L3zlw(φ,z)>* ^0(l-ε)2nε14/5). (11)

The <L3zJαz2+ ... +L3zlw(φ,z)>χ will again be computed by the perturbation
expansion in the term 6L3~"λφ2z2 of (9). Introducing < — >f, where t multiplies this
term, we may write

o

+ 6L3 -aJ Λ«z2>g - 6L3 -aA<z2 z2>J V)φ2

i
2-ί + f)<z 4;z 2;z 2;z 2>§ V + i3<w(φ,z)y. (12)

o
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This tedious decomposition, together with (8) and (11), results in the estimates

ε)nε312), (13)

+ 0((ί - ε)2"ε14/5) ̂  0((1 - ε)"ε7/4) , (14)

0(l)sup\Δv\

+ 0((l-ε)2"ε14/5), (15)

+ 0((l-ε)2"ε14/5) for M<|logε|. (16)

From (3), (15), and (16) it follows that

εll4\Δλ'M\ + sup |zlg^|^2(l-(logL)ε)(l-ε)"ε7/4. (17)
l«Ί<|logε|

We still have to estimate the errors coming from the large z terms of (6) containing
χ1. We must show not only that they are small for small ε but also that they go
down with n at least as (1 — ε)". By virtue of (6) and (8), we have

exp[ - Δa'φ2 + Δλ'φ4 + Δv'(φ)~] = exp \_-Δc'M -Δa'Mφ2 - Δλ'Mφ4 - Δυ'M(ψ)~]

• {l+expίΔc'M + Δa'Mφ2 + Δλ'Mφ4 + Δ%M(φ)] \ h'(φ, z)χL(z)dv(z)/ j h(φ, z)χ(z)dv(z)

•{l+ί h(φ, z)χ\z)dv(z)/\ h(φ, z)χ(z)dv(Z)} ~ [ const. (18)

Notice that for M<|logε|, by (13)-(16),

\expίΔc'M + Δa'Mφ2 + Δλ'Mψ4 + Δ$'M(φ) ]-l\ίO((l-εr), (19)

and by (An)-(Cn)

|[f h'(φ, z)χ1(z)dv(z) - ί h(φ, z)f(z)dv(z)-\H h(ψ, z)χ(z)dv(Z)\ g (1 - εγε°^ , (20)

|J h(φ, z)χ\z)dv(z)l\ h(φ, z)χ(z)dv(z)\ ί ε°^ . (21)

Expressions (18)-(21) imply that

\Δa'-Δa'M\^(l-εγε°«l°^, (22)

\Δλ' -Δλ'M{ ^ (1 - ε)"fi°(|logε|) , (23)

sup l/lv'-ΛvU^α-εyε'*110881'. (24)
kl<|logε|

Inequality (17) and (22)-(24) prove (Bn+1).
To show (AB+1), notice that by (1), (3), (14), (15), (22), and (23),

- ε)"ε7/4) = L3 ~ "Δb + 0((ί - ε)"ε7/4) . (25)
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Since for a0 running through / W C[ — ε2/3,ε2/3], Δb sweeps (1 — ε)π[ — ε5/3,ε5/3] and
L3~α is sizably bigger than 1, there exists In + 1Cln such that Δbn+l sweeps
(l-ε)"+1[-ε5/3,ε5/3] when a runs through 7n+1. This proves (An+1).

α

We are left with showing (Cn). Let \φ\ ̂  |logε| and |Imφ| <L ^|logε|. We have

„+ 2 - L3 -X>2] ί hn+ ,(φ, z)

• exp [ - LV2]dv(z)/J 0n(z)t3 exp [ - L3αnz
2]dv(z)| , (26)

where we have denoted

gn\L iφ-z) . (27)

Using (2.43), (14), (22), (An)-(Cn), and (b) and (c) for gn and gn+1, we obtain easily

(απ + , - L3 - «α>2]/f gn(z)L3 exp [ - L3απz
2]dv(z)|

^0((l-ε)"ε3/2|logε|2)(Re<p)2exp[0(ε)(Reφ)2]. (28)

Mimicking the steps (2.38)-(2.45) we show now with the use of (28) that

exp [ - L V2]rfv(z)/j ^(z)L3 exp [ - L V

- ε)V/2|logε|2) (Reφ)2 exp[ - ^λ((Reφ)4 + κ(Re<?)2) . (29)

Hence we are left with bounding

(an+ ! - L3 ~X)φ2] f (hn+ ^φ, z) - £„(?, z)) exp [ - L3απz

exp[-L3απz
2]ί/v(z), (30)

where

The right hand side of (30) is again estimated by mimicking the steps (2.38}-(2.45)
with the use of (Bn) and (Cn). The point is that the coefficient at (Re<p)6 in (4) goes
down from (1 - ε)π to L3 ~ 3α(l - ε)". This way the term on the right hand side of (30)
may be bounded by

. (32)

Expressions (26), (29), (30), and (32) produce (Cn+ J. D
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From the fact that (An)-(Cn) hold for any n it follows immediately that for
β0en/ fc, gn converge uniformly for

|Imφ|<L

to a fixed point g^ of (2.1). That the uniform convergence holds for |Im<p|<|logε|

follows easily from this and (2.1) [to know gn+ ^(φ) for φ with \lmφ\ < |logε| we have

-- 1
to know gn(φ) only for φ with \lmφ\<L 2 |logε|j. Actually, subsequent gn are

analytic for |Imφ|<L("~1)α/2|logε| and g^ is an entire function.
This way we have obtained the following:

Theorem 1. Suppose that L>L0. Given gQ satisfying (a)-(c) of Sect. 2 with ε<ε0(L)
and κ>κ0(L), there exists α0, |α0|^ε2/3, such that the iterates of (2.1), gn(φ)
= 9n((P)QXP[~an(P2^> converge to a fixed point of (2.1), g^ uniformly for \lmφ\
<|logε|. Moreover g^ satisfies (a)-(c) and |α00|^3ε2/3 (so in particular g^ is non-
Gaussian).

4. N=ao Fixed Point

Now we shall consider the many component hierarchical model with
0(ΛO-invariant single spin distributions g(φ2/N). Taking φ = ΛΓ1/2(φ,0, ...,0),
z = JV 1 / 2 (5 9 Cι,. . . 9 C N -ι) 9 C?+ ••• + C N - I = W , we may rewrite (1.9) for d = 3 and α = l
as

00 00

) = const j ds$
-oo 0

•exp
N 3

(1)

Putting

[_- 2)]

i [ 2 (1) J '

we may compute (1) in the limit N-+CO by the steepest decent method. This was
done for the first time by Ma [12-14]. Our discussion of the large N limit will
follow in main lines his original papers. Equations (1) and (2) give

v (φ2) = inf[^L3ί;(φ+) + §L3ί;(tp~) + s2 + w-logu]+const, (3)
N=°° s,u

where
+ u. (4)

If v goes to + oo when φ2 tends to + oo, we obtain

(5)
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where

vt f^vXuo, (6)
and

-0, (7)

(8)
MO

Here s0 = 0 is a solution of (7), in fact the one relevant for the fixed point, as we
shall see. Hence

vι(φ2) = L3v(L~1φ2 + u0) + UQ — \ogUQ + const, (9)
N= oo

or, taking its derivative,

N= oo

where

LV(L~ >2 + w 0)+l =0. (11)
u0

Denoting by ί, ίx the functions inverse to v', v\ (assuming they exist) and setting
L2v'(L~lφ2 + u0) = τ, we may rewrite (10) and (11) as a single relation

t1(τ) = Lt(L~2τ)-L(l+LτΓί. (12)

For the fixed point ί this becomes

Notice that ί00(0) = L(L—l)"1^^2. Here φ2, is the extremum of the N=co fixed
point υ. We may rewrite (13) as

[(1 - M) (tm - ίJO))] (τ) = L2τ(l + Lτ)~ 1, (14)

where

M/(τ)ΞL/(L-2τ). (15)

Formally at least

2nτ). (16)
n = 0

It is easy to see that the series on the right hand side is absolutely convergent for
any τeC1, τφ — L2n~l, n = Q, 1,..., giving a meromorphic function. Let us notice
that for τeJ-ZΓ1, oo[

, (17)
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so that t grows monotonically.

lim ί c o(τ)=-oo. (18)
τ-» -L- 1

Now for n0 being the largest integer with L1"2"0!^!,

i ΣL 3 "τ- 2 ^CW^ Σ^3"^"2+ Σ £ 2~"> (19)
n = 0 n = 0 n = n 0 +l

Cιτ~ 1 / 2^ίΌoM^C 2τ- 1 / 2, (20)

if τ is large. In particular

limί^τ^oo. (21)
Tx*00

We shall define v'^ by inverting t^ on ] — L"1, oo[. Notice that v'ao(φ$) = Q9 v'^
grows from — L"1 to oo when its argument runs from — oo to oo. Thus v^ has a
single minimum at φ\ and goes to oo when the arguments tend to ± oo. We shall
normalize v^ so that υ^(φ%) = Q. Of course i;̂  is analytic around the real axis since
t^ was around ] — L~ *, oo[. In fact one can show that the analyticity region may
be extended to include a small cone around the positive real axis. Since by (17)

C(0) = Σ L2-n = L\L~\)-^^\ (22)
n = 0

we may write

vm(ψ2

0+y)^αo(y)=L

2λx,y
2 + ̂ x(y), (23)

where w ̂ (y) = O(y3) for small y. Clearly the fixed point is non-Gaussian.
Notice that we could obtain other solutions of (10) and (11) by inverting t on

] — L2n + 1, —L2n~l\_, n = 0, 1, .... These however would give v^ which is un-
bounded below violating stability and because of that uninteresting physically.

As noticed by Ma [14], if we write t(τ) — tαo(τ)= Σ V^ then, by virtue of (12),
n = 0

00

tl(τ)-tf0(τ) = Llt(L-2τ)-tJL-2τK= Σ L^ϊnαnτ\ (24)
n=0

Hence αn(v) are the scaling fields and the L1"2", rc = 0, 1, ..., are the eigenvalues of
the linearized RG transformation around the non-Gaussian fixed point in the
JV-»oo limit. We clearly see the stability of this fixed point (only one eigenvalue is
> 1, the other corresponds to irrelevant directions). The aim of the subsequent
sections is to prove that this picture remains correct for sufficiently large but finite
N.

5. Large N Case. Invariant Neighborhood

The corrections to the N=co RG transformation could be systematized into a

perturbative — expansion for the right hand side of (4.1). However, for the purpose
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of proving the existence of a fixed point for finite AT, we shall need only crude
bounds for the corrections.

Similarly, as in Sect. 2, the region of φ2 near the minimum q>Q = L(L—1)~1 of
the N = oo fixed point v^ will be controlled more closely, the contributions from
φ2 away from φ^ being small (of order e~δN) and bounded with the use of the
analyticity techniques. We shall normalize the single spin distributions g(φ2) so
that g(φl) = 1 and will introduce g(φ$) by

l+y)=g(ψo+J>) eχp I - y (i)

where
Let us state the assumptions for the factors 0.
(a) #(φ2) is an analytic function for |Imφ|<ρ, positive for real φ, 0(Φo) = l,

(b) For \y\<ε = 2φ0ρ (this is a different ε as in Sect. 1-3)

(2)
J

where w is a function analytic for \y\ < ε. Writing

(3)

where w(0) = w'(0) = w"(0) = 0, we have

(4)

(5)

(c) For |Imφ|<L~1/2ρ, \y\^ε, where y = φ2 —

- AJRe^H- yAJImy) 2. (6)

Assumption (a) states the general properties of g. Notice that it means that g(z)
is analytic in the parabolic region (Imz)2<4ρ2(Rez-fρ2). Assumption (b) implies
that close to the minimum φ^ of v^, g(φ2) is a small perturbation of

Γ N ]
exp — — v^φ2) . Finally (c) is a convenient stability bound. The main result of the

2
present section is

Propositions. // g satisfies (a)-(c) and if |α|^2ε2, then g^ also satisfies (a)-(c)
provided that L>L0, ρ<ρ0(L), and N^N0(L,ρ).

Proof. Introducing the notation

•exp
N

ι-logM)-flogtι (7)
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we may rewrite (1) as

00 00 / 00 00

9ι((P2)= ί ds J duG(s,u, φ2) J ds J du G(s, u, φ%). (8)
- oo 0 / - oo 0

Notice that by virtue of (a)-(c) the integrals in (8) converge absolutely uniformly in
φ such that |Imφ| <ρ [since for such φ the arguments of g in (7) have an imaginary
part bounded by ZΓ1/2ρ]. Hence (a) for QV follows immediately.

In order to study (b), take φ2 = φ2 + y.

N=co Recursion. Let us define

(9)

see (2). The large N limit approximation w100(y) to wfy) is given by (4.10) and
(4.11) which, after translation by φ^ to rewrite them in terms of w's, read

- — -0. (11)
UQ

In the first, rough attempt, we take w'(y) = a + λy and compute u0 from (11)

approximating — « 1 - (MO - 1). This gives
w0

u0-l = -L*(l+L*λΓla-L2λ(l+L3λΓ1y + u9 (12)

where w is the correction due to the approximate character of the calculation. We
shall search for the solution of (11) for small y in the form (12). This is a standard
problem.

Lemma 1. For |j;|<fL2ε, there exists a unique analytic function u(y) satisfying (11)
and (12) and such that \ύ(y)\^L2ε1/4. Moreover |w'(y)|^fε3/4, |£(0)|^0(ε15/4), and

Proo/ o/ Lemma 1. Inserting (12) to (11) and using (3) and (9) we obtain

1 ' ] = F ( y y ύ ) . (13)

Notice that by virtue of (4),

L'l(ί+L3λΓ1y = (L"2 + 0(B3l2))y. (14)

Hence it is easy to see that for \y\<%L2ε, F(y, ) maps, say, X(0,ε3/2) in ύ into
X(0,fL2ε7/4) (ε is small). Its derivative over ύ on the same ball is bounded by
0(ε3/4). Thus there exists a unique solution of (13), ύ(y\ in ̂ (0, |L2ε7/4) which may
be constructed by successive approximations. For y = 0, F(0, •) maps X(0,ε2) into
K(0,0(ε15/4)) [to see this notice that by virtue of the maximum principle, |w'(z)|
^|z/ε|2ε7/4 for |z|<ε since iv/(0) = w"(0) = 0].This gives |u(0)|^0(ε15/4). Moreover
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8F .

and

dF

Hence

and

\ΰ'(y)\ =
d_F_
dy

^'

δF
(y,ΰ(y))l\\-—(y,u(y))

209

(15)

(16)

(17)

(18)

which ends Proof of Lemma 1. Π
Given Lemma 1, we may extract the properties of the function w'ίao(y) analytic

for \y\<%L2ε as given by (10) and (12):

We write

where w'lco(0) = Wjco(0)=0, and obtain

(19)

(20)

(21)

(22)

Equations (21) and (22) describe the behavior of the relevant and the least
irrelevant perturbation near the N=oo fixed point in agreement with the analysis
of the end of Sect. 4 of the linearized RG. Finally, for |

(23)

Hi +L3λ)~ 1

Hi +L3λ)~ 1

'(0)-L2w"(- L3(l+L3λΓ 1

Using |w/

1'00(z)|^|z/(|L2ε)|sup|w/.[00|, due to the vanishing of w'̂  at zero and the
maximum principle, we obtain from (23)

Iw" (v}\ <(-Γ2}~1 ^-P3/4<^-P3/4 for l v l < r ί?4ϊI 1 oo\y)I ~^ \Δ. ) 9 —-̂  A*** ivji \yi -̂- tt ? ^z^T^y

(L>LQ). Equations (22) and (24) show that wlQO( = λlaoy + wloo(y)) satisfies (b) with
some space to accomodate the finite IV corrections.
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Small Field Integral In this subsection we shall consider φ2 = φ2 + y and |y|<ε
or |Imφ|<L~1 / 2ρ, |Re y\<L1/2ε. Notice that if \y\<ε = 2φ0ρ, then
φ2 = φ2-}-rcosθ + ΐrsmθ with 0^r<2φ0ρ and

= 4ρ4 + 4ρ

2

r COs θ + r2 < 4ρ2(φ2 + r cos 0 + ρ2) .

But this inequality implies that |Im φ\ < ρ, so that (8) is well defined for φ2 = φ^ 4- 3;
and \y\<ε.

We shall divide the integral of (8) into two contributions. To this end define

^} , (25)

and write

00 OO

j ds j du G(s, w, φ2) = J dsduG(s,u,φ2)Jr J dsduG(s,u,φ2). (26)
-oo 0

The first integral is the main contribution. Notice that, by virtue of (7), (b) and
(9), for(s,w)e0

= exP

where

(27)

3 \
- 1 -- l l o g M . (28)

Indeed

2) < ε (L > L0, e < ε0(L)) ,

so that we are in the domain where (2) applies. Notice that (0, u0(y))9 as given by
(12) and Lemma 1, is deep inside (9 for L big and that

H>ι ooW = m u,(y\ y) - 7(0, u0(0), 0) - A (Iogu0(y) - log w0(0)) . (29)

To exhibit the N= oo contribution (29) to | dsdu G(s, u, φ2), we shall change the
Re(P

contour of integration over u to the one given by CAB on Fig. 1. This way we
obtain

J ds du G(s, u, φ2) = exp - 7(0, u0(y), y)
Retf?

] ds J du exp [ - ^ (V(s, u, y) - F(0, u0(y), y))\ , (30)
-α CAB I ^ J
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Imλi

where α = \ε. The integral on the right hand side of (30) is a small perturbation
Γ N ]

of a Gaussian integral of the type jexp — — (σ\^σ) \d2σ with a positive matrix

j/. It is estimated in

Lemma 2.

} ds f duexp\-^(V(s9u9y)-V(Q9u0(y)9y))
-a CAB I ^

Proof of Lemma 2. First let us notice that on

Id2v d2v\

1/2

ds2 ' dsdu\

d2V d2

6 0

\duds* du2

(N>N0(ε)). For the interval ^45, let us parametrize

(31)

(32)

with |σ1 |<l, 0<σ 2<l. This allows us to write

α ί N
} ds } duexp - —(V(s9 u9 y)- V(s, u0(y\ y))

-a AB I ^

= a(B-A) j
- 1

where the matrix

N

+ 0(ε11/4)

(33)

(34)

(35)



212 K. Gaw^dzki and A. Kupiainen

and the higher order contribution

see (32) and (33). We use the fact that
dV dV 3
^ (0, u0(y), y) = — (0,u0(y), y) - - u0(y) ~ 1 = 0 ,

since uQ(y) was defined by means of these relations. We also have

(36)

^T), (37)

since (B — A)2 has a small argument (A is deep inside & for L big). Defining:
(7(σ1? — σ2)Ξ [/(σ1,σ?), we may write

i i

>-4f
-i

d2σexp
| σ ι | , |σ 2 |< l

r jv
J d2σexp (σ|j/σ)

ι < N - 2 / 5 L 2

\σ\^N~2/5

kι | , |σ 2 |< l

N
rf2σexp — — (σ|j/σ)

The first term on the right hand side of (38) is

(exp[-JVC/(σ)]-l)

(exp[-JVC7(σ)]-l).(38)

(39)

for some (5>0. The second one is bounded by 0(ε11/47V~6/5) by virtue of (36), and
finally the third one by 0(e~δNl/5). Altogether it produces the estimate

/ 2 \ 1 / 2

—
\3L/

(38)= —
/

(40)

Substituting this and the analogous estimate for the contribution of the CA
interval to (34), we obtain (31). Π

Equation (30) and Lemma 2 imply that

J
N M I 8 \ 1 / 2 \

uQ(y\y) \(π — +0(ε3/4) AΓ'1 . (41)
J \ w *-'/ /

Large Field Integral. In this subsection we shall estimate the second term on the
right hand side of (26) for the region of the values of φ2 (of y) as in the previous one
(see its beginning). The aim is to show that this term is down by a factor e~δN as
compared with the first one. To exhibit this we shall prove certain inequalities
for |G(s, u, φ2)\ with real s,u and \lmφ\<ρ which will also be used in the later
arguments.

First notice that by virtue of (b), (c) and the assumption on α,

(42)
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for |Imφ| <L~ 1/2ρ. But the arguments of g in (7) fulfill this requirement for real s, u
and |Imφ|<ρ. Hence

--L2;

[
^ 2 2 ogw ε J.

Now, for 0<M<f,

— (M — log M) + f log w^ 1 (u— I)2 —0(1). (44)
2 2 6

Moreover,

12

~L4

2, (45)

as a simple algebra shows. Hence, for 0<t/<f, real 5 and |Im<p|<ρ,

. (46)

For u Ξ^f the second and the third exponent on the right hand side of (43) decrease
with u as is easily seen. Hence for w^f, real 5, |Imφ|<ρ

\G(s,u,φ2}\^ right hand side of (46)| _ 3 _

Γ N N
- y (M-lθgM)-f lθgM+ y (f - logf) +f logf (47)
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Inequalities (46), (47), and (25) imply that for φ2 = φl + y with \y\<ε or
1/2ρ, |Rej;|<L1/2ε,

J (48)

In order to compare (48) with (41) notice that by (29), (20)-(23), (28), (14) and
Lemma 1,

+ 0(ε1 1/4) . (49)

(50)

+ u0(0) - Iogu0(0) + log u0(3θ - 1

Hence we easily see that

(IR1 x R|)\0

for L,ε 1,N big and some <5>0. Finally

g^φ2)^ J dsduG(s,u, φ2)/ J
R1 xRi / R1 x IRi

(TV > N0(β)). Thus we obtain

W i M - w

This together with (20)-(22) and (24) proves (b) for g± and shows that

(51)

(52)

(53)

At the same time (6) of (c) follows for φ2 = φ^ + y with \Imφ\<L~1/2ρ, \y\^ε, and
|Rey|<L1/2ε.

We are left with showing (6) for φ2 with \lmφ\ <L~ 1/2ρ and (Re 3;) ̂ L1/2ε. This
N

bound iterates because the factor at -- (Rey)2 in tne exponent has a value

smaller than at the fixed point and thus grows under the RG recursion. Indeed,
(46) and (47) imply that

j ds du G(s, M, φ2)
xRi

^exp[- ^L(2 + JL
3Aα))-U00(Re3;)

2 + y

Moreover by (41), (49), and (50)

I dsduG(s, u, ψ2

0) ^ exp - ̂  - NO^1 1/4) .

. (54)

(55)
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Hence

[ N N ]
-—(l+L~1)~U00(Rej;)2+—L^00(Imj;)2 + ]VO(ε11/4) , (56)

6 2 J

which establishes the missing part of (c) for g^φ2), since for |Imφ|<L~1 / 2ρ,

(57)

[we also use the fact that |α1|^0(ε2)]. This ends the Proof of Proposition 3. Π

6. Large N Case. Contractive Properties of the RG Recursion

From (5.53) we see that in general there is no contraction of the coefficient a under
the RG transformation (4.1) \_a(φ2 — φ%) is a relevant perturbation]. However,
similarly as for the small ε case in Sect. 3, we shall show that for each g satisfying
(a)-(c) there exists a critical value of a for which the assumptions of Proposition 3
are stable under (4.1). Moreover for this value of a the "distance" between the
subsequent iterates of (4.1) shrinks, yielding a convergence to a non-Gaussian fixed
point.

The strategy of search for the critical value is the same as in Sect. 3. We shall
restrict the admissible values of a gradually from one iteration of (4.1) to the other
so that finally the critical a (corresponding to the critical value of the temperature)
is chosen.

\ NLet us start with g0(φ2) = g0(φ2)εxp\ c
[ 2

. Suppose that g0 fulfills (a)-(c)

of Sect. 5 and that a0e[ — ε2,ε2]. From (5.53) it follows that one can choose a
closed interval / 0C[ — ε2,ε2] sucn tnat ^0o = flι~~flo sweeps, say, [ — ε3,ε3], when
a0 runs through I0. Let gn be the nth iterate of (4.1) applied to g0. The following are
the properties of gn and gn+ί to be shown inductively. They are obviously fulfilled
by g0 and gv We use the notation Afn = fn+1-fn.

(Aw). For O^k^n one can choose a closed interval / f c C[ — ε2,ε2], Ik+ίCl
such that Δak sweeps L~kl2~\ — ε3,ε3[ when α0 runs through Ik.

(BJ. For aeln and |y|<ε
/ 2ε3 / 2, (1)

and

|zlw;Ί^2L""/2ε3/4. (2)

(Cπ).

-i -i '"00 V~~~-^ / ' <"> "00 V J J ' \ /

We shall prove the following:

Proposition 4. Let L>L0, ρ<Q0(L), N>N0(L,ρ). Then (AΠ)-(CΠ) imply

(AΠ+1HCB+1).
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Proof. First notice that for a0eln, 0^/c^Ξrc,

fl0+ Σ Aan
(4)

m = 0

(ε small). Hence (Aw) implies that for a0eln, gk+v fc = 0, ...,rc, satisfy the assump-
tions of Proposition 3.

Let us consider φ2 = φ2 + y with |y|<ε or |Im<p|<L~1 / 2ρ, |Rej;|<L1/2ε.

N OO OO 00 00

exp\--ϊrAwn+ί(y)\ = [ J ds f duGn+1(s,u,φ2)\ J ds j duGn(s,u9φ
2}

*• J V-oo 0 / -oo 0

00 00 / G O

J ds \ duGn(s,u,φ2) J ds J duGn+ί(s,u,φ2)}. (5)
V- oo 0 / - oo 0

The main contribution is, see (5.7), (5.25), (5.27), and (5.28).

dsduGn(s, u, φ2}
Red

= f dsdwexp U —7π+1(s,M,3>) / f dsduexp
Red) I ^ \l Red)

N

where

<->'=Rί(

with V* given by (5.28) with w replaced by

ί
Retf

(6)

(7)

ί)wn. (8)

Here w/ satisfies (b) of Sect. 5. So we shall control (J^X as ^n ̂ ect 3, changing the w
integration contour according to Fig. 1 [with uQ(y) = u^y) being determined by wr

now]. We have

n( 9 9 j;)/ = A Vn(0, u^yl y) + (AVn( 9 9y)-A Vn(09 tf0(y)9 j)>ί. (9)

Proceeding as in Sect. 5 [see (5.33) and (5.34)], we may rewrite the second term on
the right hand side of (9) as

a(B-A) j dσ1 J dσ2F(σ) exp

0

+ a(A-C) J dσί J dσ2F(σ)exp
-i -i

1 1

oc(B-A) J dσ1
-1 0

1 0

ί dσι ί

- (σ\s/'σ) -NU'(σ) + O(ε)

N

(10)
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where j/, U are as before, jtf\ V correspond to the CA piece of the contour on
Fig. 1 and

1/4)|σ|. (11)

Straightforward estimation shows now that (10) is bounded by

L-"/20(ε11/4ΛT1/2). (12)

Hence

<AVn('ί^y)y = AVn(^utMy) + L-n/20(81^N^/2). (13)

But by (5.28), the N=oo contribution

_ΔVn(09 1/00;), y) = L3Awn(L

)-l). (14)

In order to mimic (5.29) introduce

A w< + &) = A Vn(0, u^yl y)-A Vn(0, ι/0(0), 0) , (15)

and write

Arfn+1(y) = AU+1y + $AXn+iy
2 + A&n+i(y), (16)

where

Λ#Λ+1(θ)=4#;+1(θ)=Λ#;+ι(θ)=o.
By (5.12) and Lemma 1,

|JKΛ(0,Mt

0(0),0)|gL-"/20(e5), (17)

Aa'n+ 1 =L3/lα,,(ZΓ x(l +L3AO~ ! +M"(

L(i+zAi r'+^o))
(18)

Moreover

Av(ζ+l(y) = LίΔanu
v'(y) + L*Aλn(L~l(l + L*λl)~l +utf(y))2

+ L3Aλn(L~ 1y + WQ(J ) — i)ύtff(y) + L3A w'n(L~ ly + ιfQ(y) — 1)8 (̂3;)

+ L3 Aw'ή(L~ * y-\- MO (3;)— 1)(L~1(1 H-L3^)"1 + M l /(y))2. (19)

Hence, again using (5.12) and Lemma 1, we obtain

and

sup \Awrή(y)\+L~n/20(ε3>/2). (21)
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Gathering (6), (13), (15), and (17) we obtain

J dsduGn+ί(s,u,φ2} I j dsduGn(s,u,φ2)
Red) I Red)

(22)

where Av^n+1 has the properties stated in (16), (18), (20), and (21). We recall that all
the time we consider φ2^=φ2

) + y with \y\<ε or lImφ|<L~ 1 / 2ρ, |Rey|<L1 / 2ε.
In order to estimate the contribution of 1R1 x 1R+ \(9 to the right hand side of (5),

we notice that

ed) Red) Red) / Red)

- J GH+1/S G\ j G n + 1 / { Gn+1+ J
RQ& I Red) / ~Re0 / Re& ~Re& Re&

In Sect. 5 we have seen that

Similarly, using \ex — ey\^\x — y\(eRex + eRey) and (16)-(22), we obtain

ί- ί Gn + 1 / ί G\ J G B + 1 / J GΠ 4 -—/2^n/4^-W

ReC? Reΰ

(23)

(24)

(25)

Notice also that N~1L~n/2ΔGn(s,u,φ2) satisfies (5.46) and (5.47) as well as
Gn(s,u,φ2). Indeed, when estimating AGn, we have to use besides (5.42) also

-^AJRe^+yAJImy)2 , (26)

which follows easily from (AJ-(CJ for all φ with |Imφ| <L 1/2ρ. Proceeding as in
Sect. 5, we obtain

ί
-ReC Reί

(27)

Gathering of (22)-(25) and (27) gives

00 00

J ds$duGn+1(s,u,φ2)/ J ds\ duGn(s,u,φ2)

N i ,

-oo 0

00 OO

- oo 0

Thus by virtue of (5)

(28)

(29)
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and (Bn + 1), as well as (3) for |Imφ| <L~ 1/2ρ, \y\*£ε, and |Rej;| <L1/2ε, follows easily
from the properties (16), (18), (20), and (21) of A r f n + 1 . We notice also that

Aan+ί=LAan + L-(n+1}/20(εΊ/2), (30)

so that it sweeps L"n/2+1[-ε3 + 0(ε7/2),ε3-0(ε7/2)], when α0 runs through In.
Hence the existence oίln+ίcln with the properties stated in (Aπ + 1) follows.

We are left with proving (3) for φ2 with \Imφ\<L~ll2ρ, |Rej;|^L1/2ε. This is
done the same way as the analogical part of the proof of (c) for g^ in Sect. 5, by
virtue of the remark that N~ lL~n'2ΔGn(s, u, φ2) satisfies (5.46) and (5.47). Π

From Proposition 4 it follows that for α 0en/ f c, (Bn) and (Cπ) are satisfied for
each n and \Aan\^L~n/2s3. This implies the following result, the culmination of
Sects. 4-6:

Theorem 2. Suppose that L>L0. Given g0 satisfying (a)-(c) of Sect. 5 with ρ<ρ0(L)
and N>N0(L,ρ), there exists aQ9 |α0|^ε2, such that the iterates of (4.1), gn(φ2)

\ N ]
= gn(φ2)exp\-—an(φ2-φ2

))l converge to a fixed point of (4.1), g^ uniformly

for |Im φ\ < ρ. Moreover g^ satisfies (a)-(c) of Sect. 5 and \a^ ^ 2ε2 (so in particular
g^ is non-Gaussian).

In forthcoming publications we shall try to extend our methods to the
hierarchical model correlation functions and beyond the hierarchical approxima-
tion. The latter should produce, among the other things, a rigorous control of the
critical point Λ(φ2)2 many component quantum field theory in d = 3. The study of
the even more interesting d = 2 case is also under way.
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